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Here we split hairs to see what axioms are used in some basic proofs.
This is a very good exercise in abstract algebra.

Let S be a non-empty set with binary operation S×S −→ S described
by (a, b) 7→ ab. Then e ∈ S is a left identity element for S if ex = x for all
x ∈ S and e′ ∈ S is a right identity element for S if xe′ = x for all x ∈ S. An
identity element for S is an element which is both a left and right identity
element for S.

Suppose further that S is a monoid with identity element e and let a, b, c ∈
S. Then b is a left inverse for a if ba = e and c is a right inverse for a if
ac = e.

Lemma 1 Let S be a non-empty set with a binary operation.

(a) Let e, e′ ∈ S. If e is a left identity element for S and e′ is a right
identity element for S then e = e′. In particular S has at most one
identity element.

Suppose further that S is a monoid with identity element e and let a, b, c ∈
S. Then:

(b) If b is a left inverse for a and c is a right inverse for a then b = c. In
particular a has at most one inverse.

(c) Suppose that a has a left inverse and ab = ac. Then b = c.

(d) Suppose that a has a right inverse and ba = ca. Then b = c.

(e) Suppose that a has a left inverse or a right inverse and a2 = a. Then
a = e.
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Proof: To show part (a) suppose that e (respectively e′) is a left (respec-
tively right) identity element. Since ex = x for all x ∈ S it follows that
ee′ = e′. Likewise, since xe′ = x for all x ∈ S, it follows that ee′ = e.
Therefore e′ = ee′ = e and part (a) follows.

Now suppose S is a monoid with identity element e and a, b, c ∈ S. If
ba = e and ac = e then

b = be = b(ac) = (ba)c = ec = c.

We have established part (b). To show part (c), suppose that a has left
inverse d and ab = ac. Then

b = eb = (da)b = d(ab) = d(ac) = (da)c = ec = c

and part (c) follows. Part (d) follows in a similar manner.
Finally, part (e) follows from parts (c) and (d). For suppose that a2 = a.

Then aa = ae and aa = ea. 2

Part (d) of the preceding lemma follows from part (c) applied to Sop which
we describe below. By means of Sop multiplication on the right is switched
to multiplication on the left.

Suppose that S is a non-empty set with a binary relation. Then we define
its “opposite” binary operation by

a·opb = ba

for all a, b ∈ S and denote S with its opposite binary relation by Sop. Let
a, b, c, e ∈ S. The calculations

a·op(b·opc) = a·op(cb) = (cb)a

and
(a·opb)·opc = (ba)·opc = c(ba)

show that Sop is associative if and only if S is associative. The calculations

a·ope = ea

and
e·opa = ae

2



show that e is an identity element for Sop if and only if e is an identity
element for S. In particular Sop is a monoid with identity element e if and
only if S is a monoid with identity element e.

Suppose that S is a group. Then it is easy to see that Sop is a group. If
a, b ∈ S then b is an inverse of a in Sop if and only if b is an inverse of a in
S; thus a−1 is unambiguous.

Now back to part (d) follows by part (c). Suppose that a has a right
inverse d in S and ba = ca. Then d is a left inverse for a in Sop and a·opb =
a·opc. Assume part (c) holds for all monoids, in particular for Sop. Then
b = c.

A group is a non-empty set with an associative binary operation in which
certain equations can always be solved.

Proposition 1 Suppose that S is a non-empty set with associative binary
operation. Then the following are equivalent:

(a) S is a group.

(b) For all a, b ∈ S there are x, y ∈ S such that ax = b and ya = b.

When either (a) or (b) is satisfied then ax = b and ya = b have unique
solutions.

Proof: We first show that part (a) implies part (b) and when part (a) is
satisfied the uniqueness claim holds.

Suppose that S is a group and let a, b, c ∈ S. If ac = b then multiplying
both sides of the equation on left by a−1 yields

a−1b = a−1(ac) = (a−1a)c = ec = c.

Thus the equation ax = b has at most one solution in S. Since

a(a−1b) = (a−1a)b = eb = b

the equation ax = b has at least one solution in S. Therefore ax = b has a
unique solution in S. Replacing S by the group Sop we conclude that a·opy =
b, or equivalently ya = b, has a unique solution which is y = a·opb = ba−1.

To complete the proof we show that part (b) implies part (a). Suppose
that part (b) holds. Note that Sop is associative and part (b) holds for Sop
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also. Since S is not empty there exists an element a ∈ S. By assumption
there is an element ea ∈ S such that aea = a. Let b ∈ S. Then ya = b for
some y ∈ S by assumption. By associativity

bea = (ya)ea = y(aea) = ya = b.

Therefore ea is a right identity element for S. Replacing S by Sop we conclude
that Sop has a right identity element fa. Now fa is a left identity element for
S. By part (a) of Lemma 1 it follows that ea = fa and is thus e = ea is an
identity element for S.

Now let a be any element of S. By assumption there are c, b ∈ S such
that ac = e and ba = e. Thus b = c by part (b) of Lemma 1. We have shown
that a has an inverse in S. 2

The axioms for a group can ostensibly be weakened.

Proposition 2 Let S be a set with associative binary operation. Suppose
that S has a left identity element e and that every element a ∈ S has a left
inverse a′, meaning a′a = e. Then S is a group.

Proof: (Sketch). Let e be a left identity element of S. Then the equation
x2 = x has exactly one solution in S, namely x = e. Let a ∈ S and suppose
that a′ ∈ S is a left inverse for a. Then aa′ satisfies the equation x2 = x
which means aa′ = e. Thus a′a = e = aa′. The calculation ae = a(a′a) =
(aa′)a = ea = a shows that e is a right identity element for S as well and
therefore is an identity element for S. 2
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