Written Homework \# 2

Due at the beginning of class 10/06/06

Let G be a non-empty set with binary operation. For non-empty subsets $S, T \subseteq G$ we define the product of the sets S and T by

$$
S T=\{s t \mid s \in S, t \in T\} .
$$

If $S=\{s\}$ is a singleton then we set

$$
s T=\{s\} T=\{s t \mid t \in T\}
$$

and if $T=\{t\}$ is a singleton we set

$$
S t=S\{t\}=\{s t \mid s \in S\} .
$$

We denote the set of inverses of elements of S by S^{-1}.
You may assume multiplication of sets is associative and $(S T)^{-1}=T^{-1} S^{-1}$. From this point on G is a group, not necessarily finite.

1. Suppose that $H \leq G$.
(a) Suppose that G is abelian. Show that $H \unlhd G$.
(b) Suppose that $a^{2}=e$ for all $a \in G$. Show that G is abelian.
(c) Suppose that G is finite and $a^{2}=e$ for all $a \in G$. Show, by induction, that $|G|=2^{n}$ for some $n \geq 0$. [Hint: Suppose $e \neq a \in G$ and consider the quotient G / H, where $H=<a>$.]
2. Suppose that $H, K \leq G$ and let $f: H \times K \longrightarrow H K$ be the set map defined by $f((h, k))=h k$ for all $(h, k) \in H \times K$.
(a) For fixed $h \in H$ and $k \in K$ show that

$$
f^{-1}(h k)=\left\{\left(h x, x^{-1} k\right) \mid x \in H \cap K\right\} .
$$

(b) For fixed $h \in h$ and $k \in K$ show that the function

$$
b: H \cap K \longrightarrow f^{-1}(h k)
$$

defined by $b(x)=\left(h x, x^{-1} k\right)$ for all $x \in H \cap K$ is a bijection.
(c) Now suppose that H, K are finite. Use parts (a)-(b) to show that

$$
|H||K|=|H K||H \cap K| .
$$

3. Suppose that H is a non-empty subset of G.
(a) Show that $H \leq G$ if and only if $H H=H$ and $H^{-1}=H$.
(b) Suppose that $H, K \leq G$. Using part (a), show that $H K \leq G$ if and only if $H K=K H$.
(c) Suppose that H is finite. Show that $H \leq G$ if and only if $H H \subseteq$ H. [Hint: Suppose that $H H \subseteq H$ and $a \in H$. Show that the list a, a^{2}, a^{3}, \ldots must have a repetition.]
4. Suppose that $|G|=6$.
(a) Use Exercise 1 to show that $a^{2} \neq e$ for some $a \in G$.
(b) Use Exercise 2 to show that G has at most one subgroup of order 3. (Thus if G has a subgroup N of order 3 then $N \unlhd G$.)
(c) Use Lagrange's Theorem and parts (a) and (b) to show that G has an element a of order 2 and an element b of order 3 .
(d) Let $N=\langle b\rangle$. Show that $|G: N|=2$. (Thus $N \unlhd G$.) Show that $a b=b a$ or $a b=b^{2} a=b^{-1} a$.
(e) Suppose that $a b=b a$. Use Lagrange's Theorem to show that G is cyclic. [Hint: Consider $<a b>$.]
5. We continue Exercise 4.
(a) Show that $G=\left\{e, b, b^{2}, a, a b, a b^{2}\right\}$.
(b) Suppose that $a b=b^{2} a$. Complete the multiplication table

	e	b	b^{2}	a	$a b$	$a b^{2}$
e						
b						
b^{2}						
a						
$a b$						
$a b^{2}$						

for G.
[Hint: Let $N=\langle b\rangle=\left\{e, b, b^{2}\right\}$. Then $N \unlhd G$ and $|G / N|=2$. Note that $G / N=\{N, a N\}$ by part (a). Since $a N$ has order 2 the multiplication table for G / N is given by

	N	$a N$	
N	N	aN	
$a N$	aN	N	

You can ignore this hint and simply use the relations

$$
a^{2}=e, \quad b^{3}=e, \quad a b=b^{2} a
$$

to compute all of the products. However, it would be very illuminating to use the hint and see how many calculations you then need to make using the relations.

Comment: The relations $a^{2}=e=b^{3}$ and $a b=b^{2} a$ completely determine the group table in Exercise 5. In light of Exercise 4 there is at most one non-abelian group G (up to isomorphism) of order 6 . Since S_{3} has order 6 and is non-abelian, $G \simeq S_{3}$.

