Roots of Polynomials.

12/03/06 Radford

Throughout R is a commutative ring with unity.

1 Fractional Roots and the Eisenstein Criterion

Suppose that $p, q \in R$ and the ideals (p) = Rp, (q) = Rq are comaximal. Then R = Rp + Rq which means that 1 = ap + bq for some $a, b \in R$. Thus if $c \in R$ and p|qc then p|c as c = 1c = apc + bqc. When R is a Principal Ideal Domain to say that (p) and (q) are comaximal is the same as saying that 1 is a greatest common divisor of p and q.

Lemma 1 Let R be an integral domain, let F be its field of quotients, and let $f(X) = a_n X^n + \cdots + a_0 \in R[X]$. Suppose $p, q \in R$, where $q \neq 0$ and (p), (q) are comaximal, and r = p/q is a root of f(X) in F. Then $p|a_0$ and $q|a_n$.

PROOF: Multiplying both sides of the equation

$$a_n(p/q)^n + \dots + a_0 = 0$$

by q^n yields the equation $a_n p^n + a_{n-1} p^{n-1} q + \cdots + a_0 q^n = 0$ in R. Therefore

$$p(a_n p^{n-1} + a_{n-1} p^{n-2} q + \dots + a_1 q^{n-1}) = -a_0 q^n$$

and

$$a_n p^n = -(a_{n-1}p^{n-1} + \dots + a_0q^{n-1})q$$

which means $p|a_0q^n$ and $q|a_np^n$ from which $p|a_0$ and $q|a_n$ follow. \Box

Here is a version of the Eisenstein Criterion.

Lemma 2 Let R be an integral domain and $f(X) = a_n X^n + \cdots + a_0 \in R[X]$ be primitive. Suppose that $p \in R$ is a prime such that:

- (1) p does not divide a_n ;
- (2) p divides a_i for all $0 \le i < n$; and
- (3) p^2 does not divide a_0 .

Then f(X) is irreducible.

PROOF: Consider a factorization f(X) = q(X)r(X), where $q(X) = b_{\ell}X^{\ell} + \cdots + b_0$ and $r(X) = c_m X^m + \cdots + c_0$ are polynomials of degrees ℓ and m respectively. We need to show one of q(X), r(X) is a unit.

Since $b_{\ell}c_m \neq 0$, we conclude $\ell + m = n$ and $a_n = b_{\ell}c_m$. In any event $a_0 = b_0c_0$. Note p does not divide b_{ℓ}, c_m by (1) and one of b_0, c_0 is not divisible by p by (3). Without loss of generality we may assume that p does not divide b_0 .

Since p is prime Rp is a prime ideal of R. Therefore R/Rp is an integral domain. Consider the ring homomorphism $R[X] \longrightarrow (R/Rp)[X]$ defined by

$$d(X) = d_s X^s + \dots + d_0 \mapsto (d_s + Rp) X^s + \dots + (d_0 + Rp) = \overline{d_s} X^s + \dots + \overline{d_0} = \overline{d(X)}$$

where $\overline{r} = r + Rp$ for all $r \in R$. Since the leading coefficient of q(X) is not divisible by p we conclude that $\text{Deg } q(X) = \text{Deg } \overline{q(X)}$. Now

$$\overline{a_n}X^n = \overline{f(X)} = \overline{q(X)r(X)} = \overline{q(X)}\ \overline{r(X)}.$$

Therefore q(X) has one term since this is true when the polynomial is regarded as a polynomial over the field of quotients of R/Rp. Since p does not divide b_0 it follows that $\overline{q(X)}$ has a non-zero constant term. Therefore $0 = \text{Deg } \overline{q(X)} = \text{Deg } q(X)$ which means that q(X) is a constant polynomial. Since f(X) is primitive g(X) is a unit. We have shown that f(X) is irreducible. \Box

2 A Ring Extension with a Root of f(X)

Let $f(X) = a_n X^n + \dots + a_0$ and $g(X) = b_m X^m + \dots + b_0$ be polynomials in R[X] and suppose that f(X) has degree n. Since $f(X)g(X) = a_n b_m X^{n+m} + \dots$

 $\dots + a_0 b_0$ it follows that Deg f(X)g(X) = Deg f(X) + Deg g(X) for all $g(X) \in R[X]$ if and only if a_n is not a zero divisor. When $a_n = 1$ the division algorithm holds for f(X).

Lemma 3 Suppose that $f(X) = X^n + \cdots + a_0 \in R[X]$, where $n \ge 0$. Then for $g(X) \in R[X]$ there are $q(X), r(X) \in R[X]$ such that

$$g(X) = q(X)f(X) + r(X),$$

where r(X) = 0 or Deg r(X) < Deg f(X). Furthermore q(X), r(X) are determined by these conditions.

PROOF: Mimic the proof of the Division Algorithm when R is a field. \Box

The Division Algorithm holds when $a_n \in \mathbb{R}^{\times}$ by an easy reduction to the monic case.

Suppose that $f(X) = X^n + \cdots + a_0 \in R[X]$, where $n \ge 1$, and let I = (f(X)). Then an element of I is either zero of has degree greater than or equal to n. Let

$$\mathcal{R} = R[X]/I$$

and

$$S = \{r(X) \in R[X] \mid r(X) = 0 \text{ or } \text{Deg } r(X) < n\}.$$

The map $j : S \longrightarrow \mathcal{R}$ defined by j(r(X)) = r(X) + I is bijective. It is surjective by Lemma 3. Suppose that $r(X), r'(X) \in S$ and j(r(X)) = j(r'(X)). Then r(X) + I = r'(X) + I or equivalently $r(X) - r'(X) \in I$. But the difference r(X) - r'(X) is zero or has degree less than n. Since an element of I is zero or has degree greater than or equal to n, necessarily r(X) - r'(X) = 0. Therefore r(X) = r'(X) which establishes the injectivity of j. Observe that the restriction i = j|R is in fact an injection of rings.

We regard R as a subring of \mathcal{R} via the identification of $r \in R$ with j(r) = r + I. Let $\alpha = X + I$ and $r(X) = b_{n-1}X^{n-1} + \cdots + b_0 \in \mathcal{S}$. Then

$$r(X) + I = (b_{n-1}X^{n-1} + \dots + b_0) + I$$

= $(b_{n-1} + I)(X + I)^{n-1} + \dots + (b_0 + I)$
= $b_{n-1}\alpha^{n-1} + \dots + b_0$
= $r(\alpha).$

Observe that

$$f(\alpha) = \alpha^{n} + \dots + a_{0} = (X + I)^{n} + \dots + (a_{0} + I) = f(X) + I = I;$$

thus α is a root of f(X) in \mathcal{R} .

Proposition 1 Suppose that R is a commutative ring with unity and $f(X) = X^n + \cdots + a_0 \in R[X]$, where $n \ge 1$. Then there is a commutative ring with unity \mathcal{R} which contains R as a subring, and an element $\alpha \in \mathcal{R}$, such that:

- (1) $f(\alpha) = 0;$
- (2) each element of \mathcal{R} has a unique expression as $b_{n-1}\alpha^{n-1} + \cdots + b_0$, where $b_{n-1}, \ldots, b_0 \in R$; and
- (3) if f(X) is irreducible and R is a field then \mathcal{R} is a field.

PROOF: In light of the comments preceding the proposition, we need only establish part (3). Suppose that f(X) is irreducible and R is a field. Since Ris a subring of \mathcal{R} there is a ring homomorphism $F: R[X] \longrightarrow \mathcal{R}$ determined by F(r) = r for all $r \in R$ and $F(X) = \alpha$. Thus F is substitution of α for X. Observe that F is surjective. Since $F(f(X)) = f(\alpha) = 0$ it follows that $f(X) \in \text{Ker } F$. Since Ker F is an ideal of R[X] it follows that $(f(X)) \subseteq \text{Ker } F$.

We will show that (f(X)) = Ker F by showing that $\text{Ker } F \subseteq (f(X))$. Let $g(X) \in \text{Ker } F$. By the Division Algorithm there are $q(X), r(X) \in R[X]$ such that g(X) = q(X)f(X) + r(X), where r(X) = 0 or Deg r(X) < Deg f(X) = n. Now $r(X) = g(X) + (-q(X))f(X) \in \text{Ker } F$. Writing $r(X) = b_{n-1}X^{n-1} + \cdots + b_0$ we have $b_{n-1}\alpha^{n-1} + \cdots + b_0 = F(r(X)) = 0$. By uniqueness of expression $b_{n-1} = \cdots = b_0 = 0$ from which we conclude r(X) = 0. Therefore $g(X) = q(X)f(X) \in \text{Ker } F$.

By the First Isomorphism Theorem for rings $R[X]/(f(X)) \simeq \mathcal{R}$. Since f(X) is irreducible and R[X] is a Principal Ideal Domain (f(X)) is a maximal ideal of R[X]. Therefore the quotient $R[X]/(f(X)) = \mathcal{R}$ is a field. \Box