Notes on Cyclic Groups

09/13/06 Radford

(revision of same dated 10/07/03)

Z denotes the group of integers under addition.

Let G be a group and $a \in G$. We define the power a^n for non-negative integers n inductively as follows: $a^0 = e$ and $a^n = aa^{n-1}$ for n > 0. If n is a negative integer then -n is positive and we set $a^n = (a^{-1})^{-n}$ in this case. In this way a^n is defined for all integers n.

The familiar exponent laws

$$a^{m+n} = a^m a^n, \qquad (a^m)^n = a^{mn}$$

for all $m, n \in \mathbb{Z}$ and

$$(a^n)^{-1} = a^{-n}$$

for all $n \in \mathbb{Z}$ hold. If $b \in G$ and ab = ba then $(ab)^n = a^n b^n$ for all $n \in \mathbb{Z}$. For the fourth exponent law to hold necessarily ab = ba. The proofs of the exponent laws are good exercises in induction. As a consequence of the first and third exponent laws

$$\langle a \rangle = \{a^k \mid k \in \mathbf{Z}\}$$

is a (abelian) subgroup of G. From this point on we will use the exponent laws without particular reference.

The group G is cyclic if $G = \langle a \rangle$ for some $a \in G$ in which case a is said to generate G. Since $\langle a \rangle = \langle a^{-1} \rangle$ for all $a \in G$, if G is cyclic and generated by a then G is also generated by a^{-1} .

Suppose that the binary operation of G is written *additively*. Then the notation $n \cdot a$, or na, is used instead of a^n and $n \cdot a$ is referred to as a multiple. The definitions of multiples read $0 \cdot a = 0$ and $n \cdot a = a + (n-1) \cdot a$ for all n > 0. If n < 0 we set $n \cdot a = (-n) \cdot (-a)$. When $G = \mathbf{Z}$ observe that $n \cdot a = na$ is the product of the integers n and a.

The study of cyclic groups is based on one particular case.

Proposition 1 Every subgroup of Z is cyclic. In particular, if H is a nonzero subgroup of Z then H contains a positive integer and is generated by the smallest positive integer in H.

PROOF: The zero subgroup $(0) := \langle 0 \rangle = \{0\}$ is cyclic. We may assume that $H \neq (0)$. In this case there is a non-zero integer k in H. Since H is a subgroup of \mathbf{Z} the additive inverse -k must be in H as well. One of k and -k is positive. Therefore H contains a positive integer.

Let S be the set of all positive integers in H. We have shown $S \neq \emptyset$. By the Well-Ordering Principle there is a smallest positive integer n in S. Since $n \in H$ the cyclic subgroup $\langle n \rangle = \{qn \mid q \in \mathbb{Z}\}$ of \mathbb{Z} is a subset of H. We wish to show that $H = \langle n \rangle$. Since $\langle n \rangle \subseteq H$ we need only show that $H \subseteq \langle n \rangle$.

Suppose that $a \in H$. By the Division Algorithm a = qn + r for some $q, r \in \mathbb{Z}$, where $0 \leq r < n$. Since $r = a + (-q)n \in H$, and n is the smallest positive integer in H, necessarily r = 0. Therefore $a = qn \in \langle n \rangle$ which establishes $H \subseteq \langle n \rangle$. \Box

The following technical lemma will be of great help to us in the proof of the theorem of this section.

Lemma 1 Let $G = \langle a \rangle$ be a cyclic group generated by a.

- a) Suppose that $a^{\ell} = a^m$ for some integers $\ell < m$. Then $n = m \ell > 0$ and $G = \{e, a, \dots, a^{n-1}\}$.
- b) Let H be a non-trivial subgroup of G. Then $a^k \in H$ for some positive integer k and furthermore $H = \langle a^n \rangle$, where n is the smallest such integer.
- c) Suppose that n is a positive integer and $a^n = e$. Let $k \in \mathbb{Z}$ and d be the greatest common divisor of k and n. Then $\langle a^k \rangle = \langle a^d \rangle$.

PROOF: We first show part a). Since $a^{\ell}e = a^{\ell} = a^m = a^{\ell}a^{m-\ell}$, by cancellation $e = a^{m-\ell} = a^n$. Let $g \in G$. Then $g = a^k$ for some $k \in \mathbb{Z}$. By the Division Algorithm k = nq + r, where $q, r \in \mathbb{Z}$ and $0 \leq r < n$. Since $0 \leq r \leq n-1$ we have

$$g = a^{k} = a^{nq+r} = a^{nq}a^{r} = (a^{n})^{q}a^{r} = e^{q}a^{r} = a^{r} \in \{e, a, \dots, a^{n-1}\}.$$

Thus $G \subseteq \{e, a, \ldots, a^{n-1}\}$. As $\{e, a, \ldots, a^{n-1}\} \subseteq G$ the proof of part a) is complete.

To show part b) let $\mathcal{H} = \{k \in \mathbb{Z} \mid a^k \in H\}$ be the set of exponents of powers of a which lie in H. Since H is a subgroup of G it is easy to see that \mathcal{H} is a subgroup of \mathbb{Z} . Since $H \neq (e)$ it follows that $\mathcal{H} \neq (0)$. Thus $\mathcal{H} = \langle n \rangle$, where n is the smallest positive integer in \mathcal{H} , by Proposition 1. Since every element of G is a power of a we have

$$H = \{a^k \, | \, k \in \mathcal{H}\} = \{a^{qn} \, | \, q \in \mathbf{Z}\} = \{(a^n)^q \, | \, q \in \mathbf{Z}\} = \langle a^n \rangle$$

and part b) follows.

As for part c), we first note that k = dm for some $m \in \mathbb{Z}$ since d divides k. Therefore

$$\langle a^k \rangle = \{ (a^k)^q \, | \, q \in \mathbf{Z} \} = \{ (a^{dm})^q \, | \, q \in \mathbf{Z} \} = \{ (a^d)^{mq} \, | \, q \in \mathbf{Z} \} \subseteq \langle a^d \rangle.$$

Thus $\langle a^k \rangle \subseteq \langle a^d \rangle$. To show that $\langle a^k \rangle = \langle a^d \rangle$ we need only show that $\langle a^d \rangle \subseteq \langle a^k \rangle$.

Since d is the greatest common divisor of k and n we may write d = ks+ntfor some $s, t \in \mathbb{Z}$. Let $q \in \mathbb{Z}$. Since dq = ksq + ntq we note that

$$(a^{d})^{q} = a^{dq} = a^{ksq+ntq} = a^{kqs}a^{ntq} = (a^{k})^{qs}(a^{n})^{tq} = (a^{k})^{qs}e^{tq} = (a^{k})^{qs}$$

from which $\langle a^d \rangle \subseteq \langle a^k \rangle$ follows. \Box

Let $G = \langle a \rangle$ be cyclic. The first calculation in part c) establishes:

If
$$m, n \in \mathbf{Z}$$
 then $m|n$ implies $\langle a^m \rangle \supseteq \langle a^n \rangle$. (1)

Suppose that $G = \mathbf{Z}$. Then it is easy to see

If
$$m, n \in \mathbf{Z}$$
 then $m|n$ if and only if $\langle m \rangle \supseteq \langle n \rangle$. (2)

By part b) of the preceding lemma subgroups of cyclic groups are themselves cyclic. There are two types of cyclic groups to consider – finite and infinite. Infinite cyclic groups are far simpler. There is basically one infinite cyclic group, namely \mathbf{Z} .

Corollary 1 Suppose that $G = \langle a \rangle$ in an infinite cyclic group.

a) Let $\ell, m \in \mathbb{Z}$. Then $a^{\ell} = a^{m}$ if and only if $\ell = m$.

b) The function $f : \mathbf{Z} \longrightarrow G$ defined by $f(\ell) = a^{\ell}$ for all $\ell \in \mathbf{Z}$ is an isomorphism.

PROOF: Suppose that $a^{\ell} = a^{m}$. If $\ell \neq m$ then G is finite by part a) of Lemma 1, a contradiction. Therefore $\ell = m$. Of course $\ell = m$ implies $a^{\ell} = a^{m}$. We have established part a). That f is a homomorphism follows from the calculation

$$f(\ell + m) = a^{\ell + m} = a^{\ell}a^m = f(\ell)f(m)$$

for all $\ell, m \in \mathbb{Z}$. Since all elements of G have the form a^{ℓ} for some $\ell \in \mathbb{Z}$ the function f is onto. Suppose that $\ell, m \in \mathbb{Z}$ and $f(\ell) = f(m)$. Then $a^{\ell} = a^m$ which means $\ell = m$ by part a). Therefore f is one-one. \Box

The finite case is much more complicated and interesting. The structure of a finite cyclic group is very closely related to the numerical properties of its order.

Theorem 1 Suppose that $G = \langle a \rangle$ be a finite cyclic group of order n.

- a) $G = \{e, a, \dots, a^{n-1}\}$ and n = |a|. In particular $a^n = e$.
- b) Let $\ell, m \in \mathbb{Z}$. Then $a^{\ell} = a^{m}$ if and only if n divides ℓm . In particular n is the smallest of the positive integers m such that $a^{m} = e$.
- c) Let H be a subgroup of G. Then |H| divides n.
- d) Suppose that m is a positive integer which divides n. Then G has a unique subgroup H of order m. Furthermore $H = \langle a^{n/m} \rangle$ and n/m is the least positive integer ℓ such that $a^{\ell} \in H$.
- e) Let $k \in \mathbb{Z}$ and d be the greatest common divisor of k and n. Then $\langle a^k \rangle = \langle a^d \rangle$ and has order n/d. In particular d = n/|H|.
- f) The generators of G are a^k , where $1 \le k \le n$ and k, n are relatively prime.

PROOF: Since G is finite there must be a repetition in the sequence

$$e = a^0, a = a^1, a^2, a^3, \dots$$

Therefore there is a positive integer k such that a^k is one of its predecessors e, a, \ldots, a^{k-1} . By the Well-Ordering Principle there is a smallest such positive integer which we call m. Thus

$$e, a, \ldots, a^{m-1}$$

are distinct and $a^m = a^\ell$ for some $0 \le \ell < m$. In particular $m \le |G| = n$. As $m - \ell \ge 1$, by part a) of Lemma 1 we conclude that $G = \{e, a, \ldots, a^{m-\ell-1}\}$. In particular $n \le m - \ell$. Combining inequalities we have $m \le n \le m - \ell \le m$ which means m = n and $\ell = 0$. In particular $a^n = a^m = a^\ell = a^0 = e$. We have shown part a).

As for part b), observe that $a^{nq+m} = a^{nq}a^m = (a^n)^q a^m = e^q a^m = a^m$ for all $q, m \in \mathbb{Z}$ by part a). Consequently if n divides $\ell - m$ then $a^\ell = a^m$. To show the converse we need only observe that $\mathcal{H} = \{k \in \mathbb{Z} \mid a^k = e\}$ is a subgroup of \mathbb{Z} which is generated by n; see Proposition 1 and part a) of Lemma 1. We have shown part b).

We prove parts c)–e) together. Let $k \in \mathbb{Z}$ and $H = \langle a^k \rangle$. By part b) of Lemma 1 all subgroups of G have this form. Let $d = \operatorname{gcd}(k, n)$ be the greatest common divisor of k and n. Then $H = \langle a^k \rangle = \langle a^d \rangle$ by part c) of Lemma 1.

Since d is a positive divisor of n necessarily 0 < n - d < n. Thus $e, a^d, \ldots, (a^d)^{((n/d)-1)} = a^{n-d}$ are distinct by part a). Since $(a^d)^{n/d} = a^n = e$ by the same, we use part a) of Lemma 1 to conclude that $\langle a^d \rangle = \{e, a^d, \ldots, (a^d)^{(n/d)-1}\}$ and has order n/d. Thus: |H| = n/d divides n,

$$d = \gcd(k, n) = n/|H|,$$
 and $H = \langle a^k \rangle = \langle a^{n/|H|} \rangle.$ (3)

Now suppose that ℓ is a positive integer and $a^{\ell} \in H$. Then $\langle a^{\ell} \rangle \subseteq H$. This inclusion together with (3) implies

$$\ell \ge \gcd(\ell, n) = n/|{<}a^{\ell}{>}| \ge n/|H|$$

Our proof of parts c)–e) is complete. Part f) follows by part a) and (3). \Box

Suppose that $G = \langle a \rangle$ is a finite cyclic group of order n. Then the subgroups of G are cyclic. Observe that

$$\{\text{positive divisors of } n\} \longleftrightarrow \{\text{subgroups of } G\}$$
(4)

given by

$$d \mapsto \langle a^{n/d} \rangle$$

is a bijective correspondence. Note that $\langle a^{n/d} \rangle$ has order d.

The number of generators of G is $\phi(n)$, where $\phi(n)$ is the number of integers k in the range $1 \leq k \leq n$ which are relatively prime to n. The function $\phi : \mathbf{N} \longrightarrow \mathbf{N}$, where $\mathbf{N} = \{1, 2, 3, \ldots\}$, is called the *Euler* ϕ -function. As a consequence of the theorem:

Corollary 2 Let n be a positive integer. Then $\sum_{d|n} \phi(d) = n$.

PROOF: Let $G = \langle a \rangle$ be a cyclic group of order n. (There is such a group, namely \mathbb{Z}_n .) We define a relation on G by $x \sim y$ if and only if $\langle x \rangle = \langle y \rangle$. Since "equals" = is an equivalence relation \sim is also. For $x \in G$ note that the equivalence class [x] is the set of all generators of the cyclic subgroup $\langle x \rangle$ of G. The reader is left with the exercise of showing that the assignment $[x] \mapsto \langle x \rangle$ determines a well-defined bijection between the set of equivalence classes of G and the set of cyclic subgroups of G. (Well-defined means that if [x] = [y] then $\langle x \rangle = \langle y \rangle$.) Observe that this bijective correspondence holds for any group. Since the number of generators of $\langle x \rangle$ is $\phi(|\langle x \rangle|)$ by part f) of Theorem 1, using the bijective correspondence described by (4), we see that

$$\sum_{d|n} \phi(d) = \sum_{d|n} |[a^{n/d}]| = |G| = n.$$

Let us apply the theorem to a cyclic group $G = \langle a \rangle$ of order 15. The divisors of 15 are 1, 3, 5, 15. Therefore G has 4 subgroups. Since 1, 2, 4, 7, 8, 11, 13, 14 lists the integers k such that $1 \leq k \leq 15$ which are relatively prime to 15 it follows that G has 8 generators:

$$a, a^2, a^4, a^7, a^8 = a^{-7}, a^{11} = a^{-4}, a^{13} = a^{-2}, and a^{14} = a^{-1}.$$

The subgroups of G are

$$< a^{15} > = < e > = \{e\},$$

 $< a^{15/3} > = < a^5 > = \{e, a^5, a^{10}\},$

$$\langle a^{15/5} \rangle = \langle a^3 \rangle = \{e, a^3, a^6, a^9, a^{12}\},\$$

and

$$\langle a^{15/15} \rangle = \langle a^1 \rangle = G.$$

Now suppose that $G = \langle a \rangle$ is cyclic of order 30 and let H be the subgroup of G of order 10. Then

$$H = \langle a^{30/10} \rangle = \langle a^3 \rangle = \{e, a^3, a^6, a^9, a^{12}, a^{15}, a^{18}, a^{21}, a^{25}, a^{27}\}.$$

Since the divisors of 10 are 1, 2, 5, 10 it follows that H has 4 subgroups. These are

$$<(a^3)^{10/1} > = = \{e\},$$

$$<(a^3)^{10/2} > = = \{e, a^{15}\},$$

$$<(a^3)^{10/5} > = = \{e, a^6, a^{12}, a^{18}, a^{24}\},$$

and

$$<(a^3)^{10/10}> = = H$$

What are the generators of H? Since the integers k which are relatively prime to 10 and satisfy $1 \le k \le 10$ are 1, 3, 7, 9, it follows that

$$(a^3)^1 = a, (a^3)^3 = a^9, (a^3)^7 = a^{21}, (a^3)^9 = a^{27}$$

are the generators of H.

A good exercise would be to reformulate the preceding calculations for the (additive) cyclic groups Z_{15} and Z_{30} or orders 15 and 30 respectively.

We end by noting that just as there is essentially one infinite cyclic group, namely \mathbf{Z} , for each positive integer *n* there is essentially one cyclic group of order *n*, namely \mathbf{Z}_n . We denote its binary operation of \mathbf{Z}_n by \oplus . As a set

$$\mathbf{Z}_n = \{0, 1, \dots, n-1\}.$$

Let $\ell, m \in \mathbb{Z}_n$. By the Division Algorithm $\ell + m = nq + r$, where $q, r \in \mathbb{Z}$ and $0 \leq r < n$, and the integers q, r are uniquely determined by these conditions. By definition $\ell \oplus m = r$.

Suppose that $G = \langle a \rangle$ is a cyclic group of order n. Then $f : \mathbb{Z}_n \longrightarrow G$ defined by $f(\ell) = a^{\ell}$ for all $\ell \in \mathbb{Z}_n$ is a set bijection by part a) of Theorem 1. By the same $a^n = e$. Let $\ell, m \in \mathbb{Z}_n$ and write $\ell + m = nq + r$ as above. The calculation

$$f(\ell)f(m) = a^{\ell}a^{m} = a^{\ell+m} = a^{nq+r} = (a^{n})^{q}a^{r} = e^{q}a^{r} = a^{r} = f(r) = f(\ell \oplus m)$$

shows that f is in fact an isomorphism.