If R Is a Unique Factorization Domain $R[X]$ Is also.

11/30/06 Radford

Throughout R is an integral domain.

1 Irreducible Constant Polynomials

Let $a \in R[X]$ be a non-zero constant polynomial. If $a=p(X) q(X)$, where $p(X), q(X) \in R[X]$, then $p(X), q(X) \neq 0$ and the calculation $0=\operatorname{Deg} a=$ $\operatorname{Deg} p(X)+\operatorname{Deg} q(X)$ means that $p(X), q(X)$ are constant polynomials as well. Since $R[X]^{\times}=R^{\times}$:

Lemma 1 Let $a \in R$. Then the following are equivalent:
(1) a is an irreducible element of R.
(2) a is an irreducible element of $R[X]$.

2 Primitive Polynomials

Let $p(X)=a_{0}+\cdots+a_{n} X^{n} \in R[X]$. Note that the units of R divide the coefficients a_{0}, \ldots, a_{n} of $p(X)$. We say $p(X)$ is primitive if the only divisors of a_{0}, \ldots, a_{n} are the units of R. Thus the constant primitive polynomials of $R[X]$ are the units of R. If a_{i} is a unit for some $0 \leq i \leq n$ then $p(X)$ is primitive. Consequently the monic polynomials of $R[X]$ are primitive.

Suppose that $d \in R$ divides all of the coefficients a_{0}, \ldots, a_{n} of $p(X)$. Then there are $a_{0}^{\prime}, \ldots, a_{n}^{\prime} \in R$ such that $a_{i}=d a_{i}^{\prime}$ for all $0 \leq i \leq n$. Set
$p^{\prime}(X)=a_{0}^{\prime}+\cdots+a_{n}^{\prime} X^{n}$. Then $p(X)=d p^{\prime}(X)$. Note that any $d \in R$ divides all of the coefficients of $d p(X)$.

The primitive polynomials include irreducible polynomials of positive degree.

Lemma 2 Let $p(X) \in R[X]$ be irreducible and have positive degree. Then $p(X)$ is primitive.

Proof: Suppose that $p(X)$ is irreducible, has positive degree, and $d \in$ R divides all of the coefficients of $p(X)$. Then $p(X)=d p^{\prime}(X)$ for some $p^{\prime}(X) \in R[X]$. Since $p(X)$ is irreducible the either d or $p^{\prime}(X)$ is a unit. But $\operatorname{Deg} p^{\prime}(X)=\operatorname{Deg} p(X)>0$ means that $p^{\prime}(X)$ is not a unit. Therefore d is a unit.

As a partial converse, primitive polynomials of degree one are irreducible.
Lemma 3 Let $p(X), q(X), r(X) \in R[X]$, where $p(X)$ is primitive. Then:
(1) If $p(X)=q(X) r(X)$ then $q(X), r(X)$ are primitive.
(2) If $\operatorname{Deg} p(X)=1$ then $p(X)$ is irreducible.
(3) Suppose that $q(X), r(X)$ are primitive. Then no prime of R divides all of the coefficients of $p(X)$.

Proof: Suppose $p(X)=q(X) r(X)$. Since $q(X) r(X)=r(X) q(X)$, to establish part (1) it suffices to show that the first factor $q(X)$ of $p(X)$ is primitive.

Let $d \in R$ divide all of the coefficients of $q(X)$. Then $q(X)=d q^{\prime}(X)$ for some $q^{\prime}(X) \in R[X]$ which means $p(X)=d q^{\prime}(X) r(X)$. Therefore d divides all of the coefficients of $p(X)$; hence d is a unit since $p(X)$ is primitive.

To show part (2), suppose $\operatorname{Deg} p(X)=1$ and $p(X)=q(X) r(X)$, where $q(X), r(X) \in R[X]$. Since $\operatorname{Deg} p(X)=1$, one of $q(X), r(X)$ is a constant polynomial, and primitive by part (1). Thus one of $q(X), r(X)$ is a unit. Therefore $p(X)$ is irreducible.

To show part (3), let $p \in R$ be prime. Then $(p)=R p$ is a prime ideal of R. Thus $R / R p$, and hence $(R / R p)[X]$, is an integral domain. The projection $R \longrightarrow R / R p$ given by $r \mapsto r+R p$ is a ring homomorphism and thus induces a ring homomorphism $R[X] \longrightarrow(R / R p)[X]$ given by

$$
f(X)=a_{0}+\cdots+a_{n} X^{n} \mapsto\left(a_{0}+R p\right)+\cdots+\left(a_{n}+R p\right) X^{n}=\overline{f(X)} .
$$

Suppose that $f(X)$ is primitive. Since p is not a unit p does not divide a_{i}, or equivalently $a_{i}+R p \neq 0$, for some $0 \leq i \leq n$. Thus $\overline{f(X)} \neq 0$.
 $\overline{q(X)} \overline{r(X)}$ is the product of two non-zero elements in an integral domain. Therefore p does not divide one of the coefficients of $q(X) r(X)$.

Let $p(X)$ be primitive and have positive degree. Suppose that $p(X)$ is not irreducible. Then $p(X)=q(X) r(X)$ where neither one of $q(X), r(X) \in$ $R[X]$ is a unit. By part (1) of Lemma 3 both $q(X)$ and $r(X)$ are primitive. This means neither $q(X)$ nor $r(X)$ is a constant polynomial since constant primitive polynomials are units. Thus $q(X)$ and $r(X)$ are primitive and have positive degree. Since $\operatorname{Deg} p(X)=\operatorname{Deg} q(X)+\operatorname{Deg} r(X)$ we conclude that $\operatorname{Deg} q(X), \operatorname{Deg} r(X)<\operatorname{Deg} p(X)$. By induction on $\operatorname{Deg} p(X)$ we have:

Proposition 1 Every primitive polynomial of positive degree in $R[X]$ is the product of (primitive) irreducible polynomials of positive degree in $R[X]$.

Let F be the field of quotients of R. Then we may regard R as a subring with unity of F. Therefore we may regard $R[X]$ as a subring of $F[X]$, which is a Euclidean domain and hence a Unique Factorization Domain. Recall that irreducible polynomials of positive degree in $R[X]$ are primitive.

Lemma 4 Let $p(X) \in R[X]$ be primitive of positive degree. If $p(X)$ is an irreducible polynomial of $F[X]$ then $p(X)$ is an irreducible polynomial of $R[X]$.

Proof: Suppose $p(X)$ is an irreducible polynomial of $F[X]$ and $p(X)=$ $q(X) r(X)$, where $q(X), r(X) \in R[X]$. Since $p(X)$ is an irreducible polynomial of $F[X]$ necessarily one of $q(X), r(X)$ is a unit of F, that is $\operatorname{Deg} q(X)=0$ or $\operatorname{Deg} r(X)=0$. Thus $q(X)$ or $r(X)$ is a constant polynomial of $R[X]$ and hence is a unit of R since $p(X)$ is primitive.

Exercise 1 Here is a more straight forward way of proving part (3) of Lemma 3. Suppose that $q(X)=a_{0}+\cdots+a_{m} X^{m}$ and $r(X)=b_{0}+\cdots+b_{n} X^{n}$ are any polynomials in $R[X]$ and $p \in R$ is a prime which does not divide all of the coefficients of $q(X), r(X)$.
(1) Show that there is an $0 \leq m^{\prime} \leq m$ such that p divides a_{ℓ} for $0 \leq \ell<m^{\prime}$ and p does not divide $a_{m^{\prime}}$.
(2) Show that there is an $0 \leq n^{\prime} \leq n$ such that p divides a_{ℓ} for $0 \leq \ell<n^{\prime}$ and p does not divide $a_{n^{\prime}}$.
(3) Write $q(X) r(X)=c_{0}+\cdots c_{m+n} X^{m+n}$. Show that d does not divide $c_{m^{\prime}+n^{\prime}}$. [Hint: If p does not divide $a_{u} b_{v}$ then $u \geq m^{\prime}$ and $v \geq n^{\prime}$.]

3 The Special Case when R Is a Unique Factorization Domain

Throughout this section R is a Unique Factorization Domain unless otherwise specified. In any case F denotes the field of quotients of R.

Suppose that $f(X)=a_{0}+\cdots+a_{n} X^{n} \in R[X]$ is a non-zero non-unit. Let d be a greatest common divisor of a_{0}, \ldots, a_{n}. Let $a_{0}^{\prime}, \ldots, a_{n}^{\prime} \in R$ satisfy $d a_{i}^{\prime}=a_{i}$ for all $0 \leq i \leq n$. Set $p(X)=a_{0}^{\prime}+\cdots+a_{n}^{\prime} X^{n}$. Then $f(X)=d p(X)$. Now $p(X)$ is primitive since 1 is a greatest common divisor of $a_{0}^{\prime}, \ldots, a_{n}^{\prime}$. The reader is referred to Exercise 2 for details about greatest common divisors in R.

When d is not a unit of R then d is a product of irreducibles in $R[X]$; see Lemma 1. By Proposition 1 it follows that $p(X)$ is a product of irreducibles of $R[X]$ when $p(X)$ has positive degree. Therefore $f(X)$ is a product of irreducibles. Uniqueness of factorization is the issue. Part (4) of the following is in essence the Gauss Lemma.

Proposition 2 Let $p(X), q(X) \in R[X]$ be primitive. Then:
(1) $p(X) q(X)$ is primitive.
(2) Suppose that $a, b \in R$ are not zero and $a p(X)=b q(X)$. Then a, b are associates; hence $p(X), q(X)$ are associates.
(3) Every non-zero $f(X) \in R[X]$ has a factorization $f(X)=a g(X)$ unique up to associates, where $a \in R$ and $g(X) \in R[X]$ is primitive.
(4) If $p(X)$ is an irreducible polynomial of $R[X]$ then $p(X)$ is an irreducible polynomial of $F[X]$.
(5) If $p(X), q(X)$ are associates in $F[X]$ then $p(X), q(X)$ are associates in $R[X]$.

Proof: No prime in R divides all of the coefficients of $p(X) q(X)$ by part (3) of Lemma 3. Since the irreducibles of R are the primes of R, no element of R which is a non-zero non-unit divides all of the coefficients of $p(X) q(X)$. Therefore this product is primitive. We have shown part (1).

Assume the hypothesis of part (2). Since $p(X)$ is primitive, 1 is a greatest common divisor of all of its coefficients. There $a 1$ is the greatest common divisor of the coefficients of $a p(X)$ as is $b 1$ since $q(X)$ is primitive and $a p(X)=b q(X)$. Therefore a, b are associates.

Write $b=u a$, where $u \in R^{\times}$. Then $a p(X)=a u q(X)$ from which $p(X)=$ $u q(X)$ follows by cancellation. Thus $p(X), q(X)$ are associates and the proof of part (2) is complete. Part (3) follows by the comments preceding the statement of the proposition and part (2).

Suppose that $p(X)$ is irreducible as a polynomial of $R[X]$ and let $p(X)=$ $q(X) r(X)$, where $q(X) r(X) \in F[X]$. Clearing denominators and using part (3), we see there are non-zero $a, a^{\prime}, b, b^{\prime} \in R$ such that $a p(X), b q(X) \in R[X]$ and $a p(X)=a^{\prime} p^{\prime}(X), b q(X)=b^{\prime} q^{\prime}(X)$, where $p^{\prime}(X), q^{\prime}(X) \in R[X]$ are primitive. Therefore

$$
a b p(X)=a^{\prime} b^{\prime} p^{\prime}(X) q^{\prime}(X)
$$

Since $p^{\prime}(X) q^{\prime}(X)$ is primitive by part (1) it follows that $p(X), p^{\prime}(X) q^{\prime}(X)$ are associates by part (2). Thus $p(X)=u p^{\prime}(X) q^{\prime}(X)$ for some $u \in R^{\times}$. Since $p(X)$ is an irreducible polynomial of $R[X]$, either $\operatorname{Deg} q(X)=\operatorname{Deg} q^{\prime}(X)=0$ or $\operatorname{Deg} r(X)=\operatorname{Deg} r^{\prime}(X)=0$. Therefore $p(X)$ is an irreducible polynomial of $F[X]$. We have established part (4).

Suppose that $p(X), q(X)$ are associates in $F[X]$. Then $q(X)=(a / b) p(X)$ for some quotient non-zero $a / b \in F$. Thus $a, b \neq 0$ and $b q(X)=a p(X)$. Part (5) now follows by part (2).

Theorem 1 Let R be an integral domain. Then R is a unique factorization domain if and only if $R[X]$ is also.

Proof: Suppose that $R[X]$ is a Unique Factorization Domain. Since $R[X]^{\times}=$ R^{\times}by Lemma 1 it follows that R is a Unique Factorization Domain.

Conversely, suppose that R is a Unique Factorization Domain. Since F is a field $\mathcal{R}=F[X]$ is a Unique Factorization Domain as well. Let $f(X) \in R[X]$ be a non-zero non-unit. We have noted that $f(X)$ has a factorization into irreducibles. We need to show uniqueness.

Consider a factorization of $f(X)$ into irreducibles. By rearranging the factors if necessary we may write the factorization

$$
f(X)=m_{1} \cdots m_{r} p_{1}(X) \cdots p_{s}(X)
$$

where $m_{i} \in R$ for all $1 \leq i \leq r$ and $p_{j}(X) \in R[X]$ has positive degree for all $1 \leq j \leq s$. By part (4) of Proposition 2 the $p_{j}(X)$'s are irreducible elements of \mathcal{R}. Let $a=m_{1} \cdots m_{r}$ and $p(X)=p_{1}(X) \cdots p_{s}(X)$. If there are no factors in R, that is if $r=0$, we set $a=1$. If there are no factors of positive degree, that is if $s=0$, we set $p(X)=1$. In any event $f(X)=a p(X)$ and $p(X)$ is primitive by Lemma 2 and part (1) of Proposition 2. Any other factorization of $f(X)$ into irreducibles

$$
f(X)=m_{1}^{\prime} \cdots m_{r^{\prime}}^{\prime} p_{1}^{\prime}(X) \cdots p_{l_{s}^{\prime}}^{\prime}(X)
$$

gives a similar decomposition $f(X)=a^{\prime} p^{\prime}(X)$. By part (2) of Proposition 2 it follows that that a, a^{\prime} are associates in R and $p(X), p^{\prime}(X)$ are associates in $R[X]$; thus $p(X), p^{\prime}(X)$ are associates in \mathcal{R}. This means $(a)=\left(a^{\prime}\right)$ and $(p(X))=\left(p^{\prime}(X)\right)$. Our notation is $(b)=R b$ for all $b \in R$ and $(q(X))=$ $\mathcal{R} q(X)$ for all $q(X) \in \mathcal{R}$.

Since R and \mathcal{R} are Unique Factorization Domains it follows that $r=r^{\prime}$ and $s=s^{\prime}$, and after possible rearrangement, $\left(m_{i}\right)=\left(m_{i}^{\prime}\right)$ for all $1 \leq i \leq r$ and $\left(p_{j}(X)\right)=\left(p_{j}^{\prime}(X)\right)$ for all $1 \leq j \leq s$. Therefore m_{i}, m_{i}^{\prime} are associates in R, hence in $R[X]$, for all $1 \leq i \leq r$. Likewise $p_{j}(X), p_{j}^{\prime}(X)$ are associates in $\mathcal{R}=F[X]$, hence in $R[X]$ by part (5) of Proposition 2 , for all $1 \leq j \leq s$.

Exercise 2 Let R be a Unique Factorization Domain and $a, b \in R$.
(1) Suppose that $a=b=0$. Show that 0 is the greatest common divisor of a and b.
(2) Suppose that a or b is a unit. Show that 1 is a greatest common divisor of a and b.
(3) Suppose that at least one of a, b is a non-zero non-unit. Let $\left(m_{1}\right), \ldots,\left(m_{r}\right)$ list the distinct R-maximal ideals which appear as a factor in either (a) or (b). Write

$$
(a)=\left(m_{1}\right)^{\alpha_{1}} \cdots\left(m_{r}\right)^{\alpha_{r}} \quad \text { and } \quad(b)=\left(m_{1}\right)^{\beta_{1}} \cdots\left(m_{r}\right)^{\beta_{r}},
$$

where $\alpha_{i}, \beta_{i} \geq 0$. Show that

$$
d=m_{1}^{\min \left(\alpha_{1}, \beta_{1}\right)} \cdots m_{r}^{\min \left(\alpha_{r}, \beta_{r}\right)}
$$

is greatest common divisor of a and b.
(4) Suppose that d is a greatest common divisor of q and b. Show that $c d$ is a greatest common divisor of $c a$ and $c b$ for all $c \in R$.
(5) Let $a_{1}, \ldots, a_{n} \in R$ and suppose that d is a greatest common divisor of a_{1}, \ldots, a_{n}. Show that $c d$ is a greatest common divisor of $c a_{1}, \ldots, c a_{n}$ for all $c \in R$. [Hint: When $n>2$ show that d is a greatest common divisor of d^{\prime} and a_{n}, where d^{\prime} is a greatest common divisor of a_{1}, \ldots, a_{n-1}.]

