
Notes on Cyclic Groups
09/13/06 Radford (revision of same dated 10/07/03)

Z denotes the group of integers under addition.

Let G be a group and a ∈ G. We define the power an for non-negative
integers n inductively as follows: a0 = e and an = aan−1 for n > 0. If n is a
negative integer then −n is positive and we set an = (a−1)−n in this case. In
this way an is defined for all integers n.

The familiar exponent laws

am+n = aman, (am)n = amn

for all m, n ∈ Z and
(an)−1 = a−n

for all n ∈ Z hold. If b ∈ G and ab = ba then (ab)n = anbn for all n ∈ Z.
For the fourth exponent law to hold necessarily ab = ba. The proofs of the
exponent laws are good exercises in induction. As a consequence of the first
and third exponent laws

<a> = {ak | k ∈ Z}

is a (abelian) subgroup of G. From this point on we will use the exponent
laws without particular reference.

The group G is cyclic if G = <a> for some a ∈ G in which case a is
said to generate G. Since <a> = <a−1> for all a ∈ G, if G is cyclic and
generated by a then G is also generated by a−1.

Suppose that the binary operation of G is written additively. Then the
notation n·a, or na, is used instead of an and n·a is referred to as a multiple.
The definitions of multiples read 0·a = 0 and n·a = a+(n−1)·a for all n > 0.
If n < 0 we set n·a = (−n)·(−a). When G = Z observe that n·a = na is the
product of the integers n and a.

The study of cyclic groups is based on one particular case.
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Proposition 1 Every subgroup of Z is cyclic. In particular, if H is a non-
zero subgroup of Z then H contains a positive integer and is generated by the
smallest positive integer in H.

Proof: The zero subgroup (0) := <0> = {0} is cyclic. We may assume
that H 6= (0). In this case there is a non-zero integer k in H. Since H is a
subgroup of Z the additive inverse −k must be in H as well. One of k and
−k is positive. Therefore H contains a positive integer.

Let S be the set of all positive integers in H. We have shown S 6= ∅.
By the Well-Ordering Principle there is a smallest positive integer n in S.
Since n ∈ H the cyclic subgroup <n> = {qn | q ∈ Z} of Z is a subset of H.
We wish to show that H = <n>. Since <n> ⊆ H we need only show that
H ⊆ <n>.

Suppose that a ∈ H. By the Division Algorithm a = qn + r for some
q, r ∈ Z, where 0 ≤ r < n. Since r = a + (−q)n ∈ H, and n is the smallest
positive integer in H, necessarily r = 0. Therefore a = qn ∈ <n> which
establishes H ⊆ <n>. 2

The following technical lemma will be of great help to us in the proof of
the theorem of this section.

Lemma 1 Let G = <a> be a cyclic group generated by a.

a) Suppose that a` = am for some integers ` < m. Then n = m − ` > 0
and G = {e, a, . . . , an−1}.

b) Let H be a non-trivial subgroup of G. Then ak ∈ H for some positive
integer k and furthermore H = <an>, where n is the smallest such
integer.

c) Suppose that n is a positive integer and an = e. Let k ∈ Z and d be
the greatest common divisor of k and n. Then <ak> = <ad>.

Proof: We first show part a). Since a`e = a` = am = a`am−`, by can-
cellation e = am−` = an. Let g ∈ G. Then g = ak for some k ∈ Z. By
the Division Algorithm k = nq + r, where q, r ∈ Z and 0 ≤ r < n. Since
0 ≤ r ≤ n− 1 we have

g = ak = anq+r = anqar = (an)qar = eqar = ar ∈ {e, a, . . . , an−1}.
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Thus G ⊆ {e, a, . . . , an−1}. As {e, a, . . . , an−1} ⊆ G the proof of part a) is
complete.

To show part b) let H = {k ∈ Z | ak ∈ H} be the set of exponents of
powers of a which lie in H. Since H is a subgroup of G it is easy to see
that H is a subgroup of Z. Since H 6= (e) it follows that H 6= (0). Thus
H = <n>, where n is the smallest positive integer in H, by Proposition 1.
Since every element of G is a power of a we have

H = {ak | k ∈ H} = {aqn | q ∈ Z} = {(an)q | q ∈ Z} = <an>

and part b) follows.
As for part c), we first note that k = dm for some m ∈ Z since d divides

k. Therefore

<ak> = {(ak)q | q ∈ Z} = {(adm)q | q ∈ Z} = {(ad)mq | q ∈ Z} ⊆ <ad>.

Thus <ak> ⊆ <ad>. To show that <ak> = <ad> we need only show that
<ad> ⊆ <ak>.

Since d is the greatest common divisor of k and n we may write d = ks+nt
for some s, t ∈ Z. Let q ∈ Z. Since dq = ksq + ntq we note that

(ad)q = adq = aksq+ntq = akqsantq = (ak)qs(an)tq = (ak)qsetq = (ak)qs

from which <ad> ⊆ <ak> follows. 2

Let G = <a> be cyclic. The first calculation in part c) establishes:

If m,n ∈ Z then m|n implies <am> ⊇ <an>. (1)

Suppose that G = Z. Then it is easy to see

If m,n ∈ Z then m|n if and only if <m> ⊇ <n>. (2)

By part b) of the preceding lemma subgroups of cyclic groups are them-
selves cyclic. There are two types of cyclic groups to consider – finite and
infinite. Infinite cyclic groups are far simpler. There is basically one infinite
cyclic group, namely Z.

Corollary 1 Suppose that G = <a> in an infinite cyclic group.

a) Let `,m ∈ Z. Then a` = am if and only if ` = m.
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b) The function f : Z −→ G defined by f(`) = a` for all ` ∈ Z is an
isomorphism.

Proof: Suppose that a` = am. If ` 6= m then G is finite by part a) of
Lemma 1, a contradiction. Therefore ` = m. Of course ` = m implies
a` = am. We have established part a). That f is a homomorphism follows
from the calculation

f(` + m) = a`+m = a`am = f(`)f(m)

for all `,m ∈ Z. Since all elements of G have the form a` for some ` ∈ Z the
function f is onto. Suppose that `,m ∈ Z and f(`) = f(m). Then a` = am

which means ` = m by part a). Therefore f is one-one. 2

The finite case is much more complicated and interesting. The structure
of a finite cyclic group is very closely related to the numerical properties of
its order.

Theorem 1 Suppose that G = <a> be a finite cyclic group of order n.

a) G = {e, a, . . . , an−1} and n = |a|. In particular an = e.

b) Let `,m ∈ Z. Then a` = am if and only if n divides `−m. In particular
n is the smallest of the positive integers m such that am = e.

c) Let H be a subgroup of G. Then |H| divides n.

d) Suppose that m is a positive integer which divides n. Then G has a
unique subgroup H of order m. Furthermore H = <an/m> and n/m is
the least positive integer ` such that a` ∈ H.

e) Let k ∈ Z and d be the greatest common divisor of k and n. Then
<ak> = <ad> and has order n/d. In particular d = n/|H|.

f) The generators of G are ak, where 1 ≤ k ≤ n and k, n are relatively
prime.

Proof: Since G is finite there must be a repetition in the sequence

e = a0, a = a1, a2, a3, . . . .

4



Therefore there is a positive integer k such that ak is one of its predecessors
e, a, . . . , ak−1. By the Well-Ordering Principle there is a smallest such positive
integer which we call m. Thus

e, a, . . . , am−1

are distinct and am = a` for some 0 ≤ ` < m. In particular m ≤ |G| = n. As
m− ` ≥ 1, by part a) of Lemma 1 we conclude that G = {e, a, . . . , am−`−1}.
In particular n ≤ m−`. Combining inequalities we have m ≤ n ≤ m−` ≤ m
which means m = n and ` = 0. In particular an = am = a` = a0 = e. We
have shown part a).

As for part b), observe that anq+m = anqam = (an)qam = eqam = am for
all q,m ∈ Z by part a). Consequently if n divides ` − m then a` = am.
To show the converse we need only observe that H = {k ∈ Z | ak = e} is
a subgroup of Z which is generated by n; see Proposition 1 and part a) of
Lemma 1. We have shown part b).

We prove parts c)–e) together. Let k ∈ Z and H = <ak>. By part b)
of Lemma 1 all subgroups of G have this form. Let d = gcd(k, n) be the
greatest common divisor of k and n. Then H = <ak> = <ad> by part c) of
Lemma 1.

Since d is a positive divisor of n necessarily 0 < n − d < n. Thus
e, ad, . . . , (ad)((n/d)−1) = an−d are distinct by part a). Since (ad)n/d = an =
e by the same, we use part a) of Lemma 1 to conclude that <ad> =
{e, ad, . . . , (ad)(n/d)−1} and has order n/d. Thus: |H| = n/d divides n,

d = gcd(k, n) = n/|H|, and H = <ak> = <an/|H|>. (3)

Now suppose that ` is a positive integer and a` ∈ H. Then <a`> ⊆ H.
This inclusion together with (3) implies

` ≥ gcd(`, n) = n/|<a`>| ≥ n/|H|.

Our proof of parts c)–e) is complete. Part f) follows by part a) and (3). 2

Suppose that G = <a> is a finite cyclic group of order n. Then the
subgroups of G are cyclic. Observe that

{positive divisors of n} ←→ {subgroups of G} (4)
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given by
d 7→ <an/d>

is a bijective correspondence. Note that <an/d> has order d.
The number of generators of G is φ(n), where φ(n) is the number of

integers k in the range 1 ≤ k ≤ n which are relatively prime to n. The
function φ : N −→ N, where N = {1, 2, 3, . . .}, is called the Euler φ-function.
As a consequence of the theorem:

Corollary 2 Let n be a positive integer. Then
∑

d|n
φ(d) = n.

Proof: Let G = <a> be a cyclic group of order n. (There is such a group,
namely Zn.) We define a relation on G by x ∼ y if and only if <x> = <y>.
Since “equals” = is an equivalence relation ∼ is also. For x ∈ G note that the
equivalence class [x] is the set of all generators of the cyclic subgroup <x>
of G. The reader is left with the exercise of showing that the assignment
[x] 7→ <x> determines a well-defined bijection between the set of equivalence
classes of G and the set of cyclic subgroups of G. (Well-defined means that
if [x] = [y] then <x> = <y>.) Observe that this bijective correspondence
holds for any group. Since the number of generators of <x> is φ(|<x>|) by
part f) of Theorem 1, using the bijective correspondence described by (4),
we see that ∑

d|n
φ(d) =

∑

d|n
|[an/d]| = |G| = n.

2

Let us apply the theorem to a cyclic group G = <a> of order 15.
The divisors of 15 are 1, 3, 5, 15. Therefore G has 4 subgroups. Since
1, 2, 4, 7, 8, 11, 13, 14 lists the integers k such that 1 ≤ k ≤ 15 which are
relatively prime to 15 it follows that G has 8 generators:

a, a2, a4, a7, a8 = a−7, a11 = a−4, a13 = a−2, and a14 = a−1.

The subgroups of G are

<a15> = <e> = {e},

<a15/3> = <a5> = {e, a5, a10},
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<a15/5> = <a3> = {e, a3, a6, a9, a12},
and

<a15/15> = <a1> = G.

Now suppose that G = <a> is cyclic of order 30 and let H be the
subgroup of G of order 10. Then

H = <a30/10> = <a3> = {e, a3, a6, a9, a12, a15, a18, a21, a25, a27}.
Since the divisors of 10 are 1, 2, 5, 10 it follows that H has 4 subgroups. These
are

<(a3)10/1> = <a30> = {e},
<(a3)10/2> = <a15> = {e, a15},

<(a3)10/5> = <a6> = {e, a6, a12, a18, a24},
and

<(a3)10/10> = <a3> = H.

What are the generators of H? Since the integers k which are relatively
prime to 10 and satisfy 1 ≤ k ≤ 10 are 1, 3, 7, 9, it follows that

(a3)1 = a, (a3)3 = a9, (a3)7 = a21, (a3)9 = a27

are the generators of H.
A good exercise would be to reformulate the preceding calculations for

the (additive) cyclic groups Z15 and Z30 or orders 15 and 30 respectively.
We end by noting that just as there is essentially one infinite cyclic group,

namely Z, for each positive integer n there is essentially one cyclic group of
order n, namely Zn. We denote its binary operation of Zn by ⊕. As a set

Zn = {0, 1, . . . , n− 1}.
Let `,m ∈ Zn. By the Division Algorithm `+m = nq+r, where q, r ∈ Z and
0 ≤ r < n, and the integers q, r are uniquely determined by these conditions.
By definition `⊕m = r.

Suppose that G = <a> ia a cyclic group of order n. Then f : Zn −→ G
defined by f(`) = a` for all ` ∈ Zn is a set bijection by part a) of Theorem
1. By the same an = e. Let `,m ∈ Zn and write ` + m = nq + r as above.
The calculation

f(`)f(m) = a`am = a`+m = anq+r = (an)qar = eqar = ar = f(r) = f(`⊕m)

shows that f is in fact an isomorphism.
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