
Roots of Polynomials.
12/03/06 Radford

Throughout R is a commutative ring with unity.

1 Fractional Roots and the Eisenstein Crite-

rion

Suppose that p, q ∈ R and the ideals (p) = Rp, (q) = Rq are comaximal.
Then R = Rp + Rq which means that 1 = ap + bq for some a, b ∈ R. Thus if
c ∈ R and p|qc then p|c as c = 1c = apc + bqc. When R is a Principal Ideal
Domain to say that (p) and (q) are comaximal is the same as saying that 1
is a greatest common divisor of p and q.

Lemma 1 Let R be an integral domain, let F be its field of quotients, and
let f(X) = anX

n + · · · + a0 ∈ R[X]. Suppose p, q ∈ R, where q 6= 0 and
(p), (q) are comaximal, and r = p/q is a root of f(X) in F . Then p|a0 and
q|an.

Proof: Multiplying both sides of the equation

an(p/q)n + · · ·+ a0 = 0

by qn yields the equation anp
n + an−1p

n−1q + · · ·+ a0q
n = 0 in R. Therefore

p(anpn−1 + an−1p
n−2q + · · ·+ a1q

n−1) = −a0q
n

and
anpn = −(an−1p

n−1 + · · ·+ a0q
n−1)q

which means p|a0q
n and q|anpn from which p|a0 and q|an follow. 2

Here is a version of the Eisenstein Criterion.
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Lemma 2 Let R be an integral domain and f(X) = anX
n + · · ·+a0 ∈ R[X]

be primitive. Suppose that p ∈ R is a prime such that:

(1) p does not divide an;

(2) p divides ai for all 0 ≤ i < n; and

(3) p2 does not divide a0.

Then f(X) is irreducible.

Proof: Consider a factorization f(X) = q(X)r(X), where q(X) = b`X
` +

· · · + b0 and r(X) = cmXm + · · · + c0 are polynomials of degrees ` and m
respectively. We need to show one of q(X), r(X) is a unit.

Since b`cm 6= 0, we conclude ` + m = n and an = b`cm. In any event
a0 = b0c0. Note p does not divide b`, cm by (1) and one of b0, c0 is not
divisible by p by (3). Without loss of generality we may assume that p does
not divide b0.

Since p is prime Rp is a prime ideal of R. Therefore R/Rp is an integral
domain. Consider the ring homomorphism R[X] −→ (R/Rp)[X] defined by

d(X) = dsX
s+· · ·+d0 7→ (ds+Rp)Xs+· · ·+(d0+Rp) = dsX

s+· · ·+d0 = d(X),

where r = r + Rp for all r ∈ R. Since the leading coefficient of q(X) is not
divisible by p we conclude that Deg q(X) = Deg q(X). Now

anX
n = f(X) = q(X)r(X) = q(X) r(X).

Therefore q(X) has one term since this is true when the polynomial is re-
garded as a polynomial over the field of quotients of R/Rp. Since p does
not divide b0 it follows that q(X) has a non-zero constant term. Therefore
0 = Deg q(X) = Deg q(X) which means that q(X) is a constant polyno-
mial. Since f(X) is primitive g(X) is a unit. We have shown that f(X) is
irreducible. 2

2 A Ring Extension with a Root of f (X)

Let f(X) = anXn + · · ·+ a0 and g(X) = bmXm + · · ·+ b0 be polynomials in
R[X] and suppose that f(X) has degree n. Since f(X)g(X) = anbmXn+m +
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· · ·+a0b0 it follows that Deg f(X)g(X) = Deg f(X)+Deg g(X) for all g(X) ∈
R[X] if and only if an is not a zero divisor. When an = 1 the division
algorithm holds for f(X).

Lemma 3 Suppose that f(X) = Xn + · · ·+ a0 ∈ R[X], where n ≥ 0. Then
for g(X) ∈ R[X] there are q(X), r(X) ∈ R[X] such that

g(X) = q(X)f(X) + r(X),

where r(X) = 0 or Deg r(X) < Deg f(X). Furthermore q(X), r(X) are
determined by these conditions.

Proof: Mimic the proof of the Division Algorithm when R is a field. 2

The Division Algorithm holds when an ∈ R× by an easy reduction to the
monic case.

Suppose that f(X) = Xn + · · · + a0 ∈ R[X], where n ≥ 1, and let
I = (f(X)). Then an element of I is either zero of has degree greater than
or equal to n. Let

R = R[X]/I

and
S = {r(X) ∈ R[X] | r(X) = 0 or Deg r(X) < n}.

The map j : S −→ R defined by j(r(X)) = r(X) + I is bijective. It
is surjective by Lemma 3. Suppose that r(X), r′(X) ∈ S and j(r(X)) =
j(r′(X)). Then r(X) + I = r′(X) + I or equivalently r(X) − r′(X) ∈ I.
But the difference r(X) − r′(X) is zero or has degree less than n. Since an
element of I is zero or has degree greater than or equal to n, necessarily
r(X)− r′(X) = 0. Therefore r(X) = r′(X) which establishes the injectivity
of j. Observe that the restriction i = j|R is in fact an injection of rings.

We regard R as a subring of R via the identification of r ∈ R with
j(r) = r + I. Let α = X + I and r(X) = bn−1X

n−1 + · · ·+ b0 ∈ S. Then

r(X) + I = (bn−1X
n−1 + · · ·+ b0) + I

= (bn−1 + I)(X + I)n−1 + · · ·+ (b0 + I)

= bn−1α
n−1 + · · ·+ b0

= r(α).
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Observe that

f(α) = αn + · · ·+ a0 = (X + I)n + · · ·+ (a0 + I) = f(X) + I = I;

thus α is a root of f(X) in R.

Proposition 1 Suppose that R is a commutative ring with unity and f(X) =
Xn + · · · + a0 ∈ R[X], where n ≥ 1. Then there is a commutative ring with
unity R which contains R as a subring, and an element α ∈ R, such that:

(1) f(α) = 0;

(2) each element of R has a unique expression as bn−1α
n−1+ · · ·+b0, where

bn−1, . . . , b0 ∈ R; and

(3) if f(X) is irreducible and R is a field then R is a field.

Proof: In light of the comments preceding the proposition, we need only
establish part (3). Suppose that f(X) is irreducible and R is a field. Since R
is a subring of R there is a ring homomorphism F : R[X] −→ R determined
by F (r) = r for all r ∈ R and F (X) = α. Thus F is substitution of
α for X. Observe that F is surjective. Since F (f(X)) = f(α) = 0 it
follows that f(X) ∈ Ker F . Since Ker F is an ideal of R[X] it follows that
(f(X)) ⊆ Ker F .

We will show that (f(X)) = Ker F by showing that Ker F ⊆ (f(X)). Let
g(X) ∈ Ker F . By the Division Algorithm there are q(X), r(X) ∈ R[X] such
that g(X) = q(X)f(X) + r(X), where r(X) = 0 or Deg r(X) < Deg f(X) =
n. Now r(X) = g(X) + (−q(X))f(X) ∈ Ker F . Writing r(X) = bn−1X

n−1 +
· · · + b0 we have bn−1α

n−1 + · · · + b0 = F (r(X)) = 0. By uniqueness of
expression bn−1 = · · · = b0 = 0 from which we conclude r(X) = 0. Therefore
g(X) = q(X)f(X) ∈ Ker F .

By the First Isomorphism Theorem for rings R[X]/(f(X)) ' R. Since
f(X) is irreducible and R[X] is a Principal Ideal Domain (f(X)) is a maximal
ideal of R[X]. Therefore the quotient R[X]/(f(X)) = R is a field. 2
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