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Let f : X −→ Y be a function. For a subset Z of X the subset

f(Z) = {f(z) | z ∈ Z}

of Y is the image of Z under f . For a subset W of Y the subset

f−1(W ) = {x ∈ X | f(x) ∈ W}

of X is the pre-image of W under f .

1 Fibers

For y ∈ Y the subset

f−1(y) = {x ∈ X | f(x) = y}

of X is the fiber of f over y. By definition f−1(y) = f−1({y}). Observe that
f−1(y) = ∅ if y 6∈ Im f .

Let y, y′ ∈ Y . If x ∈ f−1(y)∩f−1(y′) then y = f(x) = y′ which means
f−1(y) = f−1(y′). Therefore

f−1(y)∩f−1(y′) = ∅ or f−1(y) = f−1(y′) (1)

for all y, y′ ∈ Y which implies the set X/f of non-empty fibers of f partition
X. Let π : X −→ X/f be the function defined by π(x) = f−1(f(x)) for all
x ∈ X. The functions π and f , and the sets X/f and Y , are closely related.

Proposition 1 Let f : X −→ Y be a surjective function. Then there is a
unique bijection F : X/f −→ Y which satisfies F◦π = f .
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Proof: Uniqueness. Suppose F, F ′ : X/f −→ Y satisfy F◦π = F ′◦π. Since
π is surjective and F (π(x)) = F ′(π(x)) for all x ∈ X necessarily F = F ′.

Existence. The non-empty fibers of f are the sets f−1(f(x)), where x ∈
X. If x, x′ ∈ X and f−1(f(x)) = f−1(f(x′)) then f(x) = f(x′). Thus
F : X/f −→ Y given by F (f−1(f(x))) = f(x) is a well-defined function and
it satisfies F◦π = f . Since f is surjective F is surjective. It is is easy to see
that F is injective. 2

By the proposition the set X/f of fibers of f is in bijective correspondence
with Y when f is surjective. In this case the inverse of F is given by

y 7→ f−1(y)

for all y ∈ Y .
There are some interesting philosophical points which are suggested by

the proposition. Suppose that f is surjective. If one does not distinguish
between sets which are in bijective correspondence, then one does not distin-
guish between X/f and Y . From this point of view Y can be thought of as
resulting from a construction in X, the formation of a partition of X whose
cells are the fibers of f , and f can be thought of as π.

Equivalence relations can be formulated in terms of fibers. First of all,
suppose that f : X −→ Y is any function. Then x ∼ x′ if and only if
f(x) = f(x′) defines an equivalence relation on X since “=” is an equivalence
relation. Thus x ∼ x′ if and only if x′ ∈ f−1(f(x)). In particular [x] =
f−1(f(x)) for all x ∈ X.

Conversely, suppose that X is a non-empty set and ∼ is an equivalence
relation on X. Let X̂ be the set of equivalence classes of the relation and
define π : X −→ X̂ by π(x) = [x] for all x ∈ X. Then x ∼ x′ if and
only if π(x) = π(x′) which means x ∼ x′ if and only if x′ ∈ π−1([x]). Thus
[x] = π−1([x]) for all x ∈ X and X̂ = X/π.

2 Subgroups Revisited

Let G be a group. Here we describe useful necessary and sufficient conditions
for a non-empty subset of G to be a subgroup in terms of set multiplication
and sets of inverses. For non-empty subsets S, T of G let

ST = {st | s ∈ S, t ∈ T} and S−1 = {s−1 | s ∈ S}.
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Lemma 1 Let G be a group and H ⊆ G. Then the following are equivalent:

(a) H ≤ G.

(b) H 6= ∅, HH = H, and H−1 = H.

(c) H 6= ∅, HH ⊆ H, and H−1 ⊆ H.

Proof: Suppose that H ≤ G. Then HH ⊆ H and H−1 ⊆ H. Since e ∈ H,
H 6= ∅, and h = he for all h ∈ H from which H ⊆ HH follows. In particular
HH = H. Since h = (h−1)−1 for all h ∈ H, from H−1 ⊆ H we deduce
H = (H−1)−1 ⊆ H−1 as well. Therefore H−1 = H. We have shown part (a)
implies part (b).

Part (b) implies part (c) since sets are equal if and only if they contain
each other. Suppose that the hypothesis of (c) holds and let a, b ∈ H. Then
ab−1 ∈ HH−1 ⊆ HH ⊆ H which implies ab−1 ∈ H. Since H 6= ∅ it follows
that H ≤ G.

2

3 Homomorphisms

We want to apply our discussion of fibers to homomorphisms. First some
basic properties which homomorphisms satisfy.

Proposition 2 Let f : G −→ G′ be a homomorphism. Then:

(a) f(e) = e′

(b) f(a−1) = f(a)−1 for all a ∈ G.

(c) f(an) = f(a)n for all a ∈ G and n ∈ Z.

(d) If H ≤ G then f(H) ≤ G′.

(e) If H ′ ≤ G′ then f−1(H ′) ≤ G.
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Proof: f(e) = f(e2) = f(e)2 which means that f(e) is a solution to x2 = x
in G′. In any group this equation has a unique solution, namely the neural
element. We have established part (a). Let a ∈ G. Since f is a homomor-
phism e′ = f(e) = f(aa−1) = f(a)f(a−1) by part (a). This is enough to show
that f(a−1) = f(a)−1 and part (b) follows. For n ≥ 0, part (c) follows by
part (a) and induction on n. Suppose n < 0. Then −n > 0. Using part (b)
and part (c) for non-negative integers we have

f(an) = f((a−1)−n) = f(a−1)−n = (f(a)−1)−n = f(a)n

which completes the argument for part (c). Parts (d) and (e) are left as
exercises. 2

For a homomorphism f : G −→ G′ the fiber f−1(e′) = f−1({e′}) is called
the kernel of f and is denoted by Ker f . Thus

Ker f = {a ∈ G | f(a) = e′}.

This particular fiber of f relates to the others in special ways. For a ∈ G
and a non-empty subset S of G we let

aS = {as | s ∈ S} and Sa = {sa | s ∈ S}.

Proposition 3 Let f : G −→ G′ be a homomorphism. Then:

(a) Ker f ≤ G.

(b) Let N = Ker f , let a ∈ G, and b = f(a). Then f−1(b) = aN = Na for
all a ∈ G.

Proof: To show Ker f ≤ G let a, b ∈ Ker f . Then f(ab−1) = f(a)f(b−1) =
f(a)f(b)−1 = e′e′−1 = e′ by part (b) of Proposition 2. Thus ab−1 ∈ Ker f .
Since f(e) = e′ by part (a) of the same, it follows that e ∈ Ker f which means
Ker f 6= ∅. Therefore Ker f ≤ G.

Assume the hypothesis of part (b). We first show that aN = f−1(b). Let
n ∈ N . Then f(an) = f(a)f(n) = be′ = b which shows that an ∈ f−1(b).
Therefore aN ⊆ f−1(b). To show the other inclusion, let x ∈ f−1(b). Then
f(x) = b = f(a) which means that f(a−1x) = f(a)−1f(x) = b−1b = e′ by
part (a) of Proposition 2. We have shown that a−1x ∈ N which implies
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x = a(a−1x) ∈ aN . Therefore f−1(b) ⊆ aN from which f−1(b) = aN follows.
To show that f−1(b) = Na also, we need only observe that f : Gop −→ G′op is
a homomorphism and use our preceding calculation to deduce Na = a·opN =
f−1(b). 2

A subgroup H of a group G is a normal subgroup of G if aH = Ha for all
a ∈ G. In this case we write H £ G. Kernels of homomorphisms are normal
by part (b) of Proposition 3.

Corollary 1 Let f : G −→ G′ be a homomorphism. Then the following are
equivalent:

(a) f is injective.

(b) Ker f = (e).

Proof: Any set function f : X −→ Y is injective if and only if each of its
fibers have at most one element. Thus the corollary follows by part (b) of
the preceding proposition. 2

Now let f : G −→ G′ be a surjective homomorphism and F : G/f −→ G′

be the set bijection defined at the end of Section 1. Then F (f−1(a′)) = a′

for all a′ ∈ G′. There is a unique group structure (G/f, •) defined on G/f
such that F is an isomorphism. Let a′, b′ ∈ G′. Since F is injective, the
calculation

F (f−1(a′)•f−1(b′)) = F (f−1(a′))F (f−1(b′)) = a′b′ = F (f−1(a′b′))

shows that
f−1(a′)•f−1(b′) = f−1(a′b′). (2)

Now let xN ∈ G/N . Then xN = f−1(f(x)) by part (b) of Proposition 3.
Let a, b ∈ G. Using (2) we have

aN•bN = f−1(f(a)f(b)) = f−1(f(ab)) = abN.

On the other hand the product of sets (aN)(bN) = a(Nb)N = a(bN)N =
abNN = abN by part (b) of Proposition 1 and Lemma 1. Thus

aN•bN = abN = (aN)(bN) (3)

for all a, b ∈ G; in particular the multiplication of (G/f, •) is set multipli-
cation. Combining these observations with Propositions 1 and 3 we have a
version of the First Isomorphism Theorem for groups:
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Theorem 1 Suppose that f : G −→ G′ is a surjective homomorphism and
let N = Ker f . Then:

(a) N £ G and G/f is the set of left cosets of N in G.

(b) G/f is a group under set multiplication and π : G −→ G/f defined by
π(a) = aN for all a ∈ G is a surjective homomorphism.

(c) There a unique isomorphism F : G/f −→ G′ which satisfies F◦π = f .

2

4 Quotient Groups

In the preceding section we showed that kernels are normal subgroups. Let G
be a group, N £G, and let G/N denote the set of left (or equivalently right)
cosets of N in G. We will show that G/N is group under set multiplication
and that there is a homomorphism π : G −→ G/N with N = Ker π. Thus
kernels and normal subgroups are one in the same. When f : G −→ G′ is a
homomorphism and N = Ker f then G/f = G/N as sets.

Theorem 2 Let G be a group and suppose that N £ G. Then:

(a) G/N is a group under set multiplication.

(b) Let π : G −→ G/N be defined by π(a) = aN for all a ∈ G. Then π is
a homomorphism, Ker π = N , and G/N = G/π.

Proof: The elements of G/N have the form aN where a ∈ G. Let aN, bN ∈
G/N . In what follows we use Lemma 1 without particular reference.

The set multiplication calculation

(aN)(bN) = a(Nb)N = a(bN)N = abNN = abN

shows that the set product (aN)(bN) ∈ G/N . Associativity in G/N follows
directly from associativity in G. The neutral element of G/N is N = eN
since

(aN)N = aNN = aN and N(aN) = NaN = aNN = aN.
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Using various descriptions of the set of inverses (aN)−1 = N−1a−1 = Na−1 =
a−1N we have (aN)−1 = a−1N ,

(aN)(aN)−1 = (Na)(a−1N) = Naa−1N = NN = N

and
(aN)−1(aN) = (Na−1)(aN) = Na−1aN = NN = N.

Therefore (aN)−1 ∈ G/N and is a two-sided inverse for aN . We have shown
part (a).

That π is a homomorphism and Ker π = N is easy to see. That G/N =
G/π now follows by part (b) of Proposition 3. 2

5 Normal Subgroups

Let G be group and H ≤ G. The condition aH = Ha for all a ∈ G, that is
H £ G, is significant; see Proposition 3.

Theorem 3 Let G be group and H ≤ G. Then the following are equivalent:

(a) The set of left cosets of H is the set of right cosets of H.

(b) For all a ∈ G there exists a b ∈ G such that aH = Hb.

(c) aH = Ha for all a ∈ G.

(d) aHa−1 = H for all a ∈ G.

(e) aHa−1 ⊆ H for all a ∈ G.

(f) aH ⊆ Ha for all a ∈ G.

Proof: Part (a) implies part (b). The set of left cosets of H in G partition
G as does the of right cosets. Suppose these sets are the same and let a ∈ G.
Then the left coset aH is a right coset which has the form Hb for some b ∈ G.

Part (b) implies part (c). Assume part (b) is true and let a ∈ G. Then
aH = Hb for some b ∈ G. Now a = ae ∈ aH implies a ∈ Hb. Since
a = ea ∈ Ha the right cosets Hb,Ha are not disjoint. Therefore Hb = Ha.

Part (c) implies part (d) since aH = Ha implies aHa−1 = Haa−1 = H.
Part (d) implies part (e) since sets are equal if and only if they contain each
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other. Part (e) implies part (f) since aHa−1 ⊆ H implies aH = (aHa−1)a ⊆
(H)a = Ha.

Suppose part (f) is true and let a ∈ G. Then aH ⊆ Ha and a−1H ⊆
Ha−1. From the last equation we deduce

Ha = a(a−1H)a ⊆ a(Ha−1)a = aH.

Therefore aH ⊆ Ha ⊆ aH which means aH = Ha. Thus part (f) implies
part (a). 2

By virtue of the preceding theorem there several ways of describing nor-
mal subgroups.

8


