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Throughout R is an integral domain unless otherwise specified. Let A
and B be sets. We use the notation A ⊆ B to indicate that A is a subset of
B and we use the notation A ⊂ B to mean that A is a proper subset of B.

The group of elements in R which have a multiplicative inverse (the group
of units of R) is denoted R×. Since R has no zero divisors cancellation holds.

If a, b, c ∈ R and a 6= 0 then ab = ac implies b = c. (1)

To see this note ab = ac is equivalent to a(b− c) = 0 which implies b− c = 0
when a 6= 0.

For a ∈ R let
(a) = Ra = {ra | r ∈ R}

be the ideal generated by a. An ideal I of R is principal if I = (a) for some
a ∈ R.

1 Associates, the Relation Divides, Greatest

Common Divisors

Elements a, b ∈ R are associates if b = ua for some u ∈ R×. Since R× is
a group, a ∼ b if and only if a and b are associates defines an equivalence
relation on R. Note that R× acts on R by left multiplication. The equivalence
class of a ∈ R is thus the R×-orbit of a.

Lemma 1 Let a, b ∈ R. Then:

(1) (a) = (b) if and only if a and b are associates.
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(2) The product of ideals (a) and (b) and their set product are the same;
(a)(b) = (ab).

(3) (a)(b) ⊆ (a), (b).

Proof: To show part (1) we may assume a 6= 0. Suppose (a) = (b). Since
a ∈ Ra = Rb there is an r ∈ R such that a = rb. Thus since b 6= 0 and
(b) = (a) there is an s ∈ R with b = sa. Therefore a = rb = r(sa) from which
a1 = a(rs) follows. Cancellation (1) gives 1 = rs which means r, s ∈ R× since
R is commutative. Therefore a, b are associates.

Conversely, suppose that a, b are associates. Then b = ua for some u ∈
R×. This means (b) ⊆ (a) since Rb = Rua ⊆ Ra. Since b, a are associates
(a) ⊆ (b) from which (a) = (b) follows. We have established part (1).

To show part (2) we first note that RR = R since RR ⊆ R = R1 ⊆ RR.
Thus multiplication of sets yields (Ra)(Rb) = RaRb = RRab = Rab which
means the set product of (a) and (b) is (ab) which is an ideal of R. This
is enough for part (2). Part (3) follows from part (2) since Rab ⊆ Rb and
Rab = Rba ⊆ Ra. 2

Suppose a, b ∈ R. Then b|a, or b divides a, if a = bc for some c ∈ R.
Thus the set of elements which b divides is (b). The notion of divides can be
expressed in terms of set inclusion.

Lemma 2 Suppose a, b ∈ R. Then the following are equivalent:

(1) b|a.
(2) (a) = (b)(c) for some c ∈ R.

(3) (a) ⊆ (b).

Proof: Part (1) implies part (2) by part (2) of Lemma 1. Part (2) implies
part (3) by part (3) of the same. Part (3) implies part (1) as a ∈ (a). 2

By virtue of the preceding lemma divides is a reflexive and transitive
relation. As a consequence of the lemma and part (1) of Lemma 1, if b
divides a then any associate of b divides a and b divides any associate of a.
Note that b divides a and a divides b if and only if a and b are associates.

Suppose that a, b, d ∈ R. Then d is a greatest common divisor of a and b
if d divides a and b, and if e ∈ R divides a and b then e divides d.
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In light of Lemma 2 d divides a, b if and only if (a), (b) ⊆ (d), or equiva-
lently (a) + (b) ⊆ (d). Thus:

Lemma 3 Let a, b, d ∈ R. Then d is a greatest common divisor of a and b
if and only if (a) + (b) ⊆ (d) and whenever e ∈ R satisfies (a) + (b) ⊆ (e)
then (d) ⊆ (e). 2

Suppose a, b ∈ R has a greatest common divisor d. By the preceding
lemma and part (1) of Lemma 1 the greatest common divisors of a and b are
the associates of d.

2 The Monoid of Non-Zero Principal Ideals

Let R denote the set of non-zero principal ideals of R. Since R is an integral
domainR is a monoid under set multiplication with identity element (1) = R
by part (b) of Lemma 1.

Lemma 4 Let (a), (b), (c) ∈ R. Then:

(1) (a) = R if and only if a ∈ R×.

(2) (a)(b) = (a)(c) implies (b) = (c)

(3) (a) = (a)(b) implies (b) = (1).

Proof: Since R = (1), (a) = R if and only if a, 1 are associates by part (1) of
Lemma 1. But a, 1 are associates if and only if a = u1 = u for some u ∈ R×.
We have established part (1). To see part (2), we use Lemma 1 to note that
(a)(b) = (a)(c) if and only if (ab) = (ac) if and only if ac = u(ab) = a(ub) for
some u ∈ R×. The latter implies c = ub by cancellation, and thus (b) = (c).
Part (3) follows by part (2) since (a) = (a)(1). 2

The appropriate notions of prime ideal in R and maximal ideal in R are
key to the arithmetic of R. An element (p) ∈ R is aR-prime ideal if (p) 6= (1)
and whenever (a), (b) ∈ R satisfy (a)(b) ⊆ (p) then (a) ⊆ (p) or (b) ⊆ (p).
An element p ∈ R is prime if p is a non-zero non-unit and whenever a, b ∈ R
and p|ab then p|a or p|b.
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Remark 1 a ∈ R is a non-zero non-unit if and only if (a) ∈ R and (a) 6= R;
see part (1) of Lemma 4.

Lemma 5 Let p ∈ R. Then the following are equivalent:

(1) (p) is prime ideal of R.

(2) (p) is a R-prime ideal.

(3) p is prime.

Proof: Part (1) implies part (2) by definition of prime ideal. To show part
(2) implies part (3), suppose that (p) is aR-prime ideal. Then p is a non-zero
non-unit Remark 1. Let a, b ∈ R and suppose p|ab. We wish to show p|a or
p|b. Since p|0 we can assume a, b 6= 0. Therefore (a), (b) ∈ R. By part (2)
of Lemma 1 and Lemma 2 observe that (a)(b) ⊆ (p). Since (p) is a R-prime
ideal either (a) ⊆ (p) or (b) ⊆ (p). Therefore p|a or p|b. We have shown part
(2) implies part (3).

To complete the proof we need only show that part (3) implies part (1).
Suppose that p is prime. Then R 6= (p) ∈ R by Remark 1. Let A,B be
ideals of R such that AB ⊆ (p). To show that (p) is a prime ideal of R we
need only show that A 6⊆ (p) implies B ⊆ (p).

Let a ∈ A and b ∈ B. Then ab ∈ (p), or equivalently p|ab. Since p is
prime p|a or p|b. Suppose that A 6⊆ (p). Then a 6∈ (p) for some a ∈ A. Let
b ∈ B. Since p|a is false necessarily p|b. Therefore b ∈ (p). We have shown
B ⊆ (p). 2

Remark 2 By the preceding lemma associates of prime elements are prime
elements.

An element (m) ∈ R is a R-maximal ideal if (m) 6= R and whenever
(a) ∈ R and (m) ⊆ (a) then (m) = (a) or (a) = R. An element m ∈ R is
irreducible if m is a non-zero non-unit and m = ab, where a, b ∈ R, implies a
or b is a unit.

Lemma 6 Let m ∈ R. Then the following are equivalent:

(1) (m) is a R-maximal ideal.
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(2) m is irreducible.

Proof: Suppose that (m) is a R-maximal ideal. Now m is a non-zero
non-unit by Remark 1. Suppose a, b ∈ R satisfy m = ab. Then (m) =
(a)(b) ⊆ (a), (b) by parts (2) and (3) of Lemma 1. Since (m) ∈ R necessarily
(a), (b) ∈ R. Thus (m) = (a), in which case (b) = (1) and b is a unit by
Lemma 4, or (a) = R, in which case a is a unit by the part (1) of the same.
Therefore part (1) implies part (2).

Suppose that m is irreducible. Then R 6= (m) ∈ R by Remark 1. Let
(m) ⊆ (a) where (a) ∈ R. Then a|m which means ab = m for some b ∈ R.
Thus a is a unit, in which case (a) = R by part (1) of Lemma 4, or b is a
unit, in which case (m) = (a) by part (1) of Lemma 1. We have shown part
(2) implies part (1). 2

Remark 3 By the preceding lemma associates of irreducible elements are
irreducible elements.

Corollary 1 R-prime ideals are R-maximal ideals. Thus prime elements of
R are irreducible.

Proof: Suppose that (p) is a R-prime ideal and (p) ⊆ (a), where (a) ∈ R.
Then (p) = (a)(b) for some b ∈ R by Lemma 2. Thus (p) ⊆ (a), (b) by part
(3) of Lemma 1. Since (a)(b) ⊆ (p), either (a) ⊆ (p) in which case (a) = (p)
or (b) ⊆ (p) in which case (b) = (p) and thus (a) = R by part (3) of Lemma
4. Therefore (p) is a R-maximal ideal. Lemmas 5 and 6 complete the proof.
2

3 Euclidean and Principal Ideal Domains

R is a Euclidean Domain if there is a function N : R −→ Z≥0 such that for
all a, b ∈ R, where b 6= 0, there are q, r ∈ R which satisfy

a = qb + r, where r = 0 or N(r) < N(b).

Proposition 1 Suppose that R is a Euclidean Domain. Then all ideals of
R are principal.
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Proof: 2

An integral domain whose ideals are principal is a Principal Ideal Domain.
Suppose that R is a Principal Ideal Domain. Let a, b ∈ R. Then the ideal

(a) + (b) = (d) for some d ∈ R. Therefore d is a greatest common divisor of
a and b by Lemma 3. Since d ∈ (a) + (b) it follows that d = ra + sb for some
r, s ∈ R.

By Corollary 1 prime elements of R are irreducible. Conversely, irre-
ducible elements are prime.

To see this, suppose that m ∈ R is irreducible. Then (m) is a R-maximal
ideal. Since R is a Principal Ideal Domain, R is the set of all non-zero ideals
of R. Therefore (m) is a maximal ideal of R and as such is a prime ideal of
R. By Lemma 5 m is a prime element of R.

Principal Ideal Domains belong to the very important class of commuta-
tive rings whose ideals are finitely generated.

4 Noetherian Rings

In this section R is a ring. The ring R is Noetherian if all ideals of R are
finitely generated. R satisfies the ascending chain condition if every ascending
chain of ideals

I1 ⊆ I2 ⊆ I3 ⊆ · · ·
of R terminates; that is In = In+1 = In+2 = · · · for some n ≥ 1. The ring R
satisfies the maximum condition on ideals if any non-empty set I of ideals of
R has a maximal element I; that is if J ∈ I and I ⊆ J then I = J .

Theorem 1 Let R be a commutative ring. Then the following are equivalent:

(1) R satisfies the maximum condition on ideals.

(2) R is Noetherian.

(3) R satisfies the ascending chain condition.

Proof: Part (1) implies part (2). Suppose that R satisfies the maximum
condition on ideals and let I be an ideal of R. Let I be the set of all finitely
generated ideals which are contained in I. Since (0) ∈ I, by assumption there
is a maximal element ({a1, . . . , ar}) in I. Let a ∈ I. Then ({a1, . . . , ar}) ⊆

6



({a1, . . . , ar, a}) ⊆ I means ({a1, . . . , ar}) = ({a1, . . . , ar, a}). Therefore a ∈
({a1, . . . , ar}). We have shown that I = ({a1, . . . , ar}).

Part (2) implies part (3). Suppose that R is Noetherian and let I1 ⊆ I2 ⊆
I3 ⊆ · · · be an ascending chain of ideals in R. Then I =

⋃∞
n=1 In is an ideal

of R. Therefore I = ({a1, . . . , ar}) for some a1, . . . , ar ∈ I. It is easy to see
that a1, . . . , ar ∈ In for some n ≥ 1. Therefore

I = ({a1, . . . , ar}) ⊆ In ⊆ I

which implies I = In. Since In ⊆ Im ⊆ I for all m ≥ n it follows that Im = In

for all m ≥ n.
Part (3) implies part (1). Suppose that R satisfies the ascending chain

condition on ideals and let I be a non-empty set of ideals of R. Suppose that
I has no maximal element. Then for every I ∈ I there exists a J ∈ I such
that I ⊂ J . Thus there exists an ascending chain of ideals I1 ⊂ I2 ⊂ I3 ⊂ · · ·
of ideals in I. This contradiction shows that I must have a maximal element
after all. 2

5 Unique Factorization Domains

An integral domain R is a Unique Factorization Domain if every non-zero
non-unit a ∈ R can be written as a = m1 · · ·mr as a product of irreducibles,
and if a = m′

1 · · ·m′
r′ is another such product then r = r′, and after possible

reordering of factors, mi and m′
i are associates for all 1 ≤ i ≤ r. In light of

parts (1) and (2) of Lemma 1, R is a unique factorization domain if and only
if every (a) ∈ R\{(1)} is a product of maximal ideals (a) = (m1) · · · (mr) in
R, and this product is unique up to reordering of factors.

Prime and irreducible are the same in a unique factorization domain.

Lemma 7 Let R be a Unique Factorization Domain. Then the R-prime
ideals and R-maximal ideals are the same. Thus the prime and the irreducible
elements of R are the same.

Proof: R-prime ideals are R-maximal ideals by Corollary 1. Suppose that
(m) is an R-maximal ideal an suppose that (a)(b) ⊆ (m), where (a), (b) ∈ R.
We need to show that (a) ⊆ (m) or (b) ⊆ (m). If (a) = R then (b) ⊆ (m)
and likewise if (b) = R then (a) ⊆ (m). Thus we may assume (a), (b) 6= R.
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Now (m)(c) = (a)(b) for some (c) ∈ R by Lemma 2. Since (a), (b) 6= R
it follows that (a) and (b) can be written as a product of R-maximal ideals.
Since (c)(m) = (a)(b) necessarily (m) must be one of them. Therefore (a) ⊆
(m) or (b) ⊆ (m) by part (3) of Lemma 1. 2

Theorem 2 Every Principal Ideal Domain is a Unique Factorization Do-
main.

Proof: Let R be a Unique Factorization Domain. We first show that every
(a) ∈ R, (a) 6= R = (1), is a product of R-maximal ideals. To do this it
suffices to show that the set S of all elements of R\{(1)} which are not such
a product is empty.

Suppose that S 6= ∅. Since R is Noetherian S has an element (a) maximal
with respect to inclusion. Now (a) is not a R-maximal ideal. Therefore a is
not irreducible by Lemma 6. Note that a is non-zero non-zero divisor. Thus
a = bc, where b, c are not units. By Lemma 4 we have (a) = (b)(c) ⊆ (b), (c)
and (b), (c) 6= R. Therefore (a) ⊂ (b), (c) which means (b), (c) 6∈ S. Hence
(b) and (c) are products of R-maximal ideals whence (a) = (b)(c) is also, a
contradiction. This means that S is empty after all.

To show uniqueness, suppose (a) ∈ R \ {(1)} is written as products of
R-maximal ideals.

(a) = (m1) · · · (mr) = (m′
1) · · · (m′

r′).

Then (m′
1) · · · (m′

r′) ⊆ (mr) by part (3) of Lemma 1. Since (mr) is a R-prime
ideal by Lemma 7, (m′

i) ⊆ (mr) for some 1 ≤ i ≤ r′. Since (mr) and (m′
i)

are both R-maximal ideals it follows that (mr) = (m′
i). Therefore

(m1) · · · ̂(mr) = (m′
1) · · · ̂(m′

i) · · · (m′
r′)

by part (2) of Lemma 4, where “hat” means factor omitted. By induction
on r we conclude that r = r′ and, after reordering if necessary, (m1) =
(m′

1), . . . , (mr) = (m′
r). 2
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