MATH 425 FINAL EXAMINATION SOLUTION 05/12/08

Name (print)
(1) Return this exam copy with your exam booklet. (2) Write your solutions in your exam booklet. (3) Show your work. (4) There are eight questions on this exam. (5) Each question counts 25 points. (6) You are expected to abide by the University's rules concerning academic honesty.

Unless otherwise stated, V is a vector space over \mathbf{R} and $T: V \longrightarrow V$ is linear.

1. Consider the vector space $\mathbf{P}^{2}=\left\{a+b x+c x^{2} \mid a, b, c \in \mathbf{R}\right\}$ of polynomials of degree at most two as an inner product space where $<f(x), g(x)>=\int_{-1}^{1} f(x) g(x) d x$ for all $f(x), g(x) \in \mathbf{P}^{2}$. Let S be the span of x.
(a) Find $\left\langle x^{\ell}, x^{m}\right\rangle$, where $\ell+m$ is odd.

Solution: Since $\ell+m$ is odd, $\ell+m+1$ is even. Thus

$$
<x^{\ell}, x^{m}>=\int_{-1}^{1} x^{\ell} x^{m} d x=\left.\frac{x^{\ell+m+1}}{\ell+m+1}\right|_{-1} ^{1}=\frac{1}{\ell+m+1}(1-1)=0 .(8 \text { points }) .
$$

(b) Find an orthonormal basis for S^{\perp}.

Solution: By part (a) $1, x^{2} \in S^{\perp}$. Since $\operatorname{Dim} S+\operatorname{Dim} S^{\perp}=3$, $\operatorname{Dim} S^{\perp}=2$ and therefore $\left\{1, x^{2}\right\}$ is a basis for S^{\perp}. (4 points). One can derive this basis for S^{\perp} from part (a) by the observation $0=\left\langle a+b x+c x^{2}, x\right\rangle=a\langle 1, x\rangle+b\langle x, x\rangle+c\left\langle x^{2}, x\right\rangle=b\langle x, x\rangle$ if and only if $b=0$.

We apply the Gram-Schmidt process to this basis to obtain the orthonormal basis $\left\{\mathbf{q}_{1}, \mathbf{q}_{2}\right\}=\left\{\frac{1}{\sqrt{2}}, \sqrt{\frac{45}{8}}\left(x^{2}-\frac{1}{3}\right)\right\}$ for $S^{\perp} ; \mathbf{q}_{1}\left(4\right.$ points), \mathbf{w}_{2} (4 points), \mathbf{q}_{2} (5 points).
2. Let V be any inner product space and let S be a finite-dimensional subspace with orthonormal basis $\left\{\mathbf{q}_{1}, \ldots, \mathbf{q}_{r}\right\}$. Suppose $\mathbf{v} \in V$ and set $\mathbf{u}=<\mathbf{v}, \mathbf{q}_{1}>\mathbf{q}_{1}+\cdots+<\mathbf{v}, \mathbf{q}_{r}>\mathbf{q}_{r}$.
(a) Show that $(\mathbf{v}-\mathbf{u}) \perp S$.

Solution: Let $T=\mathbf{R}(\mathbf{v}-\mathbf{u})$ be the one-dimensional subspace of V spanned by $\mathbf{v}-\mathbf{u}$. Since T^{\perp} is a subspace of V, to show that $(\mathbf{v}-\mathbf{u}) \perp S$, that is $S \subseteq T^{\perp}$, we need only show that $(\mathbf{v}-\mathbf{u}) \perp \mathbf{q}_{i}$ for all $1 \leq i \leq r$. The calculation

$$
\begin{aligned}
& <\mathbf{v}-\left(<\mathbf{v}, \mathbf{q}_{1}>\mathbf{q}_{1}+\cdots+<\mathbf{v}, \mathbf{q}_{r}>\mathbf{q}_{r}>\right), \mathbf{q}_{i}> \\
& =\ll \mathbf{v}, \mathbf{q}_{i}>-<\mathbf{v}, \mathbf{q}_{1}><\mathbf{q}_{1}, \mathbf{q}_{i}>-\cdots-<\mathbf{v}, \mathbf{q}_{r}><\mathbf{q}_{r}, \mathbf{q}_{i}> \\
& =<\mathbf{v}, \mathbf{q}_{i}>-<\mathbf{v}, \mathbf{q}_{i}><\mathbf{q}_{i}, \mathbf{q}_{i}> \\
& =<\mathbf{v}, \mathbf{q}_{i}>-<\mathbf{v}, \mathbf{q}_{i}> \\
& =0
\end{aligned}
$$

bears this put. (12 points)
(b) Show that \mathbf{u} is a closest vector in S to \mathbf{v}.

You may use: If $\mathbf{u}, \mathbf{v} \in V$ and $\langle\mathbf{u}, \mathbf{v}\rangle=0$ then $\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}$.
Solution: Let $\mathbf{u}^{\prime} \in S$. Then $\mathbf{u}-\mathbf{u}^{\prime} \in S$ since S is a subspace of V. Since $(\mathbf{v}-\mathbf{u}) \perp S$ by part (a) we calculate

$$
\begin{aligned}
\|\mathbf{v}-\mathbf{u}\|^{2} & =\left\|(\mathbf{v}-\mathbf{u})+\left(\mathbf{u}-\mathbf{u}^{\prime}\right)\right\|^{2} \\
& =\|\mathbf{v}-\mathbf{u}\|^{2}+\left\|\mathbf{u}-\mathbf{u}^{\prime}\right\|^{2} \\
& \geq\|\mathbf{v}-\mathbf{u}\|^{2}
\end{aligned}
$$

which implies $\left\|\mathbf{v}-\mathbf{u}^{\prime}\right\|^{2} \geq\|\mathbf{v}-\mathbf{u}\|^{2}$ or equivalently $\left\|\mathbf{v}-\mathbf{u}^{\prime}\right\| \geq\|\mathbf{v}-\mathbf{u}\|$. (13 points)
3. Consider \mathbf{R}^{3} as an inner product space with the standard inner product and let S be the subspace with basis $\left\{\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right),\left(\begin{array}{r}1 \\ 1 \\ -1\end{array}\right)\right\}$.
(a) Find the vector in S closest to $\mathbf{b}=\left(\begin{array}{r}1 \\ -2 \\ 1\end{array}\right)$.

Solution: The basis vectors are perpendicular. Applying the Gram-Schmidt process to this basis yields the orthonormal basis $\left\{\mathbf{q}_{1}, \mathbf{q}_{2}\right\}$, where $\mathbf{q}_{1}=\frac{1}{\sqrt{6}}\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)$ and $\mathbf{q}_{2}=\frac{1}{\sqrt{3}}\left(\begin{array}{r}1 \\ 1 \\ -1\end{array}\right)$. The closest vector in S to \mathbf{b} is

$$
<\mathbf{b}, \mathbf{q}_{1}>\mathbf{q}_{1}+<\mathbf{b}, \mathbf{q}_{2}>\mathbf{q}_{2}=\frac{1}{6}\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)-\frac{2}{3}\left(\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right)=\left(\begin{array}{r}
-1 / 2 \\
-1 / 2 \\
1
\end{array}\right) .
$$

(8 points)
(b) Find a vector $\mathbf{x}=\binom{x}{y} \in \mathbf{R}^{2}$ which is a least squares solution to $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left(\begin{array}{rr}
1 & 1 \\
1 & 1 \\
2 & -1
\end{array}\right)
$$

Solution: By the previous calculation $\binom{1 / 6}{-2 / 3}$ (8 points)
(c) Let $T: \mathbf{R}^{3} \longrightarrow \mathbf{R}^{3}$ be the orthogonal projection of \mathbf{R}^{3} onto S. Find a 3×3 matrix A such that $T(\mathbf{v})=A \mathbf{v}$ for all $\mathbf{v} \in \mathbf{R}^{3}$.

Solution: The matrix $A=\mathbf{q}_{1} \mathbf{q}_{1}^{t}+\mathbf{q}_{2} \mathbf{q}_{2}^{t}=\left(\begin{array}{rrr}1 / 2 & 1 / 2 & 0 \\ 1 / 2 & 1 / 2 & 0 \\ 0 & 0 & 1\end{array}\right)$.
4. Find the matrix of the rotation $T: \mathbf{R}^{2} \longrightarrow \mathbf{R}^{2}$ which satisfies $T\binom{3}{4}=\binom{0}{5}$.

Solution: Here is a solution which is not geometric in nature. Since T is an isometry the matrix of T is $\left(\begin{array}{rr}a & -b \\ b & a\end{array}\right)$ or $\left(\begin{array}{rr}a & b \\ b & -a\end{array}\right)$, where $a^{2}+b^{2}=1$. Since T is a rotation the determinant of the matrix of T is 1 . Thus the first matrix is the matrix of T. Since $T\binom{3}{4}=\binom{0}{5}$ necessarily $\left(\begin{array}{rr}a & -b \\ b & a\end{array}\right)\binom{3}{4}=\binom{0}{5}$. Inverting the matrix of T, or solving the implicit linear system directly, yields $a=4 / 5$ and $b=3 / 5$. Thus the matrix of T is $\left(\begin{array}{rr}4 / 5 & -3 / 5 \\ 3 / 5 & 4 / 5\end{array}\right) \cdot(\mathbf{2 5}$ points $)$
5. Find the spectral decomposition of $A=\left(\begin{array}{lll}0 & 2 & 2 \\ 2 & 0 & 2 \\ 2 & 2 & 0\end{array}\right)$, given $c_{A}(x)=-(x+2)^{2}(x-4)$.

Solution: For $\lambda=4$ the space of eigenvalues has basis $\left\{\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\}$ and for $\lambda=-2$ the space of eigenvalues has basis $\left\{\left(\begin{array}{r}1 \\ -1 \\ 0\end{array}\right),\left(\begin{array}{r}1 \\ 0 \\ -1\end{array}\right)\right\}$. Applying the Gram-Schmidt process to these two bases yields $\left\{\mathbf{q}_{1}\right\}$ and $\left\{\mathbf{q}_{2}, \mathbf{q}_{3}\right\}$ respectively, where $\mathbf{q}_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$, and hence $E_{1}=\mathbf{q}_{1} \mathbf{q}_{1}^{t}=\frac{1}{3}\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)(\mathbf{1 0}$ points $)$, and $\mathbf{q}_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{r}1 \\ -1 \\ 0\end{array}\right), \mathbf{q}_{3}=\frac{1}{\sqrt{6}}\left(\begin{array}{r}1 \\ 1 \\ -2\end{array}\right)$, and therefore $E_{2}=\mathbf{q}_{2} \mathbf{q}_{2}^{t}+\mathbf{q}_{3} \mathbf{q}_{3}^{t}=\frac{1}{3}\left(\begin{array}{rrr}2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2\end{array}\right)(\mathbf{1 0}$ points $)$. Thus $A=4 E_{1}+(-2) E_{2}$ (5 points).
Comment: Since $I_{3}=E_{1}+E_{2}$ once E_{1} is calculated E_{2} follows directly.
6. The only complex eigenvalue which $A=\left(\begin{array}{rrrr}1 & 0 & 1 & 0 \\ 0 & 2 & 0 & 2 \\ -1 & 0 & -1 & 0 \\ 0 & -2 & 0 & -2\end{array}\right)$ has is $\lambda=0$. Find an invertible matrix S and Jordan matrix J such that $A=S J S^{-1}$.
Solution: Regard A as a matrix with complex coefficients. Since the characteristic polynomial over \mathbf{C} has one root $\lambda=0$ it follows that $c_{A}(x)= \pm x^{n} \in \mathbf{C}[x]$. Thus A is nilpotent.

Note that $\mathbf{v}_{2}=\mathbf{e}_{1} \xrightarrow{A} \mathbf{e}_{1}-\mathbf{e}_{3}=\mathbf{v}_{1} \xrightarrow{A} \mathbf{0}\left(\mathbf{8}\right.$ points) and $\mathbf{v}_{4}=\mathbf{e}_{2} \xrightarrow{A} 2 \mathbf{e}_{2}-2 \mathbf{e}_{4}=$ $\mathbf{v}_{3} \xrightarrow{A} \mathbf{0}$ (8 points). Set

$$
S=\left(\mathbf{v}_{1} \mathbf{v}_{2} \mathbf{v}_{3} \mathbf{v}_{4}\right)=\left(\begin{array}{rrrr}
1 & 1 & 0 & 0 \\
0 & 0 & 2 & 1 \\
-1 & 0 & 0 & 0 \\
0 & 0 & -2 & 0
\end{array}\right) \quad J=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) . \quad(\mathbf{9} \text { points })
$$

7. $A=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 \\ 1 & 2 & 3 & 4 \\ 0 & 1 & 0 & 0\end{array}\right)$. Find the characteristic polynomial of A, an invertible matrix S, and Jordan matrix J such that $A=S J S^{-1}$.

Solution: Expanding on the second and then the third row

$$
\begin{aligned}
c_{A}(x) & =\left|\begin{array}{rrrr}
1-x & 2 & 3 & 4 \\
0 & -x & 0 & 0 \\
1 & 2 & 3-x & 0 \\
0 & 1 & 0 & -x
\end{array}\right| \\
& =(-x)\left|\begin{array}{rrr}
1-x & 3 & 4 \\
1 & 3-x & 0 \\
0 & 0 & -x
\end{array}\right| \\
& =(-x)^{2}\left|\begin{array}{rr}
1-x & 3 \\
1 & 3-x
\end{array}\right| \\
& =x^{2}((1-x)(3-x)-3) \\
& =x^{2}\left(x^{2}-4 x\right) \\
& =x^{3}(x-4) .(8 \text { points })
\end{aligned}
$$

$\mathcal{N}\left(A-4 I_{4}\right)$ has basis $\left\{\mathbf{v}_{1}\right\}$, where $\mathbf{v}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right)$. Now $\mathcal{N}\left(A^{3}\right)=\mathcal{N}\left(\left(A-0 I_{4}\right)^{3}\right)=$ $\mathcal{R}\left(A-4 I_{4}\right)$ which is spanned by the columns of $A-4 I_{4}=\left(\begin{array}{rrrr}-3 & 2 & 3 & 4 \\ 0 & -4 & 0 & 0 \\ 1 & 2 & -1 & 4 \\ 0 & 1 & 0 & -4\end{array}\right)$. Observe that

$$
\mathbf{v}_{2}=\left(\begin{array}{r}
-3 \\
0 \\
1 \\
0
\end{array}\right) \xrightarrow{A} \mathbf{0}, \quad \mathbf{v}_{4}=\left(\begin{array}{r}
2 \\
-4 \\
2 \\
1
\end{array}\right) \xrightarrow{A}\left(\begin{array}{r}
4 \\
0 \\
4 \\
-4
\end{array}\right)=\mathbf{v}_{3} \xrightarrow{A} \mathbf{0} .
$$

Take
$S=\left(\mathbf{v}_{1} \mathbf{v}_{2} \mathbf{v}_{3} \mathbf{v}_{4}\right)=\left(\begin{array}{rrrr}1 & -3 & 4 & 2 \\ 0 & 0 & 0 & -4 \\ 1 & 1 & 4 & 2 \\ 0 & 0 & -4 & 1\end{array}\right) \quad(\mathbf{1 2}$ points $) \quad J=\left(\begin{array}{llll}4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)$
(5 points)
8. Suppose $\mathbf{v} \in V, n>0$ and $T^{n}(\mathbf{v})=\mathbf{0} \neq T^{n-1}(\mathbf{v})$.
(a) Show that $\left\{\mathbf{v}, T(\mathbf{v}), \ldots, T^{n-1}(\mathbf{v})\right\}$ is linearly independent.

Solution: Here is a detailed argument. First of all note for $m \geq n$ that

$$
\begin{equation*}
T^{m}(\mathbf{v})=\mathbf{0} \tag{1}
\end{equation*}
$$

as $T^{m}(\mathbf{v})=T^{n-m}\left(T^{m}(\mathbf{v})\right)=T^{n-m}(\mathbf{0})=\mathbf{0}$.
Let $a_{0}, \ldots, a_{n-1} \in \mathbf{R}$ and suppose that

$$
\begin{equation*}
a_{0} \mathbf{v}+a_{1} T(\mathbf{v})+\cdots+a_{n-1} T^{n-1}(\mathbf{v})=\mathbf{0} \tag{2}
\end{equation*}
$$

We will show that $a_{0}=\cdots=a_{\ell}=0$ for all $0 \leq \ell \leq n-1$. Thus $a_{0}=\cdots=a_{n-1}=0$ which means that $\left\{\mathbf{v}, T(\mathbf{v}), \ldots, T^{n-1}(\mathbf{v})\right\}$ is linearly independent.

Applying T^{n-1} to both sides of (2) yields $a_{0} T^{n-1}(\mathbf{v})=\mathbf{0}$ by (1). Since $T^{n-1}(\mathbf{v}) \neq \mathbf{0}$ by assumption $a_{0}=0$. (3 points)

Now suppose that $0 \leq \ell<n-1$ and $a_{0}=\cdots=a_{\ell}=0$. Since $n-\ell-1>0$ we may apply $T^{n-\ell-1}$ to both sides of (2) which yields $a_{0} T^{n-\ell-1}(\mathbf{v})+\cdots+a_{\ell} T^{n-1}(\mathbf{v})=\mathbf{0}$ or equivalently $a_{\ell} T^{n-1}(\mathbf{v})=\mathbf{0}$. As $T^{n-1}(\mathbf{v}) \neq \mathbf{0}$ by assumption $a_{\ell}=0$. ($\mathbf{5}$ points)
Comment: The preceding argument can be turned into a formal induction argument. Let P_{ℓ} be the statement $a_{0}, \ldots, a_{\ell}=0$ for $0 \leq \ell \leq n-1$ and let P_{ℓ} be any true statement for $n \leq \ell$.
(b) Show that $\left\{I, T, \ldots, T^{n-1}\right\}$ is linearly independent.

Solution: Suppose that $a_{0}, \ldots, a_{n-1} \in \mathbf{R}$ and $a_{0} I+a_{1} T+\cdots+a_{n-1} T^{n-1}=0$. Applying both sides of this equation to \mathbf{v} yields $a_{0} \mathbf{v}+a_{1} T(\mathbf{v})+\cdots+a_{n-1} T^{n-1}(\mathbf{v})=\mathbf{0}$. Since $\left\{\mathbf{v}, T(\mathbf{v}), \ldots, T^{n-1}(\mathbf{v})\right\}$ is linearly independent by part (a) necessarily $a_{0}=\cdots=a_{n-1}=0$. Thus $\left\{I, T, \ldots, T^{n-1}\right\}$ is linearly independent. (4 points)
(c) Suppose that $T^{n}=0$. Show that $m_{T}(x)=x^{n}$.

Solution: $\left\{I, T, \ldots, T^{n-1}\right\}$ is linearly independent (3 points) by part (b) and $\left\{I, T, \ldots, T^{n}\right\}$ is linearly dependent ($\mathbf{3}$ points) since $T^{n}=0$. Since $0 I+\cdots+0 T^{n-1}+1 T^{n}=0$ by definition (4 points) of the minimal polynomial $m_{T}(x)=0+0 x+\cdots+0 x^{n-1}+x^{n}=x^{n}$. ($\mathbf{3}$ points)

