
Math 516 Fall 2006 Radford

Solution to the Final Examination 12/17/06

Name (PRINT)
(1) Return this exam copy. (2) Write your solutions in your exam booklet. (3) Show your
work. (4) There are eight questions on this exam. (5) Each question counts 25 points. (6)
You are expected to abide by the University’s rules concerning academic honesty.

1. (25 points total) Let G = <a> be a cyclic group of order 55.

(a) (5) How many subgroups does G have?

Solution: 4 subgroups since there are 4 divisors of 55 = 5·11.

(b) (5) Find |a−100|.

Solution: 11, since |a−100| = |a(−100,55)| = |a(−100,5·11)| = |a5| = 55/5 = 11.

(c) (5) Find the number of elements of orders 1, 5, 11, respectively and find the number
of generators of G.

Solution: ϕ(1) = 1, ϕ(5) = 4, ϕ(11) = 10, and ϕ(55) = 55− (ϕ(1)+ϕ(5)+ϕ(11)) =
55− (1 + 4 + 10) = 40.

(d) (5) Which of the elements in the list a20, a21, . . . , a30 are generators of G?

Solution: a21, a23, a24, a26, a27, a28, a29 as ad generates G if and only if (d, |G|) = 1.

(e) (5) List the elements of <a22> in the form a`, where 0 ≤ ` < 55.

Solution: {e, a11, a22, a33, a44} as <a22> = <a(22,55)> = <a11>.

2. (25 points total) Let GL2(R) be the group of invertible 2×2 matrices with real
coefficients under matrix multiplication and let

G = {
(

a 0
c d

)
| ad 6= 0}.

1



(a) (14) Show that G ≤ GL2(R).

Solution: G 6= ∅ as

(
1 0
0 1

)
∈ G. Suppose that

(
a 0
c d

)
,

(
a′ 0
c′ d′

)
∈ G. Then

ad, a′d′ 6= 0; hence a−1d−1, aa′dd′ 6= 0. Thus

(
a 0
c d

) (
a′ 0
c′ d′

)
=

(
aa′ 0
ca′ + dc′ dd′

)
∈ G

and

(
a 0
c d

)−1

=

(
a−1 0
−ca−1d−1 d−1

)
∈ G.

(b) (11) The subgroup H ≤ G of diagonal matrices (c = 0) acts on A = R2 by matrix

multiplication. Find the H-orbits of A and find the stabilizer of

(
0
5

)
.

Solution:

(
a 0
0 d

) (
x
y

)
=

(
ax
dy

)
. Thus the orbits are

{
(

0
0

)
}, {

(
a
0

)
| a 6= 0}, {

(
0
d

)
| d 6= 0}, {

(
a
d

)
| a, d 6= 0}

as these are orbits which partition A. The H-stabilizer of

(
0
5

)
is {

(
a 0
0 1

)
| a 6= 0}.

3. (25 points total) Let p be a prime integer and G a finite-abelian group such that
ap = e for all a ∈ G. Suppose H ≤ G.

(a) (15) Assume a 6∈ H and let K = <a>. Show that HK ≤ G and |HK| = |H||K|
Solution: Since G is commutative, HK = KH and thus HK ≤ G. Since ap =
e 6= a it follows that K = <a> has order p. Since H∩K ≤ H,K by Lagrange’s
Theorem |H∩K| divides both |H| and |K| = p. If |H∩K| = p then a ∈ H∩K = K,
contradiction. Therefore |H∩K| = 1 and |H||K| = |HK||H∩K| = |HK|.

(b) (10) Suppose that H is a maximal proper subgroup of G. Show that |G:H| = p.

Solution: Since H is proper, there is an a ∈ G such that a 6∈ H. Let K = <a>. By
part (a) HK ≤ G and |HK| = |H||K| = |H|p. Since H is maximal, HK = G. Thus
|G| = |HK| = |H|p which implies |G:H| = p.

4. (25 points total) Let G be a finite group of order 3·52·29.

(a) (10) Show that G has a normal subgroup of order 29.

Solution: Let np be the number of Sylow-p subgroups of G. Then n29 = 1 + 29k
for some non-negative integer k, and n29 divides 3·52·29, hence divides 3·52 = 75.
As n29 is among 1, 30, 59, 88, . . . necessarily n29 = 1. This is enough to establish the
normality of a Sylow-29 subgroup N of G.
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(b) (15) Show that G has a subgroup of index 15.

Solution: G has a Sylow-5 subgroup H. Thus H has order 25. Let e = a ∈ H and
consider K = <a>. Then |K| = 5 or |K| = 25. In the latter case K has an element
of order 5 since 5 divides |<a>|. (Also by Cauchy’s Theorem G has an element of
order 5.)

Thus G has a subgroup L of order 5. By Lagrange’s Theorem L∩N = (e). Since
N £ G it follows that LN ≤ G. As |N ||L| = |NL||N∩L| = |NL| we have |G : NL| =
|G|/|NL| = |G|/|N ||L| = (3·52·29)/(5·29) = 15.

5. (25 points total) This question concerns the structure of finite abelian groups.

(a) (5) How many isomorphism types of abelian groups of order 23·74·112 are there?

Solution: The partitions of 3 are 1 + 1 + 1, 2 + 1, 3; the partitions of 4 are 1 + 1 +
1 + 1, 2 + 1 + 1, 2 + 2, 3 + 1, 4, and the partitions of 2 are 1 + 1, 2. Therefore there are
3·5·2 = 30 isomorphism classes of abelian groups order 23·74·112.

(b) (20) List the different isomorphism types of abelian groups of order 53·72·11 as
Zn1× · · ·×Zns , where 1 < ni for all 1 ≤ i ≤ s, in two ways; first where n1, . . . , ns are
prime powers, and secondly where n1|n2| · · · |ns. (In the second case you can express
the ni’s as products.)

Solution: Counting partitions, there are 3·2·1 = 6 types:

Z5×Z5×Z5×Z7×Z7×Z11 ' Z5×Z5·7×Z5·7·11

Z5×Z5×Z5×Z72×Z11 ' Z5×Z5×Z5·72·11

Z5×Z52×Z7×Z7×Z11 ' Z5·7×Z52·7·11

Z5×Z52×Z72×Z11 ' Z5×Z52·72·11

Z53×Z7×Z7×Z11 ' Z7×Z53·7·11

Z53·Z72×Z11 ' Z53·72·11 .

6. (25 points total) Let R = M2(R) be the ring of 2×2 matrices with real coefficients,

let S = {
(

a 0
c d

)
| a, c, d ∈ R}.

(a) (11) Show that S is a subring of R.

Solution: S 6= ∅ the zero matrix belongs to S. Let

(
a 0
c d

)
,

(
a′ 0
c′ d′

)
∈ S. Since

(
a 0
c d

)
−

(
a′ 0
c′ d′

)
=

(
a− a′ 0
c− c′ d− d′

)
∈ S and

(
a 0
c d

) (
a′ 0
c′ d′

)
=

(
aa′ 0
ca′ + dc′ dd′

)
∈ S

it follows that S is a subring of R.
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(b) (8) Show that f : S −→ R defined by f(

(
a 0
c d

)
) = d is a ring homomorphism.

Solution:

f(

(
a 0
c d

)
+

(
a′ 0
c′ d′

)
)

= f(

(
a + a′ 0
c + c′ d + d′

)
)

= d + d′

= f(

(
a 0
c d

)
) + f(

(
a′ 0
c′ d′

)
)

and

f(

(
a 0
c d

) (
a′ 0
c′ d′

)
)

= f(

(
aa′ 0
ca′ + dc′ dd′

)
)

= dd′

= f(

(
a 0
c d

)
)f(

(
a′ 0
c′ d′

)
)

for all

(
a 0
c d

)
,

(
a′ 0
c′ d′

)
∈ S.

(c) (6) Show that the ideal I = Kerf is generated by a single element as a left ideal.

Solution:

(
a 0
c d

) (
1 0
0 0

)
=

(
a 0
c 0

)
for all a, c, d ∈ R. As Kerf consists of the

matrices just described,

(
1 0
0 0

)
is such a generator.

7. (25 points total) Decide whether or not each of the following polynomials

2X2 + 9X + 3, 2X2 + 11X + 3, 3X2 + 9X + 9

is irreducible (a) over Z[X], (b) over Q[X]. Justify your answers.

Solution: We consider each in turn.
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(9) 2X2 + 9X + 3 ∈ Z[X] is irreducible by the Eisenstein Criterion with p = 3. Since it is
primitive, 2X2 + 9X + 3 ∈ Q[X] is irreducible by the Gauss Lemma.

(8) 2X2 + 9X + 3 ∈ Q[X] is irreducible since it has no root in Q. The possible roots
are ±1,±1/2,±3,±3/2. A root must be negative. Show that −1,−3,−1/2,−3/2 are not
roots. Since 2X2 + 9X + 3 is also primitive 2X2 + 9X + 3 ∈ Z[X] is irreducible.

(8) 3X2 + 9X + 9 = 3(x2 + 3X + 3) ∈ Z[X] is reducible since it is the product of non-zero
non-units in Z[X]. Now X2 + 3X + 3 ∈ Z[X] is irreducible by the Eisenstein Criterion
with p = 3. Thus, since 3 is a unit of Q and X2 + 3X + 3 is primitive, it follows that
3X2 + 9X + 9 = 3(X2 + 3X + 3) ∈ Q[X] is irreducible by the Gauss Lemma.

8. (25 points total) Let R be a ring, let M and M ′ be left R-modules, and let Tor(M)
be the set of all elements m ∈ M such that r·m = 0 for some non-zero r ∈ R.

(a) (5) Let f : M −→ M ′ be a map of left R-modules. Show that f(Tor(M)) ⊆ Tor(M ′).

Solution: Let m ∈ Tor(M). Then r·m = 0 for some non-zero r ∈ R. Since
r·f(m) = f(r·m) = f(0) = 0, by definition f(m) ∈ Tor(M).

Now suppose that R is an integral domain.

(b) (10) Show that Tor(M) is a submodule of M .

Solution: First of all Tor(M) 6= ∅ since 0 = 1·0 implies 0 ∈ Tor(M). Suppose
m,n ∈ Tor(M). Then r·m = 0 = s·n for some non-zero r, s ∈ R. Since R is an
integral domain rs 6= 0 and also R is a commutative with unity. Let r′ ∈ R. Then
the calculation

(rs)·(m + r′·n) = (sr)·m + (rr′s)·n = s·(r·m) + (rr′)·(s·n) = s·0 + (rr′)·0 = 0

shows that m + r′·n ∈ Tor(M). Therefore Tor(M) is an R-submodule of M .

(c) (10) Show that Tor(M×M ′) = Tor(M)×Tor(M ′).

Solution: Let (m,m′) ∈ Tor(M×M ′). Then there is a non-zero r ∈ R such that
0 = r·(m,m′) = (r·m, r·m′), or equivalently r·m = 0 = r·m′. Therefore (m,m′) ∈
Tor(M)×Tor(M ′). We have shown Tor(M×M ′) ⊆ Tor(M)×Tor(M ′).

Conversely, suppose (m, m′) ∈ Tor(M)×Tor(M ′). Then there are non-zero r, r′ ∈ R
such that r·m = 0 = r′·m′. Since R is an integral domain rr′ 6= 0. Since

(rr′)·(m,m′) = ((rr′)·m, (rr′)·m′)

= ((r′r)·m, (rr′)·m′)

= (r′·(r·m), r·(r′·m′))

= (r′·0, r·0) = (0, 0)

it follows that Tor(M)×Tor(M ′) ⊆ Tor(M×M ′).
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