Math 516

Fall 2006

Radford

Written Homework # 3

Due at the beginning of class 10/27/06

You may use results form the book in Chapters 1–4 of the text, from notes found on our course web page, and results of the previous homework.

- 1. Let G be a group and $H, K \leq G$.
 - (a) Suppose that $HK \leq G$ and let $f : H \times K \longrightarrow HK$ be defined by f((h,k)) = hk for all $(h,k) \in H \times K$. Show that f is a homomorphism if and only if hk = kh for all $h \in H$ and $k \in K$.

Suppose in addition that $H, K \trianglelefteq G$.

- (b) Show that $HK \trianglelefteq G$.
- (c) Suppose that $H \cap K = (e)$. Show that hk = kh for all $h \in H$ and $k \in K$ and that the homomorphism of part (b) is an isomorphism. [Hint: For $h \in H$ and $k \in K$ consider $hkh^{-1}k^{-1}$.]

2. Use the theory of finite cyclic groups and induction on |G| to prove Cauchy's Theorem for abelian groups:

Theorem 1 Let G be a finite abelian group and suppose that p is a prime integer which divides |G|. Then G as an element of order p.

[Hint: Let $a \in G$ and set $H = \langle a \rangle$. Then |G/H||H| = |G|.]

3. Let G be a finite group. For every positive divisor d of |G| let n_d denote the number of cyclic subgroup of G of order d. Show that

$$|G| = \sum_{d \mid |G|} \varphi(d) n_d,$$

where φ is the Euler phi-function. [Hint: Consider the equivalence relation on G defined by $a \sim b$ if and only if $\langle a \rangle = \langle b \rangle$.]

4. Let G be a finite group of order pqr, where p, q, r are primes and p < q < r.

- (a) Show that G is not simple.
- (b) Show that G has a subgroup of prime index.

[Hint: See the text's discussion of groups of order $30 = 2 \cdot 3 \cdot 5$. If needed, you may use the formula of Exercise 3.]

5. Let G be a finite group of order pqr, where p, q, r are primes, p < q < r, and $r \not\equiv 1 \pmod{q}$. Show that G has a subgroup of index p.