MATH 425 Written Homework 7 Solution Radford 04/21/08

1. (20 points)
$$A = \begin{pmatrix} 9 & 0 & 0 & 0 \\ 9 & 8 & 0 & 0 \\ 0 & 0 & 9 & 0 \\ 12 & 11 & 10 & 9 \end{pmatrix}$$
. Therefore $c_A(x) = (9 - x)^3(8 - x)$ from which

we deduce $\operatorname{Dim} \mathcal{N}((A - 9I_4)^3) = 3$, $\operatorname{Dim} \mathcal{N}(A - 8I_4) = 1$. Note that $v_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ -11 \end{pmatrix}$ forms

a basis for the space of eigenvectors for A belonging to $\lambda - 8$, hence forms a basis for $\mathcal{N}(A - 8I_4)$.

Now $\mathcal{N}((A - 9I_4)^3) = \mathcal{R}(A - 8I_4)$ has basis $\{e_4, e_3, e_1 + 9e_2\}$. Under multiplication by $A - 9I_4 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 9 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 12 & 11 & 10 & 0 \end{pmatrix}$ observe that $e_4 \longrightarrow 0, e_3 \longrightarrow 10e_4 \longrightarrow 0$, and $e_1 + e_4 \longrightarrow 0$

 $9e_{2} \longrightarrow 111e_{4} \longrightarrow 0. \text{ Therefore } v_{2} = e_{1} + 9e_{2} - \frac{111}{10}e_{3}, v_{3} = 10e_{4} \text{ form an independent}$ set of eigenvectors for A belonging to $\lambda = 9.$ Set $v_{4} = e_{3}.$ Let Let $S = (v_{1} \cdots v_{4}) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 9 & 0 & 0 \\ 0 & -\frac{111}{10} & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ (12) and $J = \begin{pmatrix} 8 & 0 & 0 & 0 \\ 0 & 9 & 0 & 0 \\ 0 & 0 & 9 & 1 \\ 0 & 0 & 0 & 9 \end{pmatrix}.$ (8)

Comment: I was not particular about the order of the blocks.

Comment: Note that $\{e_1, e_4\}$ is a basis for $\mathcal{N}((A-9I_4)^2)$ as well. Thus $v_4 = e_1$ and $v_3 = 9e_4$ work also. I was not particular about the order of the blocks.

3. (20 points) We are to find $c_A(x)$ and $m_A(x)$, where A is the matrix of the reflection $R: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ through $S = \operatorname{span}\begin{pmatrix} 3\\7 \end{pmatrix}$).

Now R is a reflection through a line in \mathbb{R}^2 . Therefore A has eigenvalues 1, -1. Thus (x-1)(x+1) divides $c_A(x)$, since the roots of $c_A(x)$ are the eigenvalues of A, and (x-1)(x+1) divides $m_A(x)$ by part d) of Proposition 7.6.1. (10) Since $m_A(x)$ divides $c_A(x)$ by part c) of the same, both have highest coefficient 1, and the degree of $c_A(x)$ is 2, $c_A(x) = (x-1)(x+1) = m_A(x)$. (10)

Comment: The matrix of R is $A = \begin{pmatrix} -\frac{20}{29} & \frac{21}{29} \\ \\ \frac{21}{29} & \frac{20}{29} \end{pmatrix}$. The solution can be based on this.

4. (20 points) Let $m \ge 0$. Then D(1) = 0 and $D(x^m) = mx^{m-1}$ for all $m \ge 1$. Let $\mathcal{B} = \{1, x, \dots, x^n\}$ be the natural basis for P^n . Then $[D]_{\mathcal{B}}$ is an $(n+1) \times (n+1)$ upper triangular matric with zeros on the diagonal. Therefore $c_D(x) = c_{[D]_{\mathcal{B}}}(x) = (-x)^{n+1}$. (8)

To find $m_D(x)$ one can verify Exercise 8.1.5 and use Proposition 7.6.1 to show that $m_D(x) = x^{n+1} (= \pm c_D(x))$. A more direct way is to first note that $D^{n+1} = 0$ and $D^n \neq 0$. In particular $\{I, \ldots, D^{n+1}\}$ is dependent. We will show $\{I, \ldots, D^n\}$ is independent. Since $D^{n+1} = 0$ by definition $m_D(x) = x^{n+1}$.

Suppose that $\{I, \ldots, D^n\}$ is dependent. Then $a_0I + a_1D + \cdots + a_{n-1}D^n = 0$ for some $a_0, \ldots, a_n \in \mathbf{R}$ not all of which are zero. Thus $a_mD^m + \cdots + a_nD^n = 0$ where $0 \le m \le n$ and $a_m \ne 0$. Applying D^{n-m} to both sides of the preceding equation $a_mD^n = 0$. Since $D^n \ne 0$ necessarily $a_m = 0$, a contradiction. Thus $\{I, \ldots, D^n\}$ is independent after all. (12)

5. (20 points) Let $\mathbf{v} \in V$, $\lambda \in \mathbf{R}$ and suppose that $T(v) = \lambda v$. Then $T^m(\mathbf{v}) = \lambda^m \mathbf{v}$ for all $m \ge 0$ by induction on m. Since $T^0(\mathbf{v}) = \mathbf{v} = \lambda^0 \mathbf{v}$ the assertion follows for m = 0. (8)

Suppose that $m \ge 0$ and $T^m(\mathbf{v}) = \lambda^m \mathbf{v}$. The calculation

$$T^{m+1}(\mathbf{v}) = T(T^m(\mathbf{v})) = T(\lambda^m \mathbf{v}) = \lambda^m T(\mathbf{v}) = \lambda^m (\lambda \mathbf{v}) = \lambda^{m+1} \mathbf{v}$$

shows that the assertion holds for m + 1. Thus the assertion holds for all $m \ge 0$ by induction. (8)

Next let $p(x) = a_0 + a_1 x + \dots + a_n x^n \in \mathbf{R}[x]$. Then the calculation

$$p(T)(\mathbf{v}) = (a_0 I + a_1 T + \dots + a_n T^n)(\mathbf{v})$$

= $a_0 I(\mathbf{v}) + a_1 T(\mathbf{v}) + \dots + a_n T(\mathbf{v})$
= $a_0 \mathbf{v} + a_1(\lambda \mathbf{v}) + \dots + a_n(\lambda^n \mathbf{v})$
= $(a_0 + a_1 \lambda + \dots + a_n \lambda^n) \mathbf{v}$
= $p(\lambda) \mathbf{v}$

shows that $p(T)(\mathbf{v}) = p(\lambda)\mathbf{v}$. (8)

Suppose that λ is an eigenvalue for T and p(T) = 0. Let \mathbf{v} be a non-zero eigenvector for T belonging to λ . Since $\mathbf{v} \neq \mathbf{0}$, $0 = p(T)(\mathbf{v}) = p(\lambda)\mathbf{v}$ which shows that $p(\lambda) = 0$. (4)

Comment: We have shown that if p(T) = 0 the eigenvalues of T are roots of p(x). A root of p(x) is not necessarily an eigenvalue for T. For suppose that V is finite-dimensional. Then T has only finitely many eigenvalues. Suppose $a \in \mathbf{R}$ is not of of them. Note $p_a(x) = p(x)(x-a)$ also satisfies $p_a(T) = p(T)(T-aI) = 0$.