The Group of Even Permutations A_n

10/03/06 Radford

Let $n \geq 2$. We will show that A_n is simple for $n \neq 4$ and show that A_4 has a unique normal subgroup which lies properly between (e) and A_4 . Recall that all 3-cycles are even permutations.

Suppose that $\tau, \sigma \in S_n$. We write $\tau \sigma = \tau \sigma \tau^{-1}$. Since conjugation is an automorphism of S_n the formula

$$^{\tau}(\sigma_1 \cdots \sigma_r) = {^{\tau}\sigma_1} \cdots {^{\tau}\sigma_r} \tag{1}$$

holds for all $\sigma_1, \ldots, \sigma_r \in S_n$. Note that

$$\tau(a_1 \ldots a_r) = (\tau(a_1) \ldots \tau(a_r)) \tag{2}$$

holds for all *r*-cycles in S_n . In particular if $\sigma = \sigma_1 \cdots \sigma_r$ is a decomposition of σ into disjoint cycles then $\tau(\sigma) = \tau \sigma_1 \cdots \tau \sigma_r$ is a decomposition of $\tau \sigma$ into disjoint cycles.

Lemma 1 Let $n \geq 3$. Then A_n is generated by 3-cycles.

PROOF: All 3-cycles belong to A_n since they are even permutations. Let $\sigma \in A_n$. Then $\sigma = \tau_1 \tau_2 \cdots \tau_{2r}$ is the product of an even number of transpositions. Thus we may write $\sigma = (\tau_1 \tau_2) \cdots (\tau_{2r-1} \tau_{2r})$. Now a product of transpositions $\tau \tau'$ has the form $(a \ b)(a \ b), \ (a \ b)(a \ c), \ or \ (a \ b)(c \ d)$, where the symbols a, b, c, d are distinct. The calculations

(a b)(a b) = Id, (a b)(a c) = (a c b), and (a b)(c d) = (a b c)(b c d)

show that σ is the product of 3-cycles. \Box

Lemma 2 Suppose $N \leq A_n$ and contains a 3-cycle. Then $N = A_n$.

PROOF: Suppose that $\sigma = (a \ b \ c) \in N$. Then $S = \{a, b, c\}$ is the unique non-trivial orbit of σ . The 3-cycles which have S as their non-trivial orbit are $(a \ b \ c)$ and $(a \ c \ b) = (a \ b \ c)^{-1}$. In light of Lemma 1 we need only show that any 3-element subset S' of $\{1, \ldots, n\}$ is the non-trivial orbit of a 3-cycle in N. We do this in three cases. We may assume $S \neq S'$, or equivalently $|S \cap S'| < 3$.

Case 1: $|S \cap S'| = 2$. We may assume that $S' = \{a, b, d\}$, where $d \notin S$. Since $(a \ b)(c \ d) \in A_n$,

$$(b \ a \ d) = {}^{(a \ b)(c \ d)}(a \ b \ c) \in N.$$

Case 2: $|S \cap S'| = 1$. We may assume that $S' = \{a, d, e\}$ where $d, e \notin S$. Since $(b \ d)(c \ e) \in A_n$,

$$(a \ d \ e) = {}^{(b \ d)(c \ e)}(a \ b \ c) \in N.$$

Case 3: $|S \cap S'| = 0$. Then $S' = \{d, e, f\}$ where $d, e, f \notin S$. Since $(a \ d \ b \ e)(c \ f) \in A_n$,

$$(d \ e \ f) = {}^{(a \ d \ b \ e)(c \ f)}(a \ b \ c) \in N.$$

This completes our proof. \Box

Lemma 3 Suppose that $n \ge 3$ and (Id) $\ne N \le A_n$. Then N contains a product of two disjoint transpositions or a 3-cycle.

PROOF: By assumption there is permutation in N which is not the identity. Among these permutations choose one σ which has the most fixed points (the most one-element orbits) and consider its decomposition into disjoint cycles.

Suppose that σ has a cycle $(a \ b \ c \ \cdots \ d)$ of length at least 4. Then

$$^{(a \ b \ d)}\sigma)\sigma^{-1} = \left(\begin{array}{c} (a \ b \ d)(a \ b \ c \ \dots \ d) \right) (a \ b \ c \ \dots \ d)^{-1} \\ = (b \ d \ c \ \dots \ a)(d \ \dots \ c \ b \ a) \\ = (b)(a \ c \ d \ \dots)$$

belongs to N, is not the identity, and has more fixed points than σ . This contradiction shows that σ is the product of disjoint cycles which have length

2 or 3. We will show that σ is the product of two disjoint 2-cycles or σ is a 3-cycle.

Case 1: σ is the product of disjoint 2-cycles.

We may write $\sigma = (a \ b)(c \ d) \cdots$. Since

$$^{(a \ b \ c)}\sigma)\sigma^{-1} = \left((a \ b \ c)((a \ b)(c \ d)) \right) ((a \ b)(c \ d))^{-1} \\ = (b \ c)(a \ d)(a \ b)(c \ d) = (a \ c)(b \ d)$$

belongs to N and fixes all points except four, σ fixes all but at most four points by our choice of σ . Therefore σ is the product two disjoint 2-cycles.

Case 2: One of the cycles of σ is a 3-cycle.

In this case $\sigma^2 \in N$, is not Id, is the product of disjoint 3-cycles, and has at least as many fixed points as σ . Suppose $\sigma^2 = (a \ b \ c)(d \ e \ f) \cdots$. Then

$$\begin{pmatrix} (a \ b \ d) (\sigma^2) \end{pmatrix} \sigma^{-2} = \begin{pmatrix} (a \ b \ d) ((a \ b \ c) (d \ e \ f)) \end{pmatrix} ((a \ b \ c) (d \ e \ f))^{-1}$$

= $(b \ d \ c) (a \ e \ f) (a \ c \ b) (d \ f \ e)$
= $(a \ b \ e \ c \ d) (f)$

belongs to N and fixes fewer points than σ , a contradiction. Therefore σ^2 is a 3-cycle which means σ is a 3-cycle. \Box

Theorem 1 Let $n \ge 2$. Then:

- (a) A_n is simple if n = 2, 3 or $n \ge 5$.
- (b) A_n is not simple when n = 4. The normal subgroups of A_4 are (Id), A_4 , and $N = \{ \text{Id}, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3) \}.$

PROOF: First of all A_n is simple if n = 2, 3 since $A_n \simeq \mathbb{Z}_n$ in these cases. Let $n \ge 4$ and suppose $N \le A_n$ satisfy $N \ne (\mathrm{Id}), A_n$. Then N does not contain a 3-cycle by Lemma 2. By Lemma 3 N contains a product of two disjoint 2-cycles $(a \ b)(c \ d)$. The calculation

$$\left({}^{(a\ b\ e)}((a\ b)(c\ d)) \right) \left((a\ b)(c\ d) \right)^{-1} = (b\ e)(c\ d)(a\ b)(c\ d) = (a\ e\ b)$$

shows that $n \geq 5$. Therefore n = 4. Since

$$(a \ b \ c)((a \ b)(c \ d)) = (b \ c)(a \ d) = (a \ d)(b \ c)$$

and

$$^{(a\ b\ c)}((a\ d)(b\ c)) = (b\ d)(c\ a) = (a\ c)(b\ d)$$

it follows that N contains the subgroup of part (b). Since N has no 3-cycles, N must be the subgroup of part (b). Using (1) it is easy to see that, in fact, $N \trianglelefteq S_n.\square$