Radford

Written Homework \# 4

Due at the beginning of class 11/17/06

You may use results form the book in Chapters 1-6 of the text, from notes found on our course web page, and results of the previous homework.

1. Let R be a ring with unity (identity). Show that every element of R is either a unit or a zero divisor if
(a) R is finite or
(b) $R=\mathrm{M}_{n}(k)$, where k is a field.
[Hint: Let $a \in R$ and consider the sequence $1, a, a^{2}, a^{3}, \ldots$, noting that its terms belong to a finite set or a finite-dimensional vector space.]
2. Let R be a commutative ring with unity and let N be the set of nilpotent elements of R.
(a) Show that N is an ideal of R. [Hint: Let $a, b \in R$. You may assume that the binomial theorem holds for a, b and that $(a b)^{n}=a^{n} b^{n}$ for all $n \geq 0$.]
(b) Let $U=\{1+n \mid n \in N\}$. Show that $U \unlhd R^{\times}$. [Hint: Show that $U=\{1-n \mid n \in N\}$ also. If $n^{\ell}=0$ then $1-n^{\ell}=1$.]
(c) Find a ring with unity whose set of nilpotent elements is not an ideal. Justify your answer. [Hint: Consider $\mathrm{M}_{2}(k)$ where k is a field.]
3. Let R be a commutative ring with unity and set $\mathcal{R}=R[[X]]$.
(a) Show that $f: \mathcal{R} \longrightarrow R$ defined by $f\left(\sum_{n=0}^{\infty} a_{n} X^{n}\right)=a_{0}$ is a ring homomorphism.
(b) Show that $\sum_{n=0}^{\infty} a_{n} X^{n} \in \mathcal{R}^{\times}$if and only if $a_{0} \in R^{\times}$.
(c) Show that \mathcal{R} is an integral domain if and only if R is an integral domain.
4. Let R be ring with unity.
(a) Suppose that \mathcal{I} is a non-empty family of ideals of R. Show that $J=$ $\bigcap_{I \in \mathcal{I}} I$ is an ideal of R. (Since R is an ideal of R, it follows that any S subset of R is contained in a smallest ideal of R, namely the intersection of all ideals containing S. This ideal is denoted by (S) and is called the ideal of R generated by S.)
(b) Suppose that R is commutative and $S=\left\{a_{1}, \ldots, a_{r}\right\}$ is a finite subset of R. Show that

$$
(S)=R a_{1}+\cdots+R a_{r} .
$$

5. Let R by any ring with unity 1 and $\mathcal{R}=\mathrm{M}_{n}(R)$. Let J be an ideal of R.
(a) Show that $\mathrm{M}_{n}(J)$ is an ideal of \mathcal{R} and all ideals of \mathcal{R} have this form.
(b) Show that \mathcal{R} is simple if and only if R is simple.
[Hint: For part (a) let $E_{i j} \in \mathrm{M}_{n}(R)$ be defined by $\left(E_{i j}\right)_{k \ell}=\delta_{i, k} \delta_{j, \ell}$, where $\delta_{u, v}=\left\{\begin{array}{lll}1 & : & u=v \\ 0 & : & u \neq v\end{array}\right.$. Work out the formula for $E_{i j} E_{k \ell}$. Show that any $A=$ $\left(A_{u v}\right) \in \mathrm{M}_{n}(R)$ can be written $A=\sum_{u, v=1}^{n} A_{u v} E_{u v}$ and consider $\left.E_{i j} A E_{k \ell}.\right]$
