Roots of Polynomials.

12/03/06 Radford

Throughout R is a commutative ring with unity.

1 Fractional Roots and the Eisenstein Crite-
rion

Suppose that p,q € R and the ideals (p) = Rp,(q) = Rq are comaximal.
Then R = Rp+ Rq which means that 1 = ap + bq for some a,b € R. Thus if
¢ € R and p|qc then p|c as ¢ = 1¢ = apc + bge. When R is a Principal Ideal
Domain to say that (p) and (q) are comaximal is the same as saying that 1
is a greatest common divisor of p and q.

Lemma 1 Let R be an integral domain, let ' be its field of quotients, and
let f(X)=a, X"+ -+ a9 € R[X]|. Suppose p,q € R, where ¢ # 0 and
(p), (q) are comazimal, and r = p/q is a root of f(X) in F. Then play and
qlan,.

PRrooOF: Multiplying both sides of the equation
an(p/q)" + -+ a0 =0
by ¢" yields the equation a,p™ + a,_1p" 'q + -+ apq" = 0 in R. Therefore
p(anp" ™ +an 1 p" g4 ag" ) = —aod"

and
anp" = —(an_1p" "+ 4 ang" g
which means p|agg™ and ¢|a,p™ from which play and ¢|a,, follow. O

Here is a version of the Eisenstein Criterion.



Lemma 2 Let R be an integral domain and f(X) = a, X" +---+ap € R[X]
be primitive. Suppose that p € R is a prime such that:

(1) p does not divide ay,;
(2) p divides a; for all0 < i < n; and
(3) p* does not divide ay.

Then f(X) is irreducible.

PrROOF: Consider a factorization f(X) = q(X)r(X), where ¢(X) = b, X* +
-+ by and 7(X) = ¢, X™ + -+ 4+ ¢o are polynomials of degrees ¢ and m
respectively. We need to show one of ¢(X),r(X) is a unit.

Since bc,, # 0, we conclude ¢ + m = n and a,, = byc,,. In any event
ap = bocg. Note p does not divide by, c,, by (1) and one of by, cy is not
divisible by p by (3). Without loss of generality we may assume that p does
not divide bg.

Since p is prime Rp is a prime ideal of R. Therefore R/Rp is an integral
domain. Consider the ring homomorphism R[X]| — (R/Rp)[X] defined by

d(X) =d X+ - -+dy — (ds+Rp)X°+- - -+ (do+Rp) = d X°+- - -+dy = d(X),

where 7 = r + Rp for all » € R. Since the leading coefficient of ¢(X) is not
divisible by p we conclude that Deg g(X) = Deg ¢(X). Now

an X" = [(X) = ¢(X)r(X) = ¢(X) r(X).

Therefore ¢(X) has one term since this is true when the polynomial is re-
garded as a polynomial over the field of quotients of R/Rp. Since p does
not divide by it follows that ¢(X) has a non-zero constant term. Therefore
0 = Degq(X) = Degq(X) which means that ¢(X) is a constant polyno-
mial. Since f(X) is primitive g(X) is a unit. We have shown that f(X) is

irreducible. O

2 A Ring Extension with a Root of f(X)

Let f(X)=a, X"+ -+ ag and g(X) = b, X™ + - - - + by be polynomials in
R[X] and suppose that f(X) has degree n. Since f(X)g(X) = a,b, X" +
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-+ «+agpby it follows that Deg f(X)g(X) = Deg f(X)+Deg g(X) for all g(X) €
R[X] if and only if a, is not a zero divisor. When a, = 1 the division
algorithm holds for f(X).

Lemma 3 Suppose that f(X) = X"+ -+ ag € R[X], where n > 0. Then
for g(X) € R[X] there are ¢(X),r(X) € R[X] such that

9(X) = q(X) f(X) +r(X),

where 7(X) = 0 or Degr(X) < Deg f(X). Furthermore q(X),r(X) are

determined by these conditions.

PRrROOF: Mimic the proof of the Division Algorithm when R is a field. O

The Division Algorithm holds when a,, € R* by an easy reduction to the
monic case.

Suppose that f(X) = X" + .-+ 4+ ap € R[X], where n > 1, and let
I = (f(X)). Then an element of I is either zero of has degree greater than

or equal to n. Let
R = R[X]/I

and
S={r(X)eR[X]|r(X)=0 or Degr(X) <n}.

The map j : § — R defined by j(r(X)) = r(X) + [ is bijective. It
is surjective by Lemma 3. Suppose that 7(X),7(X) € S and j(r(X)) =
J(r'(X)). Then r(X) + I = +'(X) + I or equivalently r(X) — ' (X) € I.
But the difference r(X) — /(X)) is zero or has degree less than n. Since an
element of I is zero or has degree greater than or equal to n, necessarily
r(X) —r'(X) = 0. Therefore r(X) = r/(X) which establishes the injectivity
of j. Observe that the restriction ¢ = j|R is in fact an injection of rings.
We regard R as a subring of R via the identification of » € R with
jry=r+I Leta=X+Tand r(X)=0b, ;X" '+ .-+ €S. Then

r(X)+1 = (b X" bbby + 1
(b + DX +D" o4 (b + 1)
bp1™ -+ by

= r(a).



Observe that
fla)=a"+ - +a=(X+I)"+---+(a+ )= f(X)+1=1
thus « is a root of f(X) in R.

Proposition 1 Suppose that R is a commutative ring with unity and f(X) =
X"+ .-+ ap € R[X]|, where n > 1. Then there is a commutative ring with
unity R which contains R as a subring, and an element o € R, such that:

(1) f(a) =0;

(2) each element of R has a unique expression as b, _1a™ '+ -+by, where

bp_1,...,bg € R; and
(3) if f(X) is irreducible and R is a field then R is a field.

Proor: In light of the comments preceding the proposition, we need only
establish part (3). Suppose that f(X) is irreducible and R is a field. Since R
is a subring of R there is a ring homomorphism F' : R[X| — R determined
by F(r) = r for all » € R and F(X) = «a. Thus F is substitution of
a for X. Observe that F' is surjective. Since F(f(X)) = f(a) = 0 it
follows that f(X) € Ker F. Since Ker F' is an ideal of R[X] it follows that
(f(X)) C KerF.

We will show that (f(X)) = Ker F' by showing that Ker ' C (f(X)). Let
g(X) € Ker F. By the Division Algorithm there are ¢(X),r(X) € R[X] such
that g(X) = ¢(X) f(X) +r(X), where r(X) = 0 or Degr(X) < Deg f(X) =
n. Now r(X) = g(X) + (—q(X)) f(X) € Ker F. Writing r(X) = b, 1 X" ' +
o+ + by we have b, 10"+ -+ + by = F(r(X)) = 0. By uniqueness of
expression b,_; = - -+ = by = 0 from which we conclude r(X) = 0. Therefore
9(X) = o(X)/(X) € Ker F.

By the First Isomorphism Theorem for rings R[X]/(f(X)) ~ R. Since
f(X) is irreducible and R[X] is a Principal Ideal Domain (f(X)) is a maximal
ideal of R[X]. Therefore the quotient R[X]/(f(X)) =R is a field. O



