
MATH 425 FINAL EXAMINATION SOLUTION 05/12/08

Name (print)

(1) Return this exam copy with your exam booklet. (2) Write your solutions in your
exam booklet. (3) Show your work. (4) There are eight questions on this exam. (5)
Each question counts 25 points. (6) You are expected to abide by the University’s rules
concerning academic honesty.

Unless otherwise stated, V is a vector space over R and T : V −→ V is linear.

1. Consider the vector space P2 = {a+bx+cx2 | a, b, c ∈ R} of polynomials of degree at most

two as an inner product space where <f(x), g(x)> =
∫ 1

−1
f(x)g(x) dx for all f(x), g(x) ∈ P2.

Let S be the span of x.

(a) Find <x`, xm>, where ` + m is odd.

Solution: Since ` + m is odd, ` + m + 1 is even. Thus

<x`, xm> =
∫ 1

−1
x`xm dx =

x`+m+1

` + m + 1

∣∣∣∣∣
1

−1

=
1

` + m + 1
(1− 1) = 0. (8 points).

(b) Find an orthonormal basis for S⊥.

Solution: By part (a) 1, x2 ∈ S⊥. Since Dim S + Dim S⊥ = 3, Dim S⊥ = 2 and therefore
{1, x2} is a basis for S⊥. (4 points). One can derive this basis for S⊥ from part (a) by
the observation 0 = <a + bx + cx2, x> = a<1, x> + b<x, x> + c<x2, x> = b<x, x> if and
only if b = 0.

We apply the Gram-Schmidt process to this basis to obtain the orthonormal basis

{q1,q2} = { 1√
2
,

√
45

8

(
x2 − 1

3

)
} for S⊥; q1 (4 points), w2 (4 points), q2 (5 points).

2. Let V be any inner product space and let S be a finite-dimensional subspace with
orthonormal basis {q1, . . . ,qr}. Suppose v ∈ V and set u = <v,q1>q1 + · · ·+<v,qr>qr.

(a) Show that (v − u) ⊥ S.

Solution: Let T = R(v−u) be the one-dimensional subspace of V spanned by v−u. Since
T⊥ is a subspace of V , to show that (v− u) ⊥ S, that is S ⊆ T⊥, we need only show that
(v − u) ⊥ qi for all 1 ≤ i ≤ r. The calculation

<v − (<v,q1>q1 + · · ·+ <v,qr>qr>),qi>

= <v,qi>−<v,q1><q1,qi>− · · · −<v,qr><qr,qi>

= <v,qi>−<v,qi><qi,qi>

= <v,qi>−<v,qi>

= 0

bears this put. (12 points)
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(b) Show that u is a closest vector in S to v.

You may use: If u,v ∈ V and <u,v> = 0 then ||u + v||2 = ||u||2 + ||v||2.
Solution: Let u′ ∈ S. Then u − u′ ∈ S since S is a subspace of V . Since (v − u) ⊥ S by
part (a) we calculate

||v − u||2 = ||(v − u) + (u− u′)||2
= ||v − u||2 + ||u− u′||2
≥ ||v − u||2

which implies ||v − u′||2 ≥ ||v − u||2 or equivalently ||v − u′|| ≥ ||v − u||. (13 points)

3. Consider R3 as an inner product space with the standard inner product and let S be

the subspace with basis {



1
1
2


 ,




1
1

−1


}.

(a) Find the vector in S closest to b =




1
−2

1


.

Solution: The basis vectors are perpendicular. Applying the Gram–Schmidt process to this

basis yields the orthonormal basis {q1,q2}, where q1 =
1√
6




1
1
2


 and q2 =

1√
3




1
1

−1


.

The closest vector in S to b is

<b,q1>q1 + <b,q2>q2 =
1

6




1
1
2


− 2

3




1
1

−1


 =



−1/2
−1/2

1


 . (8 points)

(b) Find a vector x =

(
x
y

)
∈ R2 which is a least squares solution to Ax = b, where

A =




1 1
1 1
2 −1


.

Solution: By the previous calculation

(
1/6

−2/3

)
(8 points)

(c) Let T : R3 −→ R3 be the orthogonal projection of R3 onto S. Find a 3×3 matrix A
such that T (v) = Av for all v ∈ R3.
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Solution: The matrix A = q1q
t
1 + q2q

t
2 =




1/2 1/2 0
1/2 1/2 0

0 0 1


 . (9 points)

4. Find the matrix of the rotation T : R2 −→ R2 which satisfies T

(
3
4

)
=

(
0
5

)
.

Solution: Here is a solution which is not geometric in nature. Since T is an isometry

the matrix of T is

(
a −b
b a

)
or

(
a b
b −a

)
, where a2 + b2 = 1. Since T is a rotation

the determinant of the matrix of T is 1. Thus the first matrix is the matrix of T . Since

T

(
3
4

)
=

(
0
5

)
necessarily

(
a −b
b a

) (
3
4

)
=

(
0
5

)
. Inverting the matrix of T , or

solving the implicit linear system directly, yields a = 4/5 and b = 3/5. Thus the matrix of

T is

(
4/5 −3/5
3/5 4/5

)
. (25 points)

5. Find the spectral decomposition of A =




0 2 2
2 0 2
2 2 0


, given cA(x) = −(x + 2)2(x− 4).

Solution: For λ = 4 the space of eigenvalues has basis {



1
1
1


} and for λ = −2 the

space of eigenvalues has basis {



1
−1

0


 ,




1
0

−1


}. Applying the Gram-Schmidt process

to these two bases yields {q1} and {q2,q3} respectively, where q1 =
1√
2




1
1
1


, and hence

E1 = q1q
t
1 =

1

3




1 1 1
1 1 1
1 1 1


 (10 points), and q2 =

1√
2




1
−1

0


, q3 =

1√
6




1
1

−2


, and

therefore E2 = q2q
t
2 + q3q

t
3 =

1

3




2 −1 −1
−1 2 −1
−1 −1 2


 (10 points). Thus A = 4E1 + (−2)E2

(5 points).

Comment: Since I3 = E1 + E2 once E1 is calculated E2 follows directly.

6. The only complex eigenvalue which A =




1 0 1 0
0 2 0 2

−1 0 −1 0
0 −2 0 −2


 has is λ = 0. Find an

invertible matrix S and Jordan matrix J such that A = SJS−1.

Solution: Regard A as a matrix with complex coefficients. Since the characteristic polyno-
mial over C has one root λ = 0 it follows that cA(x) = ±xn ∈ C[x]. Thus A is nilpotent.
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Note that v2 = e1
A−→ e1 − e3 = v1

A−→ 0 (8 points) and v4 = e2
A−→ 2e2 − 2e4 =

v3
A−→ 0 (8 points). Set

S = (v1 v2 v3 v4) =




1 1 0 0
0 0 2 1

−1 0 0 0
0 0 −2 0


 J =




0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


 . (9 points)

7. A =




1 2 3 4
0 0 0 0
1 2 3 4
0 1 0 0


. Find the characteristic polynomial of A, an invertible matrix S,

and Jordan matrix J such that A = SJS−1.

Solution: Expanding on the second and then the third row

cA(x) =

∣∣∣∣∣∣∣∣∣

1− x 2 3 4
0 −x 0 0
1 2 3− x 0
0 1 0 −x

∣∣∣∣∣∣∣∣∣

= (−x)

∣∣∣∣∣∣∣

1− x 3 4
1 3− x 0
0 0 −x

∣∣∣∣∣∣∣

= (−x)2

∣∣∣∣∣
1− x 3

1 3− x

∣∣∣∣∣
= x2((1− x)(3− x)− 3)

= x2(x2 − 4x)

= x3(x− 4). (8 points)

N (A − 4I4) has basis {v1}, where v1 =




1
0
1
0


. Now N (A3) = N ((A − 0I4)

3) =

R(A−4I4) which is spanned by the columns of A− 4I4 =




−3 2 3 4
0 −4 0 0
1 2 −1 4
0 1 0 −4


. Observe

that

v2 =




−3
0
1
0




A−→ 0, v4 =




2
−4

2
1




A−→




4
0
4

−4


 = v3

A−→ 0.
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Take

S = (v1 v2 v3 v4) =




1 −3 4 2
0 0 0 −4
1 1 4 2
0 0 −4 1


 (12 points) J =




4 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0


 (5 points)

8. Suppose v ∈ V , n > 0 and T n(v) = 0 6= T n−1(v).

(a) Show that {v, T (v), . . . , T n−1(v)} is linearly independent.

Solution: Here is a detailed argument. First of all note for m ≥ n that

Tm(v) = 0 (1)

as Tm(v) = T n−m(Tm(v)) = T n−m(0) = 0.
Let a0, . . . , an−1 ∈ R and suppose that

a0v + a1T (v) + · · ·+ an−1T
n−1(v) = 0. (2)

We will show that a0 = · · · = a` = 0 for all 0 ≤ ` ≤ n− 1. Thus a0 = · · · = an−1 = 0 which
means that {v, T (v), . . . , T n−1(v)} is linearly independent.

Applying T n−1 to both sides of (2) yields a0T
n−1(v) = 0 by (1). Since T n−1(v) 6= 0 by

assumption a0 = 0. (3 points)
Now suppose that 0 ≤ ` < n − 1 and a0 = · · · = a` = 0. Since n − ` − 1 > 0 we

may apply T n−`−1 to both sides of (2) which yields a0T
n−`−1(v) + · · · + a`T

n−1(v) = 0 or
equivalently a`T

n−1(v) = 0. As T n−1(v) 6= 0 by assumption a` = 0. (5 points)

Comment: The preceding argument can be turned into a formal induction argument. Let
P` be the statement a0, . . . , a` = 0 for 0 ≤ ` ≤ n− 1 and let P` be any true statement for
n ≤ `.

(b) Show that {I, T, . . . , T n−1} is linearly independent.

Solution: Suppose that a0, . . . , an−1 ∈ R and a0I + a1T + · · · + an−1T
n−1 = 0. Applying

both sides of this equation to v yields a0v + a1T (v) + · · · + an−1T
n−1(v) = 0. Since

{v, T (v), . . . , T n−1(v)} is linearly independent by part (a) necessarily a0 = · · · = an−1 = 0.
Thus {I, T, . . . , T n−1} is linearly independent. (4 points)

(c) Suppose that T n = 0. Show that mT (x) = xn.

Solution: {I, T, . . . , T n−1} is linearly independent (3 points) by part (b) and {I, T, . . . , T n}
is linearly dependent (3 points) since T n = 0. Since 0I+· · ·+0T n−1+1T n = 0 by definition
(4 points) of the minimal polynomial mT (x) = 0+0x+ · · ·+0xn−1 +xn = xn. (3 points)
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