Written Homework \# 4 Solution

12/10/06

You may use results form the book in Chapters 1-6 of the text, from notes found on our course web page, and results of the previous homework.

1. (20 total) Let R be a ring with unity (identity). Show that every element of R is either a unit or a zero divisor if
(a) $(\mathbf{1 0}) R$ is finite or

Solution: Let $0 \neq a \in R$. Since R is finite the list $1=a^{0}, a, a^{2}, \ldots$ must contain a repetition. Thus $a^{\ell}=a^{n}$ for some $0 \leq \ell<n$. We may assume that n is the smallest such integer. Note that $n-1 \geq 0$.
Suppose $\ell=0$. Then $1=a^{0}=a^{n}=a a^{n-1}=a^{n-1} a$ which means a^{n-1} is an inverse for a.
Suppose $\ell>0$. Then $0 \leq \ell-1<n-1$ and we deduce $0=a\left(a^{n-1}-\right.$ $a^{\ell-1}$) from $a^{\ell}=a^{n}$. But $a^{\ell-1} \neq a^{n-1}$ by the minimality of n; thus $a^{n-1}-a^{\ell-1} \neq 0$. We have shown that a is a zero divisor. (Note that $0=\left(a^{n-1}-a^{\ell-1}\right) a$ also.)
(b) (10) $R=\mathrm{M}_{n}(k)$, where k is a field.

Solution: Let $0 \neq a \in R$. Since R is finite-dimensional the set of vectors $\left\{1=a^{0}, a, a^{2}, \ldots\right\}$ can not be independent. Since $1 \neq 0$ there is a an $n>0$ such that $\left\{1, \ldots, a^{n-1}\right\}$ is independent and $\left\{1, a, \ldots, a^{n}\right\}$ is dependent. In particular

$$
\alpha_{0} 1+\cdots+\alpha_{n} a^{n}=0
$$

where $\alpha_{0}, \ldots, \alpha_{n} \in k$ and $\alpha_{n} \neq 0$.
Suppose that $\alpha_{0} \neq 0$. Since $n-1 \geq 0$ we can write

$$
a\left(-\alpha_{0}^{-1}\left(\alpha_{1} 1+\cdots+\alpha_{n} a^{n-1}\right)\right)=1=\left(-\alpha_{0}^{-1}\left(\alpha_{1} 1+\cdots+\alpha_{n} a^{n-1}\right)\right) a .
$$

Thus a has an inverse.
Suppose that $\alpha_{0}=0$. Then $a\left(\alpha_{1} 1+\cdots+\alpha_{n} a^{n-1}\right)=0$. Since $\left\{1, \ldots, a^{n-1}\right\}$ is independent and $\alpha_{n} \neq 0, \alpha_{1} 1+\cdots+\alpha_{n} a^{n-1} \neq 0$. We have shown that a is a zero divisor. (Note that $\left(\alpha_{1} 1+\cdots+\alpha_{n} a^{n-1}\right) a=0$ also.)
[Hint: Let $a \in R$ and consider the sequence $1, a, a^{2}, a^{3}, \ldots$, noting that its terms belong to a finite set or a finite-dimensional vector space.]
2. (20 total) Let R be a commutative ring with unity and let N be the set of nilpotent elements of R.
(a) (8) Show that N is an ideal of R. [Hint: Let $a, b \in R$. You may assume that the binomial theorem holds for a, b and that $(a b)^{n}=a^{n} b^{n}$ for all $n \geq 0$.]

Solution: $0 \in N$ since $0^{1}=0$. Thus $N \neq \emptyset$. Suppose that $a \in N$ and $r \in R$. Since $a^{n}=0$ for some $n>0$, the calculation $(r a)^{n}=r^{n} a^{n}=$ $r^{n} 0=0$ shows that $a r=r a \in N$. It remains to show that N is an additive subgroup of R.
Suppose $b \in N$ also. Then $b^{m}=0$ for some $m>0$. Now $n+m-1 \geq 1$ since $n, m \geq 1$. By the binomial theorem

$$
(a-b)^{n+m-1}=(a+(-b))^{n+m-1}=\sum_{\ell=0}^{n+m-1} C_{n+m-1, \ell}(-1)^{\ell} a^{n+m-1-\ell} b^{\ell}
$$

where $C_{n+m-1, \ell}$ is some integer (binomial coefficient).
If $0 \leq \ell<m$ then $n+m-1-\ell>n-1$ which implies $n+m-1-\ell \geq n$. Thus in any event $a^{n+m-1-\ell}=0$ (when $0 \leq \ell<m$) or $b^{\ell}=0$ (when $m \leq \ell \leq n+m-1$.) Therefore $(a-b)^{n+m-1}=0$. We have shown $a-b \in N$; thus N is an additive subgroup of R.
(b) (7) Let $U=\{1+n \mid n \in N\}$. Show that $U \unlhd R^{\times}$. [Hint: Show that $U=\{1-n \mid n \in N\}$ also. If $n^{\ell}=0$ then $1-n^{\ell}=1$.]

Solution: To show $U \unlhd R^{\times}$we need only show $U \leq R^{\times}$since R is commutative. $1 \in U$ since $1=1+0$. Suppose that $u, u^{\prime} \in U$. Then $u=1+n$ and $u^{\prime}=1+n^{\prime}$ for some $n, n^{\prime} \in N$. Thus $u u^{\prime}=(1+n)\left(1+n^{\prime}\right)=$ $1+\left(n^{\prime}+n+n n^{\prime}\right)$. Since N is an ideal (subring) $n^{\prime}+n+n n^{\prime} \in N$. Therefore $u u^{\prime} \in U$.
Now $n^{\ell}=0$ for some $\ell>0$. Since $n^{\ell+1}=0$ we may assume $\ell \geq 2$. Thus $(-n)^{\ell}=(-1)^{\ell} n^{\ell}=(-1)^{\ell} 0=0$. Since $n=-(-n)$, and R is commutative, the calculation

$$
(1-(-n))\left(1+(-n)+(-n)^{2}+\cdots+(-n)^{\ell-1}\right)=1-(-n)^{\ell}=1
$$

shows that $1+n$ has an inverse in R which is $1-n+n^{2}-\cdots+(-1)^{\ell-1} n^{\ell-1}$. Now $-n+n^{2}-\cdots+(-1)^{\ell-1} n^{\ell-1} \in N$ since N is a subring of R. Therefore $u^{-1} \in U$.
(c) (5) Find a ring with unity whose set of nilpotent elements is not an ideal. Justify your answer. [Hint: Consider $\mathrm{M}_{2}(k)$ where k is a field.]

Solution: (5) Let $A=\left(\begin{array}{cc}0 & 1 \\ 0 & 0\end{array}\right)$ and $B=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$. Then $A, B \in N$ since $A^{2}=0=B^{2}$, and $A+B=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. Since $(A+B)^{2}=I$ the sum $A+B$ can not be nilpotent as $(A+B)^{n}=0$ implies $0=(A+B)^{2 n}=$ $\left((A+B)^{2}\right)^{n}=I^{n}=I$, a contradiction. Thus N is not closed under addition, so N is not an ideal.
Another example. same A. Let $C=\left(\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right)$. Then $A C=\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$ and $(A C)^{2}=A C$. Thus $0 \neq A C=(A C)^{n}$ for all $n>0$. Therefore $A C \notin N$ which means that N is not an ideal.

Comment: For our examples k could be any commutative ring with unity. Why k a field? Two by two matrices over the real numbers is a very familiar object to explore.
3. $(20$ total $)$ Let R be a commutative ring with unity and set $\mathcal{R}=R[[X]]$.
(a) (5) Show that $f: \mathcal{R} \longrightarrow R$ defined by $f\left(\sum_{n=0}^{\infty} a_{n} X^{n}\right)=a_{0}$ is a ring homomorphism.

Solution: Follows directly from definitions

$$
\begin{aligned}
f\left(\sum_{n=0}^{\infty} a_{n} X^{n}+\sum_{n=0}^{\infty} b_{n} X^{n}\right) & =f\left(\sum_{n=0}^{\infty}\left(a_{n}+b_{n}\right) X^{n}\right) \\
& =a_{0}+b_{0} \\
& =f\left(\sum_{n=0}^{\infty} a_{n} X^{n}\right)+f\left(\sum_{n=0}^{\infty} b_{n} X^{n}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
f\left(\left(\sum_{n=0}^{\infty} a_{n} X^{n}\right)\left(\sum_{n=0}^{\infty} b_{n} X^{n}\right)\right) & =f\left(\sum_{n=0}^{\infty}\left(\sum_{\ell=0}^{n} a_{n-\ell} b_{\ell}\right) X^{n}\right) \\
& =\sum_{\ell=0}^{0} a_{n-\ell} b_{\ell} \\
& =a_{0} b_{0} \\
& =f\left(\sum_{n=0}^{\infty} a_{n} X^{n}\right) f\left(\sum_{n=0}^{\infty} b_{n} X^{n}\right) .
\end{aligned}
$$

Observe that $f(1)=1$.
(b) (10) Show that $\sum_{n=0}^{\infty} a_{n} X^{n} \in \mathcal{R}^{\times}$if and only if $a_{0} \in R^{\times}$.

Solution: Suppose $A=\sum_{n=0}^{\infty} a_{n} X^{n} \in \mathcal{R}$ has inverse $B \in \mathcal{R}$. Then by part (a) we have $1=f(1)=f(A B)=f(A) f(B)=a_{0} f(B)$. Since R is commutative a_{0} has inverse $f(B) \in R$.
Conversely, suppose that a_{0} has an inverse in R. We wish to construct a power series inverse $B=\sum_{n=0}^{\infty} b_{n} X^{n}$ for $A=\sum_{n=0}^{\infty} a_{n} X^{n}$. Since \mathcal{R} is commutative, B is an inverse for A if and only if

$$
\sum_{\ell=0}^{n} a_{n-\ell} b_{\ell}= \begin{cases}1 & n=0 \tag{1}\\ 0 & n>0\end{cases}
$$

since the identity element of \mathcal{R} is $1+0 X+0 X^{2}+\cdots$. We can find b_{0}, b_{1}, \ldots by induction. Our induction hypothesis is for $m \geq 0$ that (1) is satisfied for $0 \leq n \leq m$.
When $m=0$ then $n=0$ and the equation to solve is $a_{0} b_{0}=1$. This has a solution $b_{0}=a_{0}^{-1}$ since a_{0} has an inverse by assumption.

Suppose that $m \geq 0$ and b_{0}, \ldots, b_{m} satisfy (1) for $0 \leq n \leq m$. Then b_{0}, \ldots, b_{m+1} satisfy (1) for all $0 \leq n \leq m+1$ provided b_{m+1} satisfies

$$
\sum_{\ell=0}^{m} a_{m+1-\ell} b_{\ell}+a_{0} b_{m+1}=0
$$

Setting $b_{m+1}=-a_{0}^{-1}\left(\sum_{\ell=0}^{m} a_{m+1-\ell} b_{\ell}\right)$ does this.
(c) (5) Show that \mathcal{R} is an integral domain if and only if R is an integral domain.

Solution: We may think of R as a subring of \mathcal{R} via the identification $r \mapsto r+0 X+0 X^{2}+\cdots$. This map is an injection or rings with unity. Thus if \mathcal{R} is an integral domain the subring R must be also.

Conversely, suppose that R is an integral domain. Since \mathcal{R} is a commutative ring with unity, we need only show that when $f(X)=\sum_{n=0}^{\infty} a_{n} X^{n}$ and $g(X)=\sum_{n=0}^{\infty} b_{n} X^{n}$ are not zero power series in \mathcal{R} then $f(X) g(X)$ is not 0 . Since $f(X), g(X) \neq 0$, each has a first non-zero coefficient a_{r}, b_{s} respectively. The coefficient of X^{r+s} in the product $f(X) g(X)$ is

$$
\sum_{\ell=0}^{r+s} a_{r+s-\ell} b_{\ell}=\sum_{\ell=s}^{r+s} a_{r+s-\ell} b_{\ell}=a_{r} b_{s} \neq 0
$$

since $s<\ell$ implies $r+s-\ell<r$. Thus $f(X) g(X) \neq 0$.
4. (20 total) Let R be ring with unity.
(a) (10) Suppose that \mathcal{I} is a non-empty family of ideals of R. Show that $J=\bigcap_{I \in \mathcal{I}} I$ is an ideal of R. (Since R is an ideal of R, it follows that any S subset of R is contained in a smallest ideal of R, namely the intersection of all ideals containing S. This ideal is denoted by (S) and is called the ideal of R generated by S.)

Solution: From group theory we know that J is an additive subgroup of R. Let $a \in J$ and $r \in R$. Since $a \in I$ for all $I \in \mathcal{I}$, and each I is an ideal, $r a$, ar $\in I$ for all $I \in \mathcal{I}$ and hence $r a$, ar $\in J$. Therefore J is an ideal of R.

Comment: No unity is required for part (a).
(b) (10) Suppose that R is commutative and $S=\left\{a_{1}, \ldots, a_{r}\right\}$ is a finite subset of R. Show that

$$
(S)=R a_{1}+\cdots+R a_{r} .
$$

Solution: Suppose I is an ideal of R with $S \subseteq I$. Then $r a_{i} \in I$ for all $r \in R$, and I is closed under sums. Therefore $R a_{1}+\cdots+R a_{r} \subseteq I$. This means $R a_{1}+\cdots+R a_{r} \subseteq(S)$.
Conversely, $a=1 a$ for all $a \in R$ shows that $S \subseteq R a_{1}+\cdots+R a_{r}$. To complete the proof we need only show that $(S) \subseteq R a_{1}+\cdots+R a_{r}$; that is $I=R a_{1}+\cdots+R a_{r}$ is an ideal of R.
As $0=0 a_{1}+\cdots+0 a_{r}$ it follows that $I \neq \emptyset$.
Let $s_{1} a_{1}+\cdots+s_{r} a_{r}, s_{1}^{\prime} a_{1}+\cdots+s_{r}^{\prime} a_{r} \in I$. Since R is commutative
$\left(s_{1} a_{1}+\cdots s_{r} a_{r}\right)-\left(s_{1}^{\prime} a_{1}+\cdots s_{r}^{\prime} a_{r}\right)=\left(s_{1}-s_{1}^{\prime}\right) a_{1}+\cdots+\left(s_{r}-s_{r}^{\prime}\right) a_{r} \in I$.
Therefore I is an additive subgroup of R. For $s \in R$ the calculation

$$
s\left(s_{1} a_{1}+\cdots s_{r} a_{r}\right)=\left(s s_{1}\right) a_{1}+\cdots+\left(s s_{r}\right) a_{r} \in I
$$

shows that I is a left ideal of R. Since R is commutative, I is an ideal of R.

Comment: There is a better way of showing that I is an ideal from general principles. Show that $R a$ is a left ideal of any ring R for all $a \in R$. Show that the finite sum of left ideals of R is a left ideal of R by induction on the number; thus I is an ideal in our case since R is commutative.
5. (20 total) Let R by any ring with unity 1 and $\mathcal{R}=\mathrm{M}_{n}(R)$. Let J be an ideal of R.
(a) (15) Show that $\mathrm{M}_{n}(J)$ is an ideal of \mathcal{R} and all ideals of \mathcal{R} have this form.

Solution: First note that $E_{i j} E_{k \ell}=\delta_{j k} E_{i \ell}$ for all $1 \leq 1, j, k, \ell \leq n$.

Suppose that J is an ideal of R and set $\mathcal{J}=\mathrm{M}_{n}(J)$. Then $\mathcal{J} \neq \emptyset$ since $J \neq \emptyset$. For $A=\left(A_{i j}\right), B=\left(B_{i j}\right) \in \mathcal{J}$ and $C=\left(C_{i j}\right) \in \mathcal{R}$ we have

$$
(A-B)_{i j}=A_{i j}-B_{i j},(C A)_{i j}=\sum_{\ell=1}^{n} C_{i \ell} A_{\ell j},(A C)_{i j}=\sum_{\ell=1}^{n} A_{i \ell} C_{\ell j} \in J
$$

for all $1 \leq i, j \leq n$ since J is an ideal of R. Thus \mathcal{J} is an ideal of \mathcal{R}.
Conversely, suppose that \mathcal{J} is an ideal of \mathcal{R}. Let $A=\sum_{u, v=1}^{n} A_{u v} E_{u v} \in$ \mathcal{J}, where $A_{u v} \in R$. Since the elements of each $E_{i j}$ are in the center of R, for all $1 \leq j, k \leq n$ and $1 \leq i, \ell \leq n$, the calculation

$$
E_{i j} A E_{k \ell}=\sum_{u, v=1}^{n} A_{u v} E_{i j} E_{u v} E_{k \ell}=\sum_{u=1}^{n} A_{u k} E_{i j} E_{u \ell}
$$

shows that $A_{j k} E_{i \ell} \in \mathcal{J}$. Let J be the set of all elements of R which appear as an entry in some element of \mathcal{R}. We have shown that $E_{i j} \mathcal{J} E_{k \ell}=$ $J E_{i \ell}$. Therefore, by adding, $\mathcal{J}=\mathrm{M}_{n}(J)$. It remains to show that J is an ideal of R.

Since $\mathcal{J} \neq \emptyset$ necessarily $J \neq \emptyset$. Suppose that $a, b \in J$ and $c \in R$. Then $a E_{11}, b E_{11} \in \mathcal{J}$ and the calculations
$(a-b) E_{11}=a E_{11}-b E_{11}, c a E_{11}=\left(c E_{11}\right)\left(a E_{11}\right), a c E_{11}=\left(a E_{11}\right)\left(c E_{11}\right) \in \mathcal{J}$
show that $a-b, c a, a c \in J$. Therefore J is an ideal of R.
(b) (5) Show that \mathcal{R} is simple if and only if R is simple.

Solution: By part (a) there is a bijective correspondence between the ideals of R and $\mathcal{R}=\mathrm{M}_{n}(R)$. Thus R has 2 ideals if and only if \mathcal{R} has 2 ideals.
[Hint: For part (a) let $E_{i j} \in \mathrm{M}_{n}(R)$ be defined by $\left(E_{i j}\right)_{k \ell}=\delta_{i, k} \delta_{j, \ell}$, where $\delta_{u, v}=\left\{\begin{array}{ccc}1 & : & u=v \\ 0 & : & u \neq v\end{array}\right.$. Work out the formula for $E_{i j} E_{k \ell}$. Show that any $A=$ $\left(A_{u v}\right) \in \mathrm{M}_{n}(R)$ can be written $A=\sum_{u, v=1}^{n} A_{u v} E_{u v}$ and consider $\left.E_{i j} A E_{k \ell} \cdot\right]$
Comment: Note that "ideal" in the preceding exercise can not be replaced by "left ideal". Take $R=k$ to be a field and $n \geq 2$. Then R has 2 left ideals. For fixed $1 \leq j \leq n$ all matrices with entries zero outside the $j^{\text {th }}$ column form a left ideal of \mathcal{R}.

