MATH 516 Hour Exam Solution Rad

Name (print)

(1) *Return* this exam copy with your exam booklet. (2) *Write* your solutions in your exam booklet. (3) *Show* your work. (4) There are *four questions* on this exam. (5) Each question counts 25 points. (6) *You are expected to abide by the University's rules concerning academic honesty.*

- 1. (25 points) Let $G = \langle a \rangle$ be a cyclic group of order 35.
 - (a) (5 pts) Find the number of subgroups of G.

Solution: The number of subgroups of G is the number if divisors of |G| = 5.7; thus |4|.

(b) (**5 pts**) Find $|a^{-77}|$.

Solution: $|a^{-77}| = |\langle a^{-77} \rangle| = 35/(-77,35) = 5 \cdot 7/(-7 \cdot 11, 5 \cdot 7) = 5 \cdot 7/7 = 5$.

(c) (5 pts) List the generators of G in the form a^{ℓ} , where $0 \leq \ell < 35$.

Solution: a^{ℓ} generates G if and only if $(\ell, 35) = 1$. Thus $0 \leq \ell < 35$ and multiples of 5, 7 are excluded which means a^{ℓ} , where

 $\ell \in \{1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 22, 23, 24, 26, 27, 29, 31, 32, 33\}$

(d) (5 pts) List the elements of $\langle a^{205} \rangle$ in the form a^{ℓ} , where $0 \leq \ell < 35$.

 $Solution: \ <\!\!a^{205}\!\!> = <\!\!a^{(205,35)}\!\!> = <\!\!a^{(5\cdot41,5\cdot7)}\!\!> = <\!\!a^5\!\!> = \boxed{\{e = a^0, a^5, a^{10}, a^{15}, a^{20}, a^{25}, a^{30}\}}$

(e) (5 pts) Is G the only abelian group of order 35? Justify your answer.

Solution: There is only one possible primary decomposition of such a group, namely $\mathbf{Z}_5 \times \mathbf{Z}_7$ (up to isomophism). Thus yes.

2. (25 points) Let G be a group, let $H \leq G$, let A be the set of left cosets of H in G, and finally let $\pi : G \longrightarrow S_A$ be the permutation representation induced by the left action of G on A given by $g \cdot (aH) = gaH$ for all $g \in G$ and $aH \in A$.

(a) Show that $\operatorname{Ker} \pi$ is the largest normal subgroup of G which is contained in H.

Solution: Suppose $a \in \text{Ker }\pi$. Then $\pi(a)(gH) = gH$, or equivalently agH = gH, for all $g \in G$. Letting g = e note that aH = H which implies $a \in H$. Therefore $\text{Ker }\pi \subseteq H$. Kernels are always normal subgroups. (5 pts)

Conversely, suppose $N \leq G$ and $N \subseteq H$. Let $a \in N$ and $g \in G$. Then $agH = g(g^{-1}ag)H = gH$ since $g^{-1}ag \in N \subseteq H$. Therefore $\pi(a)(gH) = gH$ for all $gH \in A$ which means $a \in \text{Ker } \pi$; hence $N \subseteq \text{Ker } \pi$. (5 pts)

(b) Now suppose that G is finite, |G:H| = n, and |G| > n!. Show that H contains a normal subgroup $(e) \neq N$ of G.

Solution: Note that |A| = |G : H| = n. If $|\text{Ker }\pi| = 1$ then π is injective and therefore $n! < |G| = |\pi(G)| \le |S_A| = n!$, a contradiction. Therefore $(e) \ne \text{Ker }\pi \subseteq H$; the inclusion follows by part (a). (15 pts)

- 3. (25 points) Let $f, g: G \longrightarrow G'$ be group homomorphisms.
 - (a) (5 pts) Suppose that $S \subseteq G$ is a non-empty set. Show that $f(\langle S \rangle) = \langle f(S) \rangle$.

Solution: Perhaps the most easily seen way is to use the constructive formulation of $\langle S \rangle$ as many did. Here is an element free proof.

 $S \subseteq \langle S \rangle$ implies $f(S) \subseteq \langle f(S) \rangle \leq G'$ and thus $S \subseteq f^{-1}(\langle f(S) \rangle) \leq G$. Therefore $\langle S \rangle \subseteq f^{-1}(\langle f(S) \rangle)$ and consequently $f(\langle S \rangle) \subseteq \langle f(S) \rangle$. Conversely, $S \subseteq \langle S \rangle \leq G$ implies $f(S) \subseteq f(\langle S \rangle) \leq G'$. Thus $\langle f(S) \rangle \subseteq f(\langle S \rangle)$.

(b) (6 pts) Suppose that f is surjective. Use part (a) to show that if G is finitely generated (respectively cyclic) implies G' is finitely generated (respectively cyclic).

Solution: Suppose G is finitely generated. Then $G = \langle S \rangle$ for some finite subset S of G. By part (a), $G' = f(G) = f(\langle S \rangle) = \langle f(S) \rangle$. Since f(S) is finite, G' is finitely generated. When G is cyclic we can take $S = \{a\}$ for some $a \in G$ in which case $f(S) = \{f(a)\}$ generates G'; thus G' is cyclic.

(c) (6 pts) Show that $H = \{a \in G | f(a) = g(a)\} \le G$.

Solution: $e \in H$ as f(e) = e' = g(e). Therefore $H \neq \emptyset$. Let $a, b \in H$. Then

$$f(ab^{-1}) = f(a)f(b^{-1}) = f(a)f(b)^{-1} = g(a)g(b)^{-1} = g(a)g(b^{-1}) = g(ab^{-1})$$

which implies $ab^{-1} \in H$. Therefore $H \leq G$.

(d) (8 pts) Suppose $S \subseteq G$ generates G and f(s) = g(s) for all $s \in S$. Show that f = g.

Solution: We use part (c). By assumption $S \subseteq H \leq G$. Therefore $G = \langle S \rangle \subseteq H \subseteq G$ which implies H = G; this is equivalent to the conclusion.

4. (25 points) Let G be a finite group of order 5.7.17.

(a) (15 pts) Show that G has a normal subgroup of order 7 or 17.

Solution: Let H_p denote a Sylow *p*-subgroup of *G*. By the Sylow Theorems $n_{17} = 1, 35 (= 1+17\cdot 2)$ and $n_7 = 1, 85 (= 1+7\cdot 12)$. If $n_{17} = 35$ and $n_7 = 85$ then the number of generators of the Sylow 17-subgroups plus the same of the Sylow 7-subgroups is $35\cdot 16+85\cdot 6>35\cdot 17=|G|$, contradiction. Therefore $n_{17} = 1$ or $n_7 = 1$ which means $H_{17} \leq G$ or $H_7 \leq G$.

(b) (10 pts) Show that G has a subgroup of index 5. [Hint: Consider the product of two appropriate Sylow p-subgroups.]

Solution: Since one of H_{17}, H_7 is a normal subgroup of $G, H_7H_{17} \leq G$. Now $H_7 \cap H_{17} \subseteq H_7, H_{17}$ means $|H_7 \cap H_{17}|$ divides $|H_7| = 7$ and $|H_{17}| = 17$. Therefore $|H_7 \cap H_{17}| = 1$ and $|H_7H_{17}| = |H_7||H_{17}|/|H_7 \cap H_{17}| = 7.17/1 = 7.17$. Since $|G : H_7H_{17}| = |G|/|H_7H_{17}| = 5.7.17/7.17 = 5$ we are done.