1. (20 points) $A=\left(\begin{array}{rrrr}9 & 0 & 0 & 0 \\ 9 & 8 & 0 & 0 \\ 0 & 0 & 9 & 0 \\ 12 & 11 & 10 & 9\end{array}\right)$. Therefore $c_{A}(x)=(9-x)^{3}(8-x)$ from which we deduce $\operatorname{Dim} \mathcal{N}\left(\left(A-9 \mathrm{I}_{4}\right)^{3}\right)=3, \operatorname{Dim} \mathcal{N}\left(A-8 \mathrm{I}_{4}\right)=1$. Note that $v_{1}=\left(\begin{array}{r}0 \\ 1 \\ 0 \\ -11\end{array}\right)$ forms a basis for the space of eigenvectors for A belonging to $\lambda-8$, hence forms a basis for $\mathcal{N}\left(A-8 \mathrm{I}_{4}\right)$.

Now $\mathcal{N}\left(\left(A-9 \mathrm{I}_{4}\right)^{3}\right)=\mathcal{R}\left(A-8 \mathrm{I}_{4}\right)$ has basis $\left\{e_{4}, e_{3}, e_{1}+9 e_{2}\right\}$. Under multiplication by $A-9 \mathbf{I}_{4}=\left(\begin{array}{rrrr}0 & 0 & 0 & 0 \\ 9 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 12 & 11 & 10 & 0\end{array}\right)$ observe that $e_{4} \longrightarrow 0, e_{3} \longrightarrow 10 e_{4} \longrightarrow 0$, and $e_{1}+$ $9 e_{2} \longrightarrow 111 e_{4} \longrightarrow 0$. Therefore $v_{2}=e_{1}+9 e_{2}-\frac{111}{10} e_{3}, v_{3}=10 e_{4}$ form an independent set of eigenvectors for A belonging to $\lambda=9$. Set $v_{4}=e_{3}$. Let Let $S=\left(v_{1} \cdots v_{4}\right)=$ $\left(\begin{array}{rrrr}0 & 1 & 0 & 0 \\ 1 & 9 & 0 & 0 \\ 0 & -\frac{111}{10} & 0 & 1 \\ -11 & 0 & 10 & 0\end{array}\right) \quad(\mathbf{1 2})$ and $J=\left(\begin{array}{cccc}8 & 0 & 0 & 0 \\ 0 & 9 & 0 & 0 \\ 0 & 0 & 9 & 1 \\ 9 & 0 & 0 & 9\end{array}\right)$.
Comment: I was not particular about the order of the blocks.
2. (20 points) $A=\left(\begin{array}{cccc}9 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 9 & 0 & 0 & 9\end{array}\right)$. Therefore $c_{A}(x)=(9-x)^{2} x^{2}$ from which we deduce $\operatorname{Dim} \mathcal{N}\left(\left(A-9 \mathrm{I}_{4}\right)^{2}\right)=2=\operatorname{Dim} \mathcal{N}\left(A^{2}\right)$. By inspection $\left\{e_{2}, e_{3}\right\}$ form a basis for the space of eigenvectors for A belonging to $\lambda=0$, hence form a basis for $\mathcal{N}\left(A^{2}\right)$. Let $v_{1}=e_{2}, v_{2}=e_{3}$. Now $\mathcal{R}\left(A^{2}\right)=\mathcal{N}\left(\left(A-9 \mathrm{I}_{4}\right)^{2}\right)$ has basis $\left\{9 e_{1}+9 e_{4}, e_{4}\right\}$. Let $v_{4}=9 e_{1}+9 e_{4}$ and $v_{3}=\left(A-9 \mathrm{I}_{4}\right) v_{4}=81 e_{4}$. Then $\left\{v_{3}, v_{4}\right\}$ is a basis for $\mathcal{N}\left(\left(A-\mathrm{I}_{3}\right)^{2}\right)$. Let $S=\left(v_{1} \cdots v_{4}\right)=$ $\left(\begin{array}{rrrr}0 & 0 & 0 & 9 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 81 & 9\end{array}\right)(\mathbf{1 2})$ and $J=\left(\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 9 & 1 \\ 9 & 0 & 0 & 9\end{array}\right)$.
Comment: Note that $\left\{e_{1}, e_{4}\right\}$ is a basis for $\mathcal{N}\left(\left(A-9 \mathrm{I}_{4}\right)^{2}\right)$ as well. Thus $v_{4}=e_{1}$ and $v_{3}=9 e_{4}$ work also. I was not particular about the order of the blocks.
3. (20 points) We are to find $c_{A}(x)$ and $m_{A}(x)$, where A is the matrix of the reflection $R: \mathbf{R}^{2} \longrightarrow \mathbf{R}^{2}$ through $S=\operatorname{span}\left(\binom{3}{7}\right)$.

Now R is a reflection through a line in \mathbf{R}^{2}. Therefore A has eigenvalues $1,-1$. Thus $(x-1)(x+1)$ divides $c_{A}(x)$, since the roots of $c_{A}(x)$ are the eigenvalues of A, and $(x-1)(x+1)$ divides $m_{A}(x)$ by part d) of Proposition 7.6.1. (10) Since $m_{A}(x)$ divides $c_{A}(x)$ by part c) of the same, both have highest coefficient 1 , and the degree of $c_{A}(x)$ is $2, c_{A}(x)=$ $(x-1)(x+1)=m_{A}(x)$. $\mathbf{(1 0)}$
Comment: The matrix of R is $A=\left(\begin{array}{rr}-\frac{20}{29} & \frac{21}{29} \\ \frac{21}{29} & \frac{20}{29}\end{array}\right)$. The solution can be based on this.
4. (20 points) Let $m \geq 0$. Then $D(1)=0$ and $D\left(x^{m}\right)=m x^{m-1}$ for all $m \geq 1$. Let $\mathcal{B}=\left\{1, x, \ldots, x^{n}\right\}$ be the natural basis for P^{n}. Then $[D]_{\mathcal{B}}$ is an $(n+1) \times(n+1)$ upper triangular matric with zeros on the diagonal. Therefore $c_{D}(x)=c_{[D]_{\mathcal{B}}}(x)=(-x)^{n+1}$. (8)

To find $m_{D}(x)$ one can verify Exercise 8.1.5 and use Proposition 7.6.1 to show that $m_{D}(x)=x^{n+1}\left(= \pm c_{D}(x)\right)$. A more direct way is to first note that $D^{n+1}=0$ and $D^{n} \neq 0$. In particular $\left\{I, \ldots, D^{n+1}\right\}$ is dependent. We will show $\left\{I, \ldots, D^{n}\right\}$ is independent. Since $D^{n+1}=0$ by definition $m_{D}(x)=x^{n+1}$.

Suppose that $\left\{I, \ldots, D^{n}\right\}$ is dependent. Then $a_{0} I+a_{1} D+\cdots+a_{n-1} D^{n}=0$ for some $a_{0}, \ldots, a_{n} \in \mathbf{R}$ not all of which are zero. Thus $a_{m} D^{m}+\cdots+a_{n} D^{n}=0$ where $0 \leq m \leq n$ and $a_{m} \neq 0$. Applying D^{n-m} to both sides of the preceding equation $a_{m} D^{n}=0$. Since $D^{n} \neq 0$ necessarily $a_{m}=0$, a contradiction. Thus $\left\{I, \ldots, D^{n}\right\}$ is independent after all. (12)
5. (20 points) Let $\mathbf{v} \in V, \lambda \in \mathbf{R}$ and suppose that $T(v)=\lambda v$. Then $T^{m}(\mathbf{v})=\lambda^{m} \mathbf{v}$ for all $m \geq 0$ by induction on m. Since $T^{0}(\mathbf{v})=\mathbf{v}=\lambda^{0} \mathbf{v}$ the assertion follows for $m=0$. (8)

Suppose that $m \geq 0$ and $T^{m}(\mathbf{v})=\lambda^{m} \mathbf{v}$. The calculation

$$
T^{m+1}(\mathbf{v})=T\left(T^{m}(\mathbf{v})\right)=T\left(\lambda^{m} \mathbf{v}\right)=\lambda^{m} T(\mathbf{v})=\lambda^{m}(\lambda \mathbf{v})=\lambda^{m+1} \mathbf{v}
$$

shows that the assertion holds for $m+1$. Thus the assertion holds for all $m \geq 0$ by induction. (8)

Next let $p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in \mathbf{R}[x]$. Then the calculation

$$
\begin{aligned}
p(T)(\mathbf{v}) & =\left(a_{0} I+a_{1} T+\cdots+a_{n} T^{n}\right)(\mathbf{v}) \\
& =a_{0} I(\mathbf{v})+a_{1} T(\mathbf{v})+\cdots+a_{n} T(\mathbf{v}) \\
& =a_{0} \mathbf{v}+a_{1}(\lambda \mathbf{v})+\cdots+a_{n}\left(\lambda^{n} \mathbf{v}\right) \\
& =\left(a_{0}+a_{1} \lambda+\cdots+a_{n} \lambda^{n}\right) \mathbf{v} \\
& =p(\lambda) \mathbf{v}
\end{aligned}
$$

shows that $p(T)(\mathbf{v})=p(\lambda) \mathbf{v}$. (8)

Suppose that λ is an eigenvalue for T and $p(T)=0$. Let \mathbf{v} be a non-zero eigenvector for T belonging to λ. Since $\mathbf{v} \neq \mathbf{0}, 0=p(T)(\mathbf{v})=p(\lambda) \mathbf{v}$ which shows that $p(\lambda)=0$. (4) Comment: We have shown that if $p(T)=0$ the eigenvalues of T are roots of $p(x)$. A root of $p(x)$ is not necessarily an eigenvalue for T. For suppose that V is finite-dimensional. Then T has only finitely many eigenvalues. Suppose $a \in \mathbf{R}$ is not of of them. Note $p_{a}(x)=p(x)(x-a)$ also satisfies $p_{a}(T)=p(T)(T-a I)=0$.

