# The Group of Even Permutations $A_{n}$ 

10/03/06 Radford

Let $n \geq 2$. We will show that $A_{n}$ is simple for $n \neq 4$ and show that $A_{4}$ has a unique normal subgroup which lies properly between $(e)$ and $A_{4}$. Recall that all 3-cycles are even permutations.

Suppose that $\tau, \sigma \in S_{n}$. We write ${ }^{\tau} \sigma=\tau \sigma \tau^{-1}$. Since conjugation is an automorphism of $S_{n}$ the formula

$$
\begin{equation*}
{ }^{\tau}\left(\sigma_{1} \cdots \sigma_{r}\right)={ }^{\tau} \sigma_{1} \cdots{ }^{\tau} \sigma_{r} \tag{1}
\end{equation*}
$$

holds for all $\sigma_{1}, \ldots, \sigma_{r} \in S_{n}$. Note that

$$
\begin{equation*}
{ }^{\tau}\left(a_{1} \ldots a_{r}\right)=\left(\tau\left(a_{1}\right) \ldots \tau\left(a_{r}\right)\right) \tag{2}
\end{equation*}
$$

holds for all $r$-cycles in $S_{n}$. In particular if $\sigma=\sigma_{1} \cdots \sigma_{r}$ is a decomposition of $\sigma$ into disjoint cycles then ${ }^{\tau}(\sigma)={ }^{\tau} \sigma_{1} \cdots{ }^{\tau} \sigma_{r}$ is a decomposition of ${ }^{\tau} \sigma$ into disjoint cycles.

Lemma 1 Let $n \geq 3$. Then $A_{n}$ is generated by 3 -cycles.
Proof: All 3-cycles belong to $A_{n}$ since they are even permutations. Let $\sigma \in$ $A_{n}$. Then $\sigma=\tau_{1} \tau_{2} \cdots \tau_{2 r}$ is the product of an even number of transpositions. Thus we may write $\sigma=\left(\tau_{1} \tau_{2}\right) \cdots\left(\tau_{2 r-1} \tau_{2 r}\right)$. Now a product of transpositions $\tau \tau^{\prime}$ has the form $\left(\begin{array}{ll}a b\end{array}\right)\left(\begin{array}{ll}a & b\end{array}\right),\left(\begin{array}{ll}a & b\end{array}\right)\left(\begin{array}{ll}a & c\end{array}\right)$, or $\left(\begin{array}{ll}a b\end{array}\right)\left(\begin{array}{c}c\end{array}\right)$, where the symbols $a, b, c, d$ are distinct. The calculations

$$
(a b)(a b)=\operatorname{Id}, \quad(a b)(a c)=(a c b), \quad \text { and } \quad(a b)(c d)=(a b c)(b c d)
$$

show that $\sigma$ is the product of 3 -cycles.
Lemma 2 Suppose $N \unlhd A_{n}$ and contains a 3 -cycle. Then $N=A_{n}$.

Proof: Suppose that $\sigma=(a b c) \in N$. Then $S=\{a, b, c\}$ is the unique non-trivial orbit of $\sigma$. The 3 -cycles which have $S$ as their non-trivial orbit are $(a b c)$ and $(a c b)=(a b c)^{-1}$. In light of Lemma 1 we need only show that any 3 -element subset $S^{\prime}$ of $\{1, \ldots, n\}$ is the non-trivial orbit of a 3 -cycle in $N$. We do this in three cases. We may assume $S \neq S^{\prime}$, or equivalently $\left|S \cap S^{\prime}\right|<3$.
Case 1: $\left|S \cap S^{\prime}\right|=2$. We may assume that $S^{\prime}=\{a, b, d\}$, where $d \notin S$. Since $(a b)(c d) \in A_{n}$,

$$
(b a d)={ }^{(a b)(c d)}(a b c) \in N
$$

Case 2: $\left|S \cap S^{\prime}\right|=1$. We may assume that $S^{\prime}=\{a, d, e\}$ where $d, e \notin S$. Since $(b d)(c e) \in A_{n}$,

$$
(a d e)={ }^{(b d)(c e)}(a b c) \in N
$$

Case 3: $\left|S \cap S^{\prime}\right|=0$. Then $S^{\prime}=\{d, e, f\}$ where $d, e, f \notin S$. Since ( a d be) $(c f) \in$ $A_{n}$,

$$
(d e f)={ }^{(a d b e)(c f)}(a b c) \in N
$$

This completes our proof.
Lemma 3 Suppose that $n \geq 3$ and (Id) $\neq N \unlhd A_{n}$. Then $N$ contains $a$ product of two disjoint transpositions or a 3-cycle.

Proof: By assumption there is permutation in $N$ which is not the identity. Among these permutations choose one $\sigma$ which has the most fixed points (the most one-element orbits) and consider its decomposition into disjoint cycles.

Suppose that $\sigma$ has a cycle $(a b c \cdots d)$ of length at least 4. Then

$$
\begin{aligned}
\left({ }^{(a b d)} \sigma\right) \sigma^{-1} & =((a b d)(a b c \ldots d))(a b c \ldots d)^{-1} \\
& =(b d c \ldots a)(d \ldots c b a) \\
& =(b)(a c d \ldots)
\end{aligned}
$$

belongs to $N$, is not the identity, and has more fixed points than $\sigma$. This contradiction shows that $\sigma$ is the product of disjoint cycles which have length

2 or 3 . We will show that $\sigma$ is the product of two disjoint 2 -cycles or $\sigma$ is a 3-cycle.
Case 1: $\sigma$ is the product of disjoint 2-cycles.
We may write $\sigma=(a b)(c d) \cdots$. Since

$$
\begin{aligned}
\left({ }^{(a b c)} \sigma\right) \sigma^{-1} & =\left({ }^{(a b c)}((a b)(c d))\right)((a b)(c d))^{-1} \\
& =(b c)(a d)(a b)(c d)=(a c)(b d)
\end{aligned}
$$

belongs to $N$ and fixes all points except four, $\sigma$ fixes all but at most four points by our choice of $\sigma$. Therefore $\sigma$ is the product two disjoint 2-cycles.
Case 2: One of the cycles of $\sigma$ is a 3-cycle.
In this case $\sigma^{2} \in N$, is not Id , is the product of disjoint 3-cycles, and has at least as many fixed points as $\sigma$. Suppose $\sigma^{2}=(a b c)(d e f) \cdots$. Then

$$
\begin{aligned}
\left((a b d)\left(\sigma^{2}\right)\right) \sigma^{-2} & =((a b d)((a b c)(d e f)))((a b c)(d e f))^{-1} \\
& =(b d c)(a e f)(a c b)(d f e) \\
& =(a b e c d)(f)
\end{aligned}
$$

belongs to $N$ and fixes fewer points than $\sigma$, a contradiction. Therefore $\sigma^{2}$ is a 3 -cycle which means $\sigma$ is a 3 -cycle.

Theorem 1 Let $n \geq 2$. Then:
(a) $A_{n}$ is simple if $n=2,3$ or $n \geq 5$.
(b) $A_{n}$ is not simple when $n=4$. The normal subgroups of $A_{4}$ are (Id), $A_{4}$, and $N=\{\operatorname{Id},(12)(34),(13)(24),(14)(23)\}$.

Proof: First of all $A_{n}$ is simple if $n=2,3$ since $A_{n} \simeq \mathbf{Z}_{n}$ in these cases. Let $n \geq 4$ and suppose $N \unlhd A_{n}$ satisfy $N \neq(\mathrm{Id}), A_{n}$. Then $N$ does not contain a 3 -cycle by Lemma 2. By Lemma $3 N$ contains a product of two disjoint 2 -cycles $(a b)(c d)$. The calculation

$$
\left({ }^{(a b e)}((a b)(c d))\right)((a b)(c d))^{-1}=(b e)(c d)(a b)(c d)=(a \text { e } b)
$$

shows that $n \ngtr 5$. Therefore $n=4$. Since

$$
{ }^{(a b c)}((a b)(c d))=(b c)(a d)=(a d)(b c)
$$

and

$$
(a b c)((a d)(b c))=(b d)(c a)=(a c)(b d)
$$

it follows that $N$ contains the subgroup of part (b). Since $N$ has no 3 -cycles, $N$ must be the subgroup of part (b). Using (1) it is easy to see that, in fact, $N \unlhd S_{n}$.

