Written Homework \# 3

Due at the beginning of class 10/27/06

You may use results form the book in Chapters 1-4 of the text, from notes found on our course web page, and results of the previous homework.

1. Let G be a group and $H, K \leq G$.
(a) Suppose that $H K \leq G$ and let $f: H \times K \longrightarrow H K$ be defined by $f((h, k))=h k$ for all $(h, k) \in H \times K$. Show that f is a homomorphism if and only if $h k=k h$ for all $h \in H$ and $k \in K$.

Suppose in addition that $H, K \unlhd G$.
(b) Show that $H K \unlhd G$.
(c) Suppose that $H \cap K=(e)$. Show that $h k=k h$ for all $h \in H$ and $k \in K$ and that the homomorphism of part (b) is an isomorphism. [Hint: For $h \in H$ and $k \in K$ consider $h k h^{-1} k^{-1}$.]
2. Use the theory of finite cyclic groups and induction on $|G|$ to prove Cauchy's Theorem for abelian groups:

Theorem 1 Let G be a finite abelian group and suppose that p is a prime integer which divides $|G|$. Then G as an element of order p.
[Hint: Let $a \in G$ and set $H=\langle a\rangle$. Then $|G / H||H|=|G|$.]
3. Let G be a finite group. For every positive divisor d of $|G|$ let n_{d} denote the number of cyclic subgroup of G of order d. Show that

$$
|G|=\sum_{d| | G \mid} \varphi(d) n_{d},
$$

where φ is the Euler phi-function. [Hint: Consider the equivalence relation on G defined by $a \sim b$ if and only if $\langle a\rangle=\langle b\rangle$.]
4. Let G be a finite group of order $p q r$, where p, q, r are primes and $p<q<r$.
(a) Show that G is not simple.
(b) Show that G has a subgroup of prime index.
[Hint: See the text's discussion of groups of order $30=2 \cdot 3 \cdot 5$. If needed, you may use the formula of Exercise 3.]
5. Let G be a finite group of order $p q r$, where p, q, r are primes, $p<q<r$, and $r \not \equiv 1(\bmod q)$. Show that G has a subgroup of index p.

