Notes on Cyclic Groups

09/13/06 Radford
(revision of same dated 10/07/03)
\boldsymbol{Z} denotes the group of integers under addition.

Let G be a group and $a \in G$. We define the power a^{n} for non-negative integers n inductively as follows: $a^{0}=e$ and $a^{n}=a a^{n-1}$ for $n>0$. If n is a negative integer then $-n$ is positive and we set $a^{n}=\left(a^{-1}\right)^{-n}$ in this case. In this way a^{n} is defined for all integers n.

The familiar exponent laws

$$
a^{m+n}=a^{m} a^{n}, \quad\left(a^{m}\right)^{n}=a^{m n}
$$

for all $m, n \in \boldsymbol{Z}$ and

$$
\left(a^{n}\right)^{-1}=a^{-n}
$$

for all $n \in \boldsymbol{Z}$ hold. If $b \in G$ and $a b=b a$ then $(a b)^{n}=a^{n} b^{n}$ for all $n \in \boldsymbol{Z}$. For the fourth exponent law to hold necessarily $a b=b a$. The proofs of the exponent laws are good exercises in induction. As a consequence of the first and third exponent laws

$$
<a>=\left\{a^{k} \mid k \in \boldsymbol{Z}\right\}
$$

is a (abelian) subgroup of G. From this point on we will use the exponent laws without particular reference.

The group G is cyclic if $G=\langle a\rangle$ for some $a \in G$ in which case a is said to generate G. Since $\langle a\rangle=\left\langle a^{-1}\right\rangle$ for all $a \in G$, if G is cyclic and generated by a then G is also generated by a^{-1}.

Suppose that the binary operation of G is written additively. Then the notation $n \cdot a$, or $n a$, is used instead of a^{n} and $n \cdot a$ is referred to as a multiple. The definitions of multiples read $0 \cdot a=0$ and $n \cdot a=a+(n-1) \cdot a$ for all $n>0$. If $n<0$ we set $n \cdot a=(-n) \cdot(-a)$. When $G=\mathbf{Z}$ observe that $n \cdot a=n a$ is the product of the integers n and a.

The study of cyclic groups is based on one particular case.

Proposition 1 Every subgroup of \boldsymbol{Z} is cyclic. In particular, if H is a nonzero subgroup of \boldsymbol{Z} then H contains a positive integer and is generated by the smallest positive integer in H.

Proof: The zero subgroup (0) := $<0>=\{0\}$ is cyclic. We may assume that $H \neq(0)$. In this case there is a non-zero integer k in H. Since H is a subgroup of \boldsymbol{Z} the additive inverse $-k$ must be in H as well. One of k and $-k$ is positive. Therefore H contains a positive integer.

Let S be the set of all positive integers in H. We have shown $S \neq \emptyset$. By the Well-Ordering Principle there is a smallest positive integer n in S. Since $n \in H$ the cyclic subgroup $\langle n\rangle=\{q n \mid q \in \boldsymbol{Z}\}$ of \boldsymbol{Z} is a subset of H. We wish to show that $H=\langle n\rangle$. Since $\langle n\rangle \subseteq H$ we need only show that $H \subseteq<n>$.

Suppose that $a \in H$. By the Division Algorithm $a=q n+r$ for some $q, r \in \boldsymbol{Z}$, where $0 \leq r<n$. Since $r=a+(-q) n \in H$, and n is the smallest positive integer in H, necessarily $r=0$. Therefore $a=q n \in\langle n\rangle$ which establishes $H \subseteq\langle n\rangle$.

The following technical lemma will be of great help to us in the proof of the theorem of this section.

Lemma 1 Let $G=\langle a\rangle$ be a cyclic group generated by a.
a) Suppose that $a^{\ell}=a^{m}$ for some integers $\ell<m$. Then $n=m-\ell>0$ and $G=\left\{e, a, \ldots, a^{n-1}\right\}$.
b) Let H be a non-trivial subgroup of G. Then $a^{k} \in H$ for some positive integer k and furthermore $H=\left\langle a^{n}\right\rangle$, where n is the smallest such integer.
c) Suppose that n is a positive integer and $a^{n}=e$. Let $k \in \boldsymbol{Z}$ and d be the greatest common divisor of k and n. Then $\left\langle a^{k}\right\rangle=\left\langle a^{d}\right\rangle$.

Proof: We first show part a). Since $a^{\ell} e=a^{\ell}=a^{m}=a^{\ell} a^{m-\ell}$, by cancellation $e=a^{m-\ell}=a^{n}$. Let $g \in G$. Then $g=a^{k}$ for some $k \in \boldsymbol{Z}$. By the Division Algorithm $k=n q+r$, where $q, r \in \boldsymbol{Z}$ and $0 \leq r<n$. Since $0 \leq r \leq n-1$ we have

$$
g=a^{k}=a^{n q+r}=a^{n q} a^{r}=\left(a^{n}\right)^{q} a^{r}=e^{q} a^{r}=a^{r} \in\left\{e, a, \ldots, a^{n-1}\right\} .
$$

Thus $G \subseteq\left\{e, a, \ldots, a^{n-1}\right\}$. As $\left\{e, a, \ldots, a^{n-1}\right\} \subseteq G$ the proof of part a) is complete.

To show part b) let $\mathcal{H}=\left\{k \in \boldsymbol{Z} \mid a^{k} \in H\right\}$ be the set of exponents of powers of a which lie in H. Since H is a subgroup of G it is easy to see that \mathcal{H} is a subgroup of \boldsymbol{Z}. Since $H \neq(e)$ it follows that $\mathcal{H} \neq(0)$. Thus $\mathcal{H}=\langle n\rangle$, where n is the smallest positive integer in \mathcal{H}, by Proposition 1. Since every element of G is a power of a we have

$$
\left.H=\left\{a^{k} \mid k \in \mathcal{H}\right\}=\left\{a^{q n} \mid q \in \boldsymbol{Z}\right\}=\left\{\left(a^{n}\right)^{q} \mid q \in \boldsymbol{Z}\right\}=<a^{n}\right\rangle
$$

and part b) follows.
As for part c), we first note that $k=d m$ for some $m \in \boldsymbol{Z}$ since d divides k. Therefore

$$
<a^{k}>=\left\{\left(a^{k}\right)^{q} \mid q \in \boldsymbol{Z}\right\}=\left\{\left(a^{d m}\right)^{q} \mid q \in \boldsymbol{Z}\right\}=\left\{\left(a^{d}\right)^{m q} \mid q \in \boldsymbol{Z}\right\} \subseteq<a^{d}>
$$

Thus $\left\langle a^{k}\right\rangle \subseteq\left\langle a^{d}\right\rangle$. To show that $\left\langle a^{k}\right\rangle=\left\langle a^{d}\right\rangle$ we need only show that $\left.\left.<a^{d}\right\rangle \subseteq<a^{k}\right\rangle$.

Since d is the greatest common divisor of k and n we may write $d=k s+n t$ for some $s, t \in \boldsymbol{Z}$. Let $q \in \boldsymbol{Z}$. Since $d q=k s q+n t q$ we note that

$$
\left(a^{d}\right)^{q}=a^{d q}=a^{k s q+n t q}=a^{k q s} a^{n t q}=\left(a^{k}\right)^{q s}\left(a^{n}\right)^{t q}=\left(a^{k}\right)^{q s} e^{t q}=\left(a^{k}\right)^{q s}
$$

from which $\left.\left\langle a^{d}\right\rangle \subseteq<a^{k}\right\rangle$ follows.
Let $G=\langle a\rangle$ be cyclic. The first calculation in part c) establishes:

$$
\begin{equation*}
\text { If } m, n \in \mathbf{Z} \text { then } m \mid n \text { implies }<a^{m}>\supseteq<a^{n}> \tag{1}
\end{equation*}
$$

Suppose that $G=\mathbf{Z}$. Then it is easy to see

$$
\begin{equation*}
\text { If } m, n \in \mathbf{Z} \text { then } m \mid n \text { if and only if }\langle m>\supseteq<n> \tag{2}
\end{equation*}
$$

By part b) of the preceding lemma subgroups of cyclic groups are themselves cyclic. There are two types of cyclic groups to consider - finite and infinite. Infinite cyclic groups are far simpler. There is basically one infinite cyclic group, namely \mathbf{Z}.

Corollary 1 Suppose that $G=\langle a\rangle$ in an infinite cyclic group.
a) Let $\ell, m \in \boldsymbol{Z}$. Then $a^{\ell}=a^{m}$ if and only if $\ell=m$.
b) The function $f: \mathbf{Z} \longrightarrow G$ defined by $f(\ell)=a^{\ell}$ for all $\ell \in \mathbf{Z}$ is an isomorphism.

Proof: Suppose that $a^{\ell}=a^{m}$. If $\ell \neq m$ then G is finite by part a) of Lemma 1, a contradiction. Therefore $\ell=m$. Of course $\ell=m$ implies $a^{\ell}=a^{m}$. We have established part a). That f is a homomorphism follows from the calculation

$$
f(\ell+m)=a^{\ell+m}=a^{\ell} a^{m}=f(\ell) f(m)
$$

for all $\ell, m \in \mathbf{Z}$. Since all elements of G have the form a^{ℓ} for some $\ell \in \mathbf{Z}$ the function f is onto. Suppose that $\ell, m \in \mathbf{Z}$ and $f(\ell)=f(m)$. Then $a^{\ell}=a^{m}$ which means $\ell=m$ by part a). Therefore f is one-one.

The finite case is much more complicated and interesting. The structure of a finite cyclic group is very closely related to the numerical properties of its order.

Theorem 1 Suppose that $G=\langle a\rangle$ be a finite cyclic group of order n.
a) $G=\left\{e, a, \ldots, a^{n-1}\right\}$ and $n=|a|$. In particular $a^{n}=e$.
b) Let $\ell, m \in \boldsymbol{Z}$. Then $a^{\ell}=a^{m}$ if and only if n divides $\ell-m$. In particular n is the smallest of the positive integers m such that $a^{m}=e$.
c) Let H be a subgroup of G. Then $|H|$ divides n.
d) Suppose that m is a positive integer which divides n. Then G has a unique subgroup H of order m. Furthermore $H=\left\langle a^{n / m}\right\rangle$ and n / m is the least positive integer ℓ such that $a^{\ell} \in H$.
e) Let $k \in \boldsymbol{Z}$ and d be the greatest common divisor of k and n. Then $\left.<a^{k}\right\rangle=\left\langle a^{d}\right\rangle$ and has order n / d. In particular $d=n /|H|$.
f) The generators of G are a^{k}, where $1 \leq k \leq n$ and k, n are relatively prime.

Proof: Since G is finite there must be a repetition in the sequence

$$
e=a^{0}, a=a^{1}, a^{2}, a^{3}, \ldots .
$$

Therefore there is a positive integer k such that a^{k} is one of its predecessors e, a, \ldots, a^{k-1}. By the Well-Ordering Principle there is a smallest such positive integer which we call m. Thus

$$
e, a, \ldots, a^{m-1}
$$

are distinct and $a^{m}=a^{\ell}$ for some $0 \leq \ell<m$. In particular $m \leq|G|=n$. As $m-\ell \geq 1$, by part a) of Lemma 1 we conclude that $G=\left\{e, a, \ldots, a^{m-\ell-1}\right\}$. In particular $n \leq m-\ell$. Combining inequalities we have $m \leq n \leq m-\ell \leq m$ which means $m=n$ and $\ell=0$. In particular $a^{n}=a^{m}=a^{\ell}=a^{0}=e$. We have shown part a).

As for part b), observe that $a^{n q+m}=a^{n q} a^{m}=\left(a^{n}\right)^{q} a^{m}=e^{q} a^{m}=a^{m}$ for all $q, m \in \boldsymbol{Z}$ by part a). Consequently if n divides $\ell-m$ then $a^{\ell}=a^{m}$. To show the converse we need only observe that $\mathcal{H}=\left\{k \in \boldsymbol{Z} \mid a^{k}=e\right\}$ is a subgroup of \boldsymbol{Z} which is generated by n; see Proposition 1 and part a) of Lemma 1. We have shown part b).

We prove parts c)-e) together. Let $k \in \boldsymbol{Z}$ and $H=\left\langle a^{k}\right\rangle$. By part b) of Lemma 1 all subgroups of G have this form. Let $d=\operatorname{gcd}(k, n)$ be the greatest common divisor of k and n. Then $H=\left\langle a^{k}\right\rangle=\left\langle a^{d}\right\rangle$ by part c) of Lemma 1.

Since d is a positive divisor of n necessarily $0<n-d<n$. Thus $e, a^{d}, \ldots,\left(a^{d}\right)^{(n / d)-1)}=a^{n-d}$ are distinct by part a). Since $\left(a^{d}\right)^{n / d}=a^{n}=$ e by the same, we use part a) of Lemma 1 to conclude that $\left\langle a^{d}\right\rangle=$ $\left\{e, a^{d}, \ldots,\left(a^{d}\right)^{(n / d)-1}\right\}$ and has order n / d. Thus: $|H|=n / d$ divides n,

$$
\begin{equation*}
d=\operatorname{gcd}(k, n)=n /|H|, \quad \text { and } \quad H=\left\langle a^{k}\right\rangle=\left\langle a^{n /|H|}\right\rangle . \tag{3}
\end{equation*}
$$

Now suppose that ℓ is a positive integer and $a^{\ell} \in H$. Then $\left\langle a^{\ell}\right\rangle \subseteq H$. This inclusion together with (3) implies

$$
\ell \geq \operatorname{gcd}(\ell, n)=n /\left|<a^{\ell}>|\geq n /|H| .\right.
$$

Our proof of parts c)-e) is complete. Part f) follows by part a) and (3).
Suppose that $G=\langle a\rangle$ is a finite cyclic group of order n. Then the subgroups of G are cyclic. Observe that

$$
\begin{equation*}
\{\text { positive divisors of } n\} \longleftrightarrow\{\text { subgroups of } G\} \tag{4}
\end{equation*}
$$

given by

$$
d \mapsto<a^{n / d}>
$$

is a bijective correspondence. Note that $\left\langle a^{n / d}\right\rangle$ has order d.
The number of generators of G is $\phi(n)$, where $\phi(n)$ is the number of integers k in the range $1 \leq k \leq n$ which are relatively prime to n. The function $\phi: \mathbf{N} \longrightarrow \mathbf{N}$, where $\mathbf{N}=\{1,2,3, \ldots\}$, is called the Euler ϕ-function. As a consequence of the theorem:

Corollary 2 Let n be a positive integer. Then $\sum_{d \mid n} \phi(d)=n$.

Proof: Let $G=<a\rangle$ be a cyclic group of order n. (There is such a group, namely \boldsymbol{Z}_{n}.) We define a relation on G by $x \sim y$ if and only if $\left.\langle x\rangle=<y\right\rangle$. Since "equals" $=$ is an equivalence relation \sim is also. For $x \in G$ note that the equivalence class $[x]$ is the set of all generators of the cyclic subgroup $<x>$ of G. The reader is left with the exercise of showing that the assignment $[x] \mapsto\langle x\rangle$ determines a well-defined bijection between the set of equivalence classes of G and the set of cyclic subgroups of G. (Well-defined means that if $[x]=[y]$ then $\langle x\rangle=<y>$.) Observe that this bijective correspondence holds for any group. Since the number of generators of $<x>$ is $\phi(|<x>|)$ by part f) of Theorem 1, using the bijective correspondence described by (4), we see that

$$
\sum_{d \mid n} \phi(d)=\sum_{d \mid n}\left|\left[a^{n / d}\right]\right|=|G|=n .
$$

Let us apply the theorem to a cyclic group $G=<a>$ of order 15 . The divisors of 15 are $1,3,5,15$. Therefore G has 4 subgroups. Since $1,2,4,7,8,11,13,14$ lists the integers k such that $1 \leq k \leq 15$ which are relatively prime to 15 it follows that G has 8 generators:

$$
a, a^{2}, a^{4}, a^{7}, a^{8}=a^{-7}, a^{11}=a^{-4}, a^{13}=a^{-2}, \text { and } a^{14}=a^{-1}
$$

The subgroups of G are

$$
\begin{gathered}
<a^{15}>=<e>=\{e\} \\
<a^{15 / 3}>=<a^{5}>=\left\{e, a^{5}, a^{10}\right\}
\end{gathered}
$$

$$
<a^{15 / 5}>=<a^{3}>=\left\{e, a^{3}, a^{6}, a^{9}, a^{12}\right\}
$$

and

$$
<a^{15 / 15}>=<a^{1}>=G
$$

Now suppose that $G=\langle a\rangle$ is cyclic of order 30 and let H be the subgroup of G of order 10. Then

$$
\left.H=\left\langle a^{30 / 10}\right\rangle=<a^{3}\right\rangle=\left\{e, a^{3}, a^{6}, a^{9}, a^{12}, a^{15}, a^{18}, a^{21}, a^{25}, a^{27}\right\} .
$$

Since the divisors of 10 are $1,2,5,10$ it follows that H has 4 subgroups. These are

$$
\begin{gathered}
<\left(a^{3}\right)^{10 / 1}>=<a^{30}>=\{e\}, \\
<\left(a^{3}\right)^{10 / 2}>=<a^{15}>=\left\{e, a^{15}\right\}, \\
<\left(a^{3}\right)^{10 / 5}>=<a^{6}>=\left\{e, a^{6}, a^{12}, a^{18}, a^{24}\right\},
\end{gathered}
$$

and

$$
<\left(a^{3}\right)^{10 / 10}>=<a^{3}>=H
$$

What are the generators of H ? Since the integers k which are relatively prime to 10 and satisfy $1 \leq k \leq 10$ are $1,3,7,9$, it follows that

$$
\left(a^{3}\right)^{1}=a,\left(a^{3}\right)^{3}=a^{9},\left(a^{3}\right)^{7}=a^{21},\left(a^{3}\right)^{9}=a^{27}
$$

are the generators of H.
A good exercise would be to reformulate the preceding calculations for the (additive) cyclic groups \boldsymbol{Z}_{15} and \boldsymbol{Z}_{30} or orders 15 and 30 respectively.

We end by noting that just as there is essentially one infinite cyclic group, namely \mathbf{Z}, for each positive integer n there is essentially one cyclic group of order n, namely \mathbf{Z}_{n}. We denote its binary operation of \mathbf{Z}_{n} by \oplus. As a set

$$
\mathbf{Z}_{n}=\{0,1, \ldots, n-1\} .
$$

Let $\ell, m \in \mathbf{Z}_{n}$. By the Division Algorithm $\ell+m=n q+r$, where $q, r \in \mathbf{Z}$ and $0 \leq r<n$, and the integers q, r are uniquely determined by these conditions. By definition $\ell \oplus m=r$.

Suppose that $G=\langle a\rangle$ ia a cyclic group of order n. Then $f: \mathbf{Z}_{n} \longrightarrow G$ defined by $f(\ell)=a^{\ell}$ for all $\ell \in \mathbf{Z}_{n}$ is a set bijection by part a) of Theorem 1. By the same $a^{n}=e$. Let $\ell, m \in \mathbf{Z}_{n}$ and write $\ell+m=n q+r$ as above. The calculation

$$
f(\ell) f(m)=a^{\ell} a^{m}=a^{\ell+m}=a^{n q+r}=\left(a^{n}\right)^{q} a^{r}=e^{q} a^{r}=a^{r}=f(r)=f(\ell \oplus m)
$$

shows that f is in fact an isomorphism.

