MATH 425 Hour Exam II Solution Radford 18/04/08

1. (20) The characteristic polynomial of $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ is $c_A(x) = 3 - 4x + x^2 = (x-1)(x-3)$. Thus $\lambda = 1, 3$ are the eigenvalues of A. The corresponding eigenspaces have bases $\left\{\begin{pmatrix} 1 \\ -1 \end{pmatrix}\right\}$ and $\left\{\begin{pmatrix} 1 \\ 1 \end{pmatrix}\right\}$ respectively. Applying the Gram-Schmidt process gives orthonormal bases $\{q_1\}$ and $\{q_2\}$ respectively, where $q_1 = \frac{1}{\sqrt{2}}\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ and $q_2 = \frac{1}{\sqrt{2}}\begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Thus $E_1 = q_1q_1^t = \frac{1}{2}\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ (7 points) and $E_2 = q_2q_2^t = \frac{1}{2}\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ (7 points). $A = 1E_1 + 3E_2$ (6 points). 2. (20) $\begin{pmatrix} 1 \\ 2 \end{pmatrix} \perp \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ and therefore $T\begin{pmatrix} 1 \\ 2 \end{pmatrix} \perp T\begin{pmatrix} 2 \\ -1 \end{pmatrix}$. Since $T\begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ it follows that $T\begin{pmatrix} 2 \\ -1 \end{pmatrix} = r\begin{pmatrix} 1 \\ -2 \end{pmatrix}$ for some $r \in \mathbf{R}$. Since $|r| \left\|\begin{pmatrix} 1 \\ -2 \end{pmatrix}\right\| = \left\|r\begin{pmatrix} 1 \\ -2 \end{pmatrix}\right\| = \left\|r\begin{pmatrix} 2 \\ -1 \end{pmatrix}\right\| = \left\|\begin{pmatrix} 2 \\ -1 \end{pmatrix}\right\|$

it follows that $|r|\sqrt{5} = \sqrt{5}$ and thus $r = \pm 1$ (9 points). THERE ARE TWO CASES, ONLY ONE IS NECESSARY TO WORK OUT.

Case 1: r = 1. Using the hint we calculate

$$T\left(\begin{array}{c}x\\y\end{array}\right) = \frac{x+2y}{5}T\left(\begin{array}{c}1\\2\end{array}\right) + \frac{2x-y}{5}T\left(\begin{array}{c}2\\-1\end{array}\right)$$
$$= \frac{x+2y}{5}\left(\begin{array}{c}2\\1\end{array}\right) + \frac{2x-y}{5}\left(\begin{array}{c}1\\-2\end{array}\right)$$
$$= \frac{1}{5}\left(\begin{array}{c}4x+3y\\-3x+4y\end{array}\right) \quad (\mathbf{6 \ points})$$
$$= \frac{1}{5}\left(\begin{array}{c}4&3\\-3&4\end{array}\right)\left(\begin{array}{c}x\\y\end{array}\right)$$

Since the matrix of T has determinant 1, it follows that T is a rotation (5 points). Case 2: r = -1. Similar calculations yield $T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} y \\ x \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$. Since the matrix of T has determinant -1, it follows that T is a reflection.

3. (20) We apply the Gram-Schmidt process to the basis $\{1, x\}$ for \mathbf{P}^1 to get the orthonormal basis $\{q_1, q_2\}$, where $q_1 = \frac{1}{\sqrt{2}}$ (4 points), $q_2 = \sqrt{\frac{3}{2}}(x-1)$ (4 points). Since $\{e_1, e_2\}$ and $\{q_1, q_2\}$ are bases for \mathbf{R}^2 and \mathbf{P}^1 respectively, by the hint there is a

linear isomorphism $f : \mathbb{R}^2 \longrightarrow \mathbb{P}^1$ determined by $f(e_1) = q_1$ and $f(e_2) = q_2$. Now f is an isometry of inner product spaces since these are orthonormal bases. (5 points).

Now
$$f\begin{pmatrix} a\\ b \end{pmatrix} = f(ae_1 + be_2) = af(e_1) + bf(e_2) = a\frac{1}{\sqrt{2}} + b\sqrt{\frac{3}{2}}(x-1)$$
 (7 points).

4. (20) Here is a detailed solution, more than what was necessary. The problem implies that $A = \begin{pmatrix} 0 & 0 & 0 \\ 3 & 0 & 0 \\ 2 & 1 & 0 \end{pmatrix}$ is nilpotent since it is similar to a nilpotent matrix

(the two matrices have the same characteristic polynomial).

Let
$$v_3 = e_1, v_2 = Av_3 = \begin{pmatrix} 0\\ 3\\ 2 \end{pmatrix}$$
, and $v_1 = Av_2 = \begin{pmatrix} 0\\ 0\\ 3 \end{pmatrix}$. Since $Av_1 = 0$, the set of

non-zero vectors $\{v_1, v_2, v_3\}$ forms an A-string which is thus independent and a basis for \mathbf{R}^3 . Thus $S = (v_1 \ v_2 \ v_3) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 3 & 0 \\ 3 & 2 & 0 \end{pmatrix}$ (20 points).

5. (20) Here is a very detailed solution, more than what was necessary. $A = \begin{pmatrix} 3 & 0 & 0 \\ 2 & 4 & 0 \\ 1 & 1 & 3 \end{pmatrix}$ has characteristic polynomial $c_A(x) = (3 - x)^2(4 - x)$. Thus $\text{Dim} \mathcal{N}(A - 4I_3) = 1$, $\text{Dim} \mathcal{N}((A - 3I_3)^2) = 2$, and $\mathcal{R}(A - 4I_3) = \mathcal{N}((A - 3I_3)^2)$.

A basis for $\mathcal{N}(A-4I_3)$, the space of eigenvectors for A belonging to $\lambda = 4$, consists of the vector $v_1 = \begin{pmatrix} 0\\1\\1 \end{pmatrix}$ (4 **points**). Let $v_3 = (A-4I_3)e_1 = \begin{pmatrix} -1\\2\\1 \end{pmatrix}$ (6 **points**) and $v_2 = (A-3I_3)v_3 = \begin{pmatrix} 0\\0\\1 \end{pmatrix}$ (4 **points**). Since $(A-3I_3)v_2 = 0$, and $v_2, v_3 \neq 0$, it follows that v_2 and v_3 form a basis for $\mathcal{N}((A-3I_3)^2)$. Therefore $\{v_1, v_2, v_3\}$ form a

basis for \mathbf{R}^3 and $S = (v_1 \ v_2 \ v_3) = \begin{pmatrix} 0 & 0 & -1 \\ 1 & 0 & 2 \\ 1 & 1 & 1 \end{pmatrix}$ (6 points).