Some Remarks on Cosets

09/26/06 Radford

Our discussion is predicated on general results about group actions which were discussed earlier. Suppose that G is a group and $H \leq G$. Then a left action of H on G is defined by

$$h \cdot a = ha$$

for all $h \in H$ and $a \in G$. The relation on G defined by $a \sim b$ if and only if $b = h \cdot a$ for some $h \in h$ is an equivalence relation on G. The equivalence class containing a is

$$[a] = H \cdot a = Ha_{a}$$

the *H*-orbit of a which is also the right coset of *H* in *G* containing a. Thus:

The right cosets of
$$H$$
 in G partition G . (1)

Fix $a, b \in G$. Then the map $Ha \longrightarrow Hb$ defined by $ha \mapsto hb$ is welldefined and bijective. That the map is well-defined and injective follow from right cancellation. Thus all right cosets of H have the same cardinality. Observe that $H^{op} \leq G^{op}$ and

$$H^{op} \cdot {}^{op}a = aH. (2)$$

Thus right cosets of H^{op} in G^{op} are the left cosets of H in G. We have shown in (1) that the right cosets of a subgroup of a group partition the group. By (2) therefore:

The left cosets of
$$H$$
 in G partition G . (3)

The function $G \longrightarrow G$ given by $g \mapsto g^{-1}$ for all $g \in G$ is bijective; indeed it is its own inverse. This bijection induces a bijection $2^G \longrightarrow 2^G$ of the set of all subsets of G to itself defined by $S \mapsto S^{-1}$, where the latter is the set of all inverses of elements of S. Now $H^{-1} = H$ since $H \leq G$. Noting that $(Ha)^{-1} = a^{-1}H^{-1} = a^{-1}H$ it is easy to see that there is a bijection

$$\{ \text{ right cosets of } H \text{ in } G \} \longrightarrow \{ \text{ left cosets of } H \text{ in } G \}$$
(4)

given by $Ha \mapsto a^{-1}H$. Since $Ha \longrightarrow a^{-1}H$ given by $ha \mapsto (ha)^{-1}$ is a bijection, using the bijection of (4) we conclude that:

All cosets, left or right, of H in G have the same cardinality. (5)

|G:H|, the index of H in G, is the cardinality of the set of right cosets of H in G. Since the map of (4) is a bijection, |G:H| is also the cardinality of the set of left cosets of H in G. When G is finite, in light of (3) and (5) we have

$$|G| = |G:H||H| \tag{6}$$

from which Lagrange's Theorem follows.

Suppose that H is proper subgroup of G. Then the smallest possible value of |G : H| is 2. If H is not trivial then H has at least 2 elements. These extreme cases are interesting.

Proposition 1 Let G be a group and suppose that $H \leq G$.

- (a) Suppose that |G:H| = 2. Then $H \leq G$.
- (b) Suppose that |H| = 2 and $H \leq G$. Then $H \leq Z(G)$.

PROOF: Suppose that |G:H| = 2. Since H = eH is a left coset of H in G, by (3) the other left coset of H in G is $G \setminus H$, the complement of H in G. Likewise the right cosets of H in G are H = He and $G \setminus H$. Since the set of left cosets of H in G is the set of right cosets of H in G, it follows that $H \leq G$. We have shown part (a).

Suppose that |H| = 2, write $H = \{e, a\}$, and let $g \in G$. Since $H \leq G$ we have

$$\{ge, ga\} = gH = Hg = \{eg, ag\}.$$

Since ge = g = eg, and the two preceding cosets have two elements each, necessarily ga = ag. Thus $a \in Z(G)$ and consequently $H \leq Z(G)$. \Box