Math 516

Fall 2006

Radford

Written Homework # 4

Due at the beginning of class 11/17/06

You may use results form the book in Chapters 1–6 of the text, from notes found on our course web page, and results of the previous homework.

1. Let R be a ring with unity (identity). Show that every element of R is either a unit or a zero divisor if

- (a) R is finite or
- (b) $R = M_n(k)$, where k is a field.

[Hint: Let $a \in R$ and consider the sequence $1, a, a^2, a^3, \ldots$, noting that its terms belong to a finite set or a finite-dimensional vector space.]

2. Let R be a commutative ring with unity and let N be the set of nilpotent elements of R.

- (a) Show that N is an ideal of R. [Hint: Let $a, b \in R$. You may assume that the binomial theorem holds for a, b and that $(ab)^n = a^n b^n$ for all $n \ge 0$.]
- (b) Let $U = \{1 + n \mid n \in N\}$. Show that $U \leq R^{\times}$. [Hint: Show that $U = \{1 n \mid n \in N\}$ also. If $n^{\ell} = 0$ then $1 n^{\ell} = 1$.]
- (c) Find a ring with unity whose set of nilpotent elements is *not* an ideal. Justify your answer. [Hint: Consider $M_2(k)$ where k is a field.]
- 3. Let R be a commutative ring with unity and set $\mathcal{R} = R[[X]]$.

- (a) Show that $f : \mathcal{R} \longrightarrow R$ defined by $f(\sum_{n=0}^{\infty} a_n X^n) = a_0$ is a ring homomorphism.
- (b) Show that $\sum_{n=0}^{\infty} a_n X^n \in \mathcal{R}^{\times}$ if and only if $a_0 \in \mathbb{R}^{\times}$.
- (c) Show that \mathcal{R} is an integral domain if and only if R is an integral domain.
- 4. Let R be ring with unity.
 - (a) Suppose that \mathcal{I} is a non-empty family of ideals of R. Show that $J = \bigcap_{I \in \mathcal{I}} I$ is an ideal of R. (Since R is an ideal of R, it follows that any S subset of R is contained in a smallest ideal of R, namely the intersection of all ideals containing S. This ideal is denoted by (S) and is called the ideal of R generated by S.)
 - (b) Suppose that R is commutative and $S = \{a_1, \ldots, a_r\}$ is a finite subset of R. Show that

$$(S) = Ra_1 + \dots + Ra_r.$$

- 5. Let R by any ring with unity 1 and $\mathcal{R} = M_n(R)$. Let J be an ideal of R.
 - (a) Show that $M_n(J)$ is an ideal of \mathcal{R} and all ideals of \mathcal{R} have this form.
 - (b) Show that \mathcal{R} is simple if and only if R is simple.

[Hint: For part (a) let $E_{ij} \in M_n(R)$ be defined by $(E_{ij})_{k\ell} = \delta_{i,k}\delta_{j,\ell}$, where $\delta_{u,v} = \begin{cases} 1 : u = v \\ 0 : u \neq v \end{cases}$. Work out the formula for $E_{ij}E_{k\ell}$. Show that any $A = (A_{uv}) \in M_n(R)$ can be written $A = \sum_{u,v=1}^n A_{uv}E_{uv}$ and consider $E_{ij}AE_{k\ell}$.]