Name (print) \qquad
(1) Return this exam copy with your exam booklet. (2) Write your solutions in your exam booklet. (3) Show your work. (4) There are four questions on this exam. (5) Each question counts 25 points. (6) You are expected to abide by the University's rules concerning academic honesty.

1. ($\mathbf{2 5}$ points) Let $G=\langle a\rangle$ be a cyclic group of order 35 .
(a) (5 pts) Find the number of subgroups of G.

Solution: The number of subgroups of G is the number if divisors of $|G|=5 \cdot 7$; thus 4 .
(b) (5 pts) Find $\left|a^{-77}\right|$.

Solution: $\left|a^{-77}\right|=\left|<a^{-77}>\right|=35 /(-77,35)=5 \cdot 7 /(-7 \cdot 11,5 \cdot 7)=5 \cdot 7 / 7=5$.
(c) $(5 \mathrm{pts})$ List the generators of G in the form a^{ℓ}, where $0 \leq \ell<35$.

Solution: a^{ℓ} generates G if and only if $(\ell, 35)=1$. Thus $0 \leq \ell<35$ and multiples of 5,7 are excluded which means a^{ℓ}, where

$$
\ell \in\{1,2,3,4,6,7,8,9,11,12,13,16,17,18,19,22,23,24,26,27,29,31,32,33\} .
$$

(d) ($5 \mathbf{p t s}$) List the elements of $<a^{205}>$ in the form a^{ℓ}, where $0 \leq \ell<35$.

Solution: $\left.\left.\left.\left\langle a^{205}\right\rangle=<a^{(205,35)}\right\rangle=<a^{(5 \cdot 41,5 \cdot 7)}\right\rangle=<a^{5}\right\rangle=\left\{e=a^{0}, a^{5}, a^{10}, a^{15}, a^{20}, a^{25}, a^{30}\right\}$.
(e) (5 pts) Is G the only abelian group of order 35? Justify your answer.

Solution: There is only one possible primary decomposition of such a group, namely $\mathbf{Z}_{5} \times \mathbf{Z}_{7}$ (up to isomophism). Thus yes.
2. (25 points) Let G be a group, let $H \leq G$, let A be the set of left cosets of H in G, and finally let $\pi: G \longrightarrow S_{A}$ be the permutation representation induced by the left action of G on A given by $g \cdot(a H)=g a H$ for all $g \in G$ and $a H \in A$.
(a) Show that $\operatorname{Ker} \pi$ is the largest normal subgroup of G which is contained in H.

Solution: Suppose $a \in \operatorname{Ker} \pi$. Then $\pi(a)(g H)=g H$, or equivalently $a g H=g H$, for all $g \in G$. Letting $g=e$ note that $a H=H$ which implies $a \in H$. Therefore $\operatorname{Ker} \pi \subseteq H$. Kernels are always normal subgroups. (5 pts)

Conversely, suppose $N \unlhd G$ and $N \subseteq H$. Let $a \in N$ and $g \in G$. Then $a g H=$ $g\left(g^{-1} a g\right) H=g H$ since $g^{-1} a g \in N \subseteq H$. Therefore $\pi(a)(g H)=g H$ for all $g H \in A$ which means $a \in \operatorname{Ker} \pi$; hence $N \subseteq \operatorname{Ker} \pi$. ($5 \mathbf{p t s}$)
(b) Now suppose that G is finite, $|G: H|=n$, and $|G|>n$!. Show that H contains a normal subgroup $(e) \neq N$ of G.

Solution: Note that $|A|=|G: H|=n$. If $|\operatorname{Ker} \pi|=1$ then π is injective and therefore $n!<|G|=|\pi(G)| \leq\left|S_{A}\right|=n!$, a contradiction. Therefore $(e) \neq \operatorname{Ker} \pi \subseteq H$; the inclusion follows by part (a). ($\mathbf{1 5} \mathbf{~ p t s}$)
3. ($\mathbf{2 5}$ points) Let $f, g: G \longrightarrow G^{\prime}$ be group homomorphisms.
(a) (5 pts) Suppose that $S \subseteq G$ is a non-empty set. Show that $f(<S>)=<f(S)\rangle$.

Solution: Perhaps the most easily seen way is to use the constructive formulation of $\langle S\rangle$ as many did. Here is an element free proof.
$S \subseteq<S>$ implies $f(S) \subseteq<f(S)>\leq G^{\prime}$ and thus $S \subseteq f^{-1}(<f(S)>) \leq G$. Therefore $<S>\subseteq f^{-1}(<f(S)>)$ and consequently $f(<S>) \subseteq<f(S)>$.

Conversely, $S \subseteq<S>\leq G$ implies $f(S) \subseteq f(<S>) \leq G^{\prime}$. Thus $<f(S)>\subseteq f(<S>)$.
(b) ($6 \mathbf{p t s}$) Suppose that f is surjective. Use part (a) to show that if G is finitely generated (respectively cyclic) implies G^{\prime} is finitely generated (respectively cyclic).

Solution: Suppose G is finitely generated. Then $G=\langle S\rangle$ for some finite subset S of G. By part (a), $G^{\prime}=f(G)=f(<S>)=<f(S)>$. Since $f(S)$ is finite, G^{\prime} is finitely generated. When G is cyclic we can take $S=\{a\}$ for some $a \in G$ in which case $f(S)=\{f(a)\}$ generates G^{\prime}; thus G^{\prime} is cyclic.
(c) (6 pts) Show that $H=\{a \in G \mid f(a)=g(a)\} \leq G$.

Solution: $e \in H$ as $f(e)=e^{\prime}=g(e)$. Therefore $H \neq \emptyset$. Let $a, b \in H$. Then

$$
f\left(a b^{-1}\right)=f(a) f\left(b^{-1}\right)=f(a) f(b)^{-1}=g(a) g(b)^{-1}=g(a) g\left(b^{-1}\right)=g\left(a b^{-1}\right)
$$

which implies $a b^{-1} \in H$. Therefore $H \leq G$.
(d) (8 pts) Suppose $S \subseteq G$ generates G and $f(s)=g(s)$ for all $s \in S$. Show that $f=g$.

Solution: We use part (c). By assumption $S \subseteq H \leq G$. Therefore $G=\langle S\rangle \subseteq H \subseteq G$ which implies $H=G$; this is equivalent to the conclusion.
4. ($\mathbf{2 5}$ points) Let G be a finite group of order $5 \cdot 7 \cdot 17$.
(a) ($\mathbf{1 5} \mathbf{~ p t s}$) Show that G has a normal subgroup of order 7 or 17 .

Solution: Let H_{p} denote a Sylow p-subgroup of G. By the Sylow Theorems $n_{17}=1,35(=$ $1+17 \cdot 2)$ and $n_{7}=1,85(=1+7 \cdot 12)$. If $n_{17}=35$ and $n_{7}=85$ then the number of generators of the Sylow 17 -subgroups plus the same of the Sylow 7 -subgroups is $35 \cdot 16+85 \cdot 6>35 \cdot 17=$ $|G|$, contradiction. Therefore $n_{17}=1$ or $n_{7}=1$ which means $H_{17} \unlhd G$ or $H_{7} \unlhd G$.
(b) ($\mathbf{1 0} \mathbf{~ p t s})$ Show that G has a subgroup of index 5 . [Hint: Consider the product of two appropriate Sylow p-subgroups.]

Solution: Since one of H_{17}, H_{7} is a normal subgroup of $G, H_{7} H_{17} \leq G$. Now $H_{7} \cap H_{17} \subseteq$ H_{7}, H_{17} means $\left|H_{7} \cap H_{17}\right|$ divides $\left|H_{7}\right|=7$ and $\left|H_{17}\right|=17$. Therefore $\left|H_{7} \cap H_{17}\right|=1$ and $\left|H_{7} H_{17}\right|=\left|H_{7}\right|\left|H_{17}\right| /\left|H_{7} \cap H_{17}\right|=7 \cdot 17 / 1=7 \cdot 17$. Since $\left|G: H_{7} H_{17}\right|=|G| /\left|H_{7} H_{17}\right|=$ $5 \cdot 7 \cdot 17 / 7 \cdot 17=5$ we are done.

