Roots of Polynomials.

12/03/06 Radford

Throughout R is a commutative ring with unity.

1 Fractional Roots and the Eisenstein Criterion

Suppose that $p, q \in R$ and the ideals $(p)=R p,(q)=R q$ are comaximal. Then $R=R p+R q$ which means that $1=a p+b q$ for some $a, b \in R$. Thus if $c \in R$ and $p \mid q c$ then $p \mid c$ as $c=1 c=a p c+b q c$. When R is a Principal Ideal Domain to say that (p) and (q) are comaximal is the same as saying that 1 is a greatest common divisor of p and q.

Lemma 1 Let R be an integral domain, let F be its field of quotients, and let $f(X)=a_{n} X^{n}+\cdots+a_{0} \in R[X]$. Suppose $p, q \in R$, where $q \neq 0$ and $(p),(q)$ are comaximal, and $r=p / q$ is a root of $f(X)$ in F. Then $p \mid a_{0}$ and $q \mid a_{n}$.

Proof: Multiplying both sides of the equation

$$
a_{n}(p / q)^{n}+\cdots+a_{0}=0
$$

by q^{n} yields the equation $a_{n} p^{n}+a_{n-1} p^{n-1} q+\cdots+a_{0} q^{n}=0$ in R. Therefore

$$
p\left(a_{n} p^{n-1}+a_{n-1} p^{n-2} q+\cdots+a_{1} q^{n-1}\right)=-a_{0} q^{n}
$$

and

$$
a_{n} p^{n}=-\left(a_{n-1} p^{n-1}+\cdots+a_{0} q^{n-1}\right) q
$$

which means $p \mid a_{0} q^{n}$ and $q \mid a_{n} p^{n}$ from which $p \mid a_{0}$ and $q \mid a_{n}$ follow.
Here is a version of the Eisenstein Criterion.

Lemma 2 Let R be an integral domain and $f(X)=a_{n} X^{n}+\cdots+a_{0} \in R[X]$ be primitive. Suppose that $p \in R$ is a prime such that:
(1) p does not divide a_{n};
(2) p divides a_{i} for all $0 \leq i<n$; and
(3) p^{2} does not divide a_{0}.

Then $f(X)$ is irreducible.
Proof: Consider a factorization $f(X)=q(X) r(X)$, where $q(X)=b_{\ell} X^{\ell}+$ $\cdots+b_{0}$ and $r(X)=c_{m} X^{m}+\cdots+c_{0}$ are polynomials of degrees ℓ and m respectively. We need to show one of $q(X), r(X)$ is a unit.

Since $b_{\ell} c_{m} \neq 0$, we conclude $\ell+m=n$ and $a_{n}=b_{\ell} c_{m}$. In any event $a_{0}=b_{0} c_{0}$. Note p does not divide b_{ℓ}, c_{m} by (1) and one of b_{0}, c_{0} is not divisible by p by (3). Without loss of generality we may assume that p does not divide b_{0}.

Since p is prime $R p$ is a prime ideal of R. Therefore $R / R p$ is an integral domain. Consider the ring homomorphism $R[X] \longrightarrow(R / R p)[X]$ defined by
$d(X)=d_{s} X^{s}+\cdots+d_{0} \mapsto\left(d_{s}+R p\right) X^{s}+\cdots+\left(d_{0}+R p\right)=\overline{d_{s}} X^{s}+\cdots+\overline{d_{0}}=\overline{d(X)}$,
where $\bar{r}=r+R p$ for all $r \in R$. Since the leading coefficient of $q(X)$ is not divisible by p we conclude that $\operatorname{Deg} q(X)=\operatorname{Deg} \overline{q(X)}$. Now

$$
\overline{a_{n}} X^{n}=\overline{f(X)}=\overline{q(X) r(X)}=\overline{q(X)} \overline{r(X)} .
$$

Therefore $\overline{q(X)}$ has one term since this is true when the polynomial is regarded as a polynomial over the field of quotients of $R / R p$. Since p does not divide b_{0} it follows that $\overline{q(X)}$ has a non-zero constant term. Therefore $0=\operatorname{Deg} \overline{q(X)}=\operatorname{Deg} q(X)$ which means that $q(X)$ is a constant polynomial. Since $f(X)$ is primitive $g(X)$ is a unit. We have shown that $f(X)$ is irreducible.

2 A Ring Extension with a Root of $f(X)$

Let $f(X)=a_{n} X^{n}+\cdots+a_{0}$ and $g(X)=b_{m} X^{m}+\cdots+b_{0}$ be polynomials in $R[X]$ and suppose that $f(X)$ has degree n. Since $f(X) g(X)=a_{n} b_{m} X^{n+m}+$
$\cdots+a_{0} b_{0}$ it follows that $\operatorname{Deg} f(X) g(X)=\operatorname{Deg} f(X)+\operatorname{Deg} g(X)$ for all $g(X) \in$ $R[X]$ if and only if a_{n} is not a zero divisor. When $a_{n}=1$ the division algorithm holds for $f(X)$.

Lemma 3 Suppose that $f(X)=X^{n}+\cdots+a_{0} \in R[X]$, where $n \geq 0$. Then for $g(X) \in R[X]$ there are $q(X), r(X) \in R[X]$ such that

$$
g(X)=q(X) f(X)+r(X)
$$

where $r(X)=0$ or $\operatorname{Deg} r(X)<\operatorname{Deg} f(X)$. Furthermore $q(X), r(X)$ are determined by these conditions.

Proof: Mimic the proof of the Division Algorithm when R is a field.
The Division Algorithm holds when $a_{n} \in R^{\times}$by an easy reduction to the monic case.

Suppose that $f(X)=X^{n}+\cdots+a_{0} \in R[X]$, where $n \geq 1$, and let $I=(f(X))$. Then an element of I is either zero of has degree greater than or equal to n. Let

$$
\mathcal{R}=R[X] / I
$$

and

$$
\mathcal{S}=\{r(X) \in R[X] \mid r(X)=0 \text { or } \operatorname{Deg} r(X)<n\} .
$$

The map $j: \mathcal{S} \longrightarrow \mathcal{R}$ defined by $j(r(X))=r(X)+I$ is bijective. It is surjective by Lemma 3. Suppose that $r(X), r^{\prime}(X) \in \mathcal{S}$ and $j(r(X))=$ $j\left(r^{\prime}(X)\right)$. Then $r(X)+I=r^{\prime}(X)+I$ or equivalently $r(X)-r^{\prime}(X) \in I$. But the difference $r(X)-r^{\prime}(X)$ is zero or has degree less than n. Since an element of I is zero or has degree greater than or equal to n, necessarily $r(X)-r^{\prime}(X)=0$. Therefore $r(X)=r^{\prime}(X)$ which establishes the injectivity of j. Observe that the restriction $i=j \mid R$ is in fact an injection of rings.

We regard R as a subring of \mathcal{R} via the identification of $r \in R$ with $j(r)=r+I$. Let $\alpha=X+I$ and $r(X)=b_{n-1} X^{n-1}+\cdots+b_{0} \in \mathcal{S}$. Then

$$
\begin{aligned}
r(X)+I & =\left(b_{n-1} X^{n-1}+\cdots+b_{0}\right)+I \\
& =\left(b_{n-1}+I\right)(X+I)^{n-1}+\cdots+\left(b_{0}+I\right) \\
& =b_{n-1} \alpha^{n-1}+\cdots+b_{0} \\
& =r(\alpha) .
\end{aligned}
$$

Observe that

$$
f(\alpha)=\alpha^{n}+\cdots+a_{0}=(X+I)^{n}+\cdots+\left(a_{0}+I\right)=f(X)+I=I
$$

thus α is a root of $f(X)$ in \mathcal{R}.
Proposition 1 Suppose that R is a commutative ring with unity and $f(X)=$ $X^{n}+\cdots+a_{0} \in R[X]$, where $n \geq 1$. Then there is a commutative ring with unity \mathcal{R} which contains R as a subring, and an element $\alpha \in \mathcal{R}$, such that:
(1) $f(\alpha)=0$;
(2) each element of \mathcal{R} has a unique expression as $b_{n-1} \alpha^{n-1}+\cdots+b_{0}$, where $b_{n-1}, \ldots, b_{0} \in R$; and
(3) if $f(X)$ is irreducible and R is a field then \mathcal{R} is a field.

Proof: In light of the comments preceding the proposition, we need only establish part (3). Suppose that $f(X)$ is irreducible and R is a field. Since R is a subring of \mathcal{R} there is a ring homomorphism $F: R[X] \longrightarrow \mathcal{R}$ determined by $F(r)=r$ for all $r \in R$ and $F(X)=\alpha$. Thus F is substitution of α for X. Observe that F is surjective. Since $F(f(X))=f(\alpha)=0$ it follows that $f(X) \in \operatorname{Ker} F$. Since $\operatorname{Ker} F$ is an ideal of $R[X]$ it follows that $(f(X)) \subseteq \operatorname{Ker} F$.

We will show that $(f(X))=\operatorname{Ker} F$ by showing that $\operatorname{Ker} F \subseteq(f(X))$. Let $g(X) \in \operatorname{Ker} F$. By the Division Algorithm there are $q(X), r(X) \in R[X]$ such that $g(X)=q(X) f(X)+r(X)$, where $r(X)=0$ or $\operatorname{Deg} r(X)<\operatorname{Deg} f(X)=$ n. Now $r(X)=g(X)+(-q(X)) f(X) \in \operatorname{Ker} F$. Writing $r(X)=b_{n-1} X^{n-1}+$ $\cdots+b_{0}$ we have $b_{n-1} \alpha^{n-1}+\cdots+b_{0}=F(r(X))=0$. By uniqueness of expression $b_{n-1}=\cdots=b_{0}=0$ from which we conclude $r(X)=0$. Therefore $g(X)=q(X) f(X) \in \operatorname{Ker} F$.

By the First Isomorphism Theorem for rings $R[X] /(f(X)) \simeq \mathcal{R}$. Since $f(X)$ is irreducible and $R[X]$ is a Principal Ideal Domain $(f(X))$ is a maximal ideal of $R[X]$. Therefore the quotient $R[X] /(f(X))=\mathcal{R}$ is a field.

