Math 516

Fall 2006

Radford

Written Homework # 5

Due at the beginning of class 12/08/06

Throughout R is a ring with unity.

1. Let M be an (additive) abelian group and $\operatorname{End}(M)$ be the set of group homomorphisms $f: M \longrightarrow M$.

(a) Show $\operatorname{End}(M)$ is a ring with unity, where (f+g)(m) = f(m) + g(m)and (fg)(m) = f(g(m)) for all $f, g \in \operatorname{End}(M)$ and $m \in M$.

Now suppose that M is a left R-module.

(b) For $r \in R$ define $\sigma_r : M \longrightarrow M$ by $\sigma_r(m) = r \cdot m$ for all $m \in M$. Show that $\sigma_r \in \text{End}(M)$ for all $r \in R$ and $\pi : R \longrightarrow \text{End}(M)$ defined by $\pi(r) = \sigma_r$ for all $r \in R$ is a homomorphism of rings with unity.

2. Let M be a left R-module. For a non-empty subset S of M the subset of R defined by

$$\operatorname{ann}_{R}(S) = \{ r \in R \mid r \cdot s = 0 \ \forall s \in S \}$$

is called the annihilator of S. If $S = \{s\}$ is a singleton we write $\operatorname{ann}_R(s)$ for $\operatorname{ann}_R(\{s\})$.

(a) Suppose that N is a submodule of M. Show that $\operatorname{ann}_R(N)$ is an ideal of R.

Now suppose $m \in M$ is fixed.

- (b) Show that $\operatorname{ann}_R(m)$ is a left ideal of R.
- (c) Let $f: R \longrightarrow R \cdot m$ be defined by $f(r) = r \cdot m$ for all $r \in R$. Show f is a homomorphism of left R-modules and $F: R/\operatorname{ann}_R(m) \longrightarrow R \cdot m$ given by $F(r + \operatorname{ann}_R(m)) = r \cdot m$ for all $r \in R$ is a well-defined isomorphism of left R-modules.

3. Let k be a field, V a vector space over k, and $T \in \operatorname{End}_k(V)$ be a linear endomorphism of V. Then the ring homomorphism $\pi : k[X] \longrightarrow \operatorname{End}_k(V)$ defined by $\pi(f(X)) = f(T)$ for all $f(X) \in k[X]$ determines a left k[X]module structure on V by $f(X) \cdot v = \pi(f(X))(v) = p(T)(v)$ for all $v \in V$.

- (a) Let W be a non-empty subset of V. Show that W is a k[X]-submodule of V if and only if W is a T-invariant subspace of V.
- (b) Suppose that $V = k[X] \cdot v$ is a cyclic k[X]-module. Show that $\operatorname{ann}_{k[X]}(V) = (f(X))$, where f(X) is the minimal polynomial of T.
- 4. Let M be a left R-module.
 - (a) Suppose that \mathcal{N} is a non-empty family of submodules of M. Show that $L = \bigcap_{N \in \mathcal{N}} N$ is a submodule of M.

Since M is submodule of M, it follows that any S subset of M is contained in a smallest submodule of M, namely the intersection of all submodule containing S. This submodule is denoted by (S) and is called the *submodule* of M generated by S.

(b) Let $\emptyset \neq S \subseteq M$. Show that

 $(S) = \{ r_1 \cdot s_1 + \dots + r_{\ell} \cdot s_{\ell} \mid \ell \ge 1, r_1, \dots, r_{\ell} \in R, s_1, \dots, s_{\ell} \in S \}.$

Suppose $f, f': M \longrightarrow M'$ are *R*-module homomorphisms.

- (c) Show that $N = \{m \in M \mid f(m) = f'(m)\}$ is a submodule of M.
- (d) Suppose that S generates M. Show that f = f' if and only if f(s) = f'(s) for all $s \in S$.

5. Use Corollary 2 of "Section 2.3 Supplement" and the equation of Problem 3 of Written Homework 3 to prove the following:

Theorem 1 Let k be a field and suppose that G is a finite subgroup of k^{\times} . Then G is cyclic.