
Math 516 Fall 2006 Radford

Written Homework # 4 Solution
12/10/06

You may use results form the book in Chapters 1–6 of the text, from
notes found on our course web page, and results of the previous homework.

1. (20 total) Let R be a ring with unity (identity). Show that every element
of R is either a unit or a zero divisor if

(a) (10) R is finite or

Solution: Let 0 6= a ∈ R. Since R is finite the list 1 = a0, a, a2, . . .
must contain a repetition. Thus a` = an for some 0 ≤ ` < n. We may
assume that n is the smallest such integer. Note that n− 1 ≥ 0.

Suppose ` = 0. Then 1 = a0 = an = aan−1 = an−1a which means an−1

is an inverse for a.

Suppose ` > 0. Then 0 ≤ ` − 1 < n − 1 and we deduce 0 = a(an−1 −
a`−1) from a` = an. But a`−1 6= an−1 by the minimality of n; thus
an−1 − a`−1 6= 0. We have shown that a is a zero divisor. (Note that
0 = (an−1 − a`−1)a also.)

(b) (10) R = Mn(k), where k is a field.

Solution: Let 0 6= a ∈ R. Since R is finite-dimensional the set of
vectors {1 = a0, a, a2, . . .} can not be independent. Since 1 6= 0 there
is a an n > 0 such that {1, . . . , an−1} is independent and {1, a, . . . , an}
is dependent. In particular

α01 + · · ·+ αna
n = 0,
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where α0, . . . , αn ∈ k and αn 6= 0.

Suppose that α0 6= 0. Since n− 1 ≥ 0 we can write

a(−α−1
0 (α11 + · · ·+ αnan−1)) = 1 = (−α−1

0 (α11 + · · ·+ αnan−1))a.

Thus a has an inverse.

Suppose that α0 = 0. Then a(α11+· · ·+αna
n−1) = 0. Since {1, . . . , an−1}

is independent and αn 6= 0, α11 + · · · + αna
n−1 6= 0. We have shown

that a is a zero divisor. (Note that (α11 + · · ·+ αnan−1)a = 0 also.)

[Hint: Let a ∈ R and consider the sequence 1, a, a2, a3, . . ., noting that its
terms belong to a finite set or a finite-dimensional vector space.]

2. (20 total) Let R be a commutative ring with unity and let N be the set
of nilpotent elements of R.

(a) (8) Show that N is an ideal of R. [Hint: Let a, b ∈ R. You may assume
that the binomial theorem holds for a, b and that (ab)n = anbn for all
n ≥ 0.]

Solution: 0 ∈ N since 01 = 0. Thus N 6= ∅. Suppose that a ∈ N and
r ∈ R. Since an = 0 for some n > 0, the calculation (ra)n = rnan =
rn0 = 0 shows that ar = ra ∈ N . It remains to show that N is an
additive subgroup of R.

Suppose b ∈ N also. Then bm = 0 for some m > 0. Now n+m− 1 ≥ 1
since n,m ≥ 1. By the binomial theorem

(a− b)n+m−1 = (a + (−b))n+m−1 =
n+m−1∑

`=0

Cn+m−1, `(−1)`an+m−1−`b`,

where Cn+m−1, ` is some integer (binomial coefficient).

If 0 ≤ ` < m then n+m−1−` > n−1 which implies n+m−1−` ≥ n.
Thus in any event an+m−1−` = 0 (when 0 ≤ ` < m) or b` = 0 (when
m ≤ ` ≤ n + m − 1.) Therefore (a − b)n+m−1 = 0. We have shown
a− b ∈ N ; thus N is an additive subgroup of R.

(b) (7) Let U = {1 + n |n ∈ N}. Show that U £ R×. [Hint: Show that
U = {1− n |n ∈ N} also. If n` = 0 then 1− n` = 1.]
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Solution: To show U £ R× we need only show U ≤ R× since R is
commutative. 1 ∈ U since 1 = 1 + 0. Suppose that u, u′ ∈ U . Then
u = 1+n and u′ = 1+n′ for some n, n′ ∈ N . Thus uu′ = (1+n)(1+n′) =
1 + (n′ + n + nn′). Since N is an ideal (subring) n′ + n + nn′ ∈ N .
Therefore uu′ ∈ U .

Now n` = 0 for some ` > 0. Since n`+1 = 0 we may assume ` ≥ 2.
Thus (−n)` = (−1)`n` = (−1)`0 = 0. Since n = −(−n), and R is
commutative, the calculation

(1− (−n))(1 + (−n) + (−n)2 + · · ·+ (−n)`−1) = 1− (−n)` = 1

shows that 1+n has an inverse in R which is 1−n+n2−· · ·+(−1)`−1n`−1.
Now −n + n2 − · · · + (−1)`−1n`−1 ∈ N since N is a subring of R.
Therefore u−1 ∈ U .

(c) (5) Find a ring with unity whose set of nilpotent elements is not an
ideal. Justify your answer. [Hint: Consider M2(k) where k is a field.]

Solution: (5) Let A =

(
0 1
0 0

)
and B =

(
0 0
1 0

)
. Then A, B ∈ N

since A2 = 0 = B2, and A + B =

(
0 1
1 0

)
. Since (A + B)2 = I the

sum A+B can not be nilpotent as (A+B)n = 0 implies 0 = (A+B)2n =
((A + B)2)n = In = I, a contradiction. Thus N is not closed under
addition, so N is not an ideal.

Another example. same A. Let C =

(
0 0
1 1

)
. Then AC =

(
1 1
0 0

)

and (AC)2 = AC. Thus 0 6= AC = (AC)n for all n > 0. Therefore
AC 6∈ N which means that N is not an ideal.

Comment: For our examples k could be any commutative ring with
unity. Why k a field? Two by two matrices over the real numbers is a
very familiar object to explore.

3. (20 total) Let R be a commutative ring with unity and set R = R[[X]].

(a) (5) Show that f : R −→ R defined by f(
∑∞

n=0 anXn) = a0 is a ring
homomorphism.
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Solution: Follows directly from definitions

f(
∞∑

n=0

anXn +
∞∑

n=0

bnXn) = f(
∞∑

n=0

(an + bn)Xn)

= a0 + b0

= f(
∞∑

n=0

anXn) + f(
∞∑

n=0

bnXn)

and

f((
∞∑

n=0

anXn)(
∞∑

n=0

bnX
n)) = f(

∞∑

n=0

(
n∑

`=0

an−`b`)X
n)

=
0∑

`=0

an−`b`

= a0b0

= f(
∞∑

n=0

anX
n)f(

∞∑

n=0

bnX
n).

Observe that f(1) = 1.

(b) (10) Show that
∑∞

n=0 anX
n ∈ R× if and only if a0 ∈ R×.

Solution: Suppose A =
∑∞

n=0 anXn ∈ R has inverse B ∈ R. Then by
part (a) we have 1 = f(1) = f(AB) = f(A)f(B) = a0f(B). Since R is
commutative a0 has inverse f(B) ∈ R.

Conversely, suppose that a0 has an inverse in R. We wish to construct
a power series inverse B =

∑∞
n=0 bnX

n for A =
∑∞

n=0 anX
n. Since R is

commutative, B is an inverse for A if and only if

n∑

`=0

an−`b` =

{
1 n = 0
0 n > 0

(1)

since the identity element of R is 1 + 0X + 0X2 + · · ·. We can find
b0, b1, . . . by induction. Our induction hypothesis is for m ≥ 0 that (1)
is satisfied for 0 ≤ n ≤ m.

When m = 0 then n = 0 and the equation to solve is a0b0 = 1. This
has a solution b0 = a−1

0 since a0 has an inverse by assumption.
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Suppose that m ≥ 0 and b0, . . . , bm satisfy (1) for 0 ≤ n ≤ m. Then
b0, . . . , bm+1 satisfy (1) for all 0 ≤ n ≤ m + 1 provided bm+1 satisfies

m∑

`=0

am+1−`b` + a0bm+1 = 0.

Setting bm+1 = −a−1
0 (

∑m
`=0 am+1−`b`) does this.

(c) (5) Show that R is an integral domain if and only if R is an integral
domain.

Solution: We may think of R as a subring of R via the identification
r 7→ r + 0X + 0X2 + · · ·. This map is an injection or rings with unity.
Thus if R is an integral domain the subring R must be also.

Conversely, suppose that R is an integral domain. Since R is a commu-
tative ring with unity, we need only show that when f(X) =

∑∞
n=0 anX

n

and g(X) =
∑∞

n=0 bnX
n are not zero power series in R then f(X)g(X)

is not 0. Since f(X), g(X) 6= 0, each has a first non-zero coefficient
ar, bs respectively. The coefficient of Xr+s in the product f(X)g(X) is

r+s∑

`=0

ar+s−`b` =
r+s∑

`=s

ar+s−`b` = arbs 6= 0

since s < ` implies r + s− ` < r. Thus f(X)g(X) 6= 0.

4. (20 total) Let R be ring with unity.

(a) (10) Suppose that I is a non-empty family of ideals of R. Show that
J =

⋂
I∈I I is an ideal of R. (Since R is an ideal of R, it follows that

any S subset of R is contained in a smallest ideal of R, namely the
intersection of all ideals containing S. This ideal is denoted by (S) and
is called the ideal of R generated by S.)

Solution: From group theory we know that J is an additive subgroup
of R. Let a ∈ J and r ∈ R. Since a ∈ I for all I ∈ I, and each I is an
ideal, ra, ar ∈ I for all I ∈ I and hence ra, ar ∈ J . Therefore J is an
ideal of R.

Comment: No unity is required for part (a).
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(b) (10) Suppose that R is commutative and S = {a1, . . . , ar} is a finite
subset of R. Show that

(S) = Ra1 + · · ·+ Rar.

Solution: Suppose I is an ideal of R with S ⊆ I. Then rai ∈ I for
all r ∈ R, and I is closed under sums. Therefore Ra1 + · · ·+ Rar ⊆ I.
This means Ra1 + · · ·+ Rar ⊆ (S).

Conversely, a = 1a for all a ∈ R shows that S ⊆ Ra1 + · · · + Rar. To
complete the proof we need only show that (S) ⊆ Ra1 + · · ·+Rar; that
is I = Ra1 + · · ·+ Rar is an ideal of R.

As 0 = 0a1 + · · ·+ 0ar it follows that I 6= ∅.
Let s1a1 + · · ·+ srar, s

′
1a1 + · · ·+ s′rar ∈ I. Since R is commutative

(s1a1 + · · · srar)− (s′1a1 + · · · s′rar) = (s1− s′1)a1 + · · ·+(sr− s′r)ar ∈ I.

Therefore I is an additive subgroup of R. For s ∈ R the calculation

s(s1a1 + · · · srar) = (ss1)a1 + · · ·+ (ssr)ar ∈ I

shows that I is a left ideal of R. Since R is commutative, I is an ideal
of R.

Comment: There is a better way of showing that I is an ideal from
general principles. Show that Ra is a left ideal of any ring R for all
a ∈ R. Show that the finite sum of left ideals of R is a left ideal of R
by induction on the number; thus I is an ideal in our case since R is
commutative.

5. (20 total) Let R by any ring with unity 1 and R = Mn(R). Let J be an
ideal of R.

(a) (15) Show that Mn(J) is an ideal of R and all ideals of R have this
form.

Solution: First note that Ei jEk ` = δj kEi ` for all 1 ≤ ı, j, k, ` ≤ n.
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Suppose that J is an ideal of R and set J = Mn(J). Then J 6= ∅ since
J 6= ∅. For A = (Ai j), B = (Bi j) ∈ J and C = (Ci j) ∈ R we have

(A−B)i j = Ai j −Bi j, (CA)i j =
n∑

`=1

Ci `A` j, (AC)i j =
n∑

`=1

Ai `C` j ∈ J

for all 1 ≤ i, j ≤ n since J is an ideal of R. Thus J is an ideal of R.

Conversely, suppose that J is an ideal of R. Let A =
∑n

u,v=1 Au vEu v ∈
J , where Au v ∈ R. Since the elements of each Ei j are in the center of
R, for all 1 ≤ j, k ≤ n and 1 ≤ i, ` ≤ n, the calculation

Ei jAEk ` =
n∑

u,v=1

Au vEi jEu vEk ` =
n∑

u=1

Au kEi jEu `

shows that Aj kEi ` ∈ J . Let J be the set of all elements of R which ap-
pear as an entry in some element ofR. We have shown that Ei jJEk ` =
JEi `. Therefore, by adding, J = Mn(J). It remains to show that J is
an ideal of R.

Since J 6= ∅ necessarily J 6= ∅. Suppose that a, b ∈ J and c ∈ R. Then
aE1 1, bE1 1 ∈ J and the calculations

(a−b)E1 1 = aE1 1−bE1 1, caE1 1 = (cE1 1)(aE1 1), acE1 1 = (aE1 1)(cE1 1) ∈ J
show that a− b, ca, ac ∈ J . Therefore J is an ideal of R.

(b) (5) Show that R is simple if and only if R is simple.

Solution: By part (a) there is a bijective correspondence between the
ideals of R and R = Mn(R). Thus R has 2 ideals if and only if R has
2 ideals.

[Hint: For part (a) let Ei j ∈ Mn(R) be defined by (Ei j)k ` = δi,kδj,`, where

δu,v =

{
1 : u = v
0 : u 6= v

. Work out the formula for Ei jEk `. Show that any A =

(Au v) ∈ Mn(R) can be written A =
∑n

u,v=1 Au vEu v and consider Ei jAEk `.]

Comment: Note that “ideal” in the preceding exercise can not be replaced
by “left ideal”. Take R = k to be a field and n ≥ 2. Then R has 2 left ideals.
For fixed 1 ≤ j ≤ n all matrices with entries zero outside the jth column
form a left ideal of R.
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