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Let S be be a non-empty set and let G be a semigroup. We define a
binary operation on the set Fun (S, G) of all functions f : S −→ G by
pointwise multiplication, that is

(fg)(s) = f(s)g(s) (1)

for all f, g ∈ Fun (S, G) and s ∈ S. Observe that Fun (S,G) is a semigroup.
Further if G is a monoid (respectively group) then Fun (S, G) is a monoid
(respectively group).

If the binary operation of S is written as addition then (1) is written

(f + g)(s) = f(s) + g(s) (2)

for all f, g ∈ Fun (S, G) and s ∈ S. If S is abelian then Fun (S, G) is abelian.

Lemma 1 Suppose that S = G = A is an (additive) abelian group. Then
the set End (A) of group endomorphisms of A is an additive subgroup of
Fun (A,A) which is a ring with identity IA whose product is composition. 2

A comment on the lemma. Note that Fun (A,A) is an additive abelian
group and a monoid under function composition. The distributive law (f +
g)◦h = f◦h + g◦h holds for all f, g, h ∈ Fun (S, G). For f ∈ Fun (S, G) the
other distributive law

f◦(g + h) = f◦g + f◦h (3)

holds for all g, h ∈ Fun (S, G) if and only if f ∈ nd (A). The necessity is seen
by taking g, h to be constant functions.

Note the analogy between End (A), where A is an abelian group, and SA,
where A is a non-empty set.

From this point on R is a ring. Then Fun (S, R) is an additive abelian
group. We will assume S has additional structure which will give certain
additive subgroups R of Fun (S, R) a multiplication which affords R a ring
structure.
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Definition 1 A partial semigroup is a triple (S,S,m), where S,S are non-
empty sets, S ⊆ S×S, and m : S −→ S, (a, b) 7→ ab, is a function which
satisfies: (a, b), (ab, c) ∈ S if and only if (b, c), (a, bc) ∈ S, in which case
(ab)c = a(bc), for all a, b, c ∈ S.

Note that a semigroup is a partial semigroup. We will denote a par-
tial semigroup (S,S,m) by the set S, following the notation convention for
semigroups and other algebraic structures.

From this point on S is a partial semigroup. Let a, b, c ∈ S. We say that
ab is defined if (a, b) ∈ S. The technical condition in the definition can be
restated as: ab and (ab)c are defined if and only if bc and a(bc) are defined,
in which case (ab)c = a(bc).

For f, g ∈ Fun (S, R) and s ∈ S let

Sf,g,s = {(u, v) ∈ S |uv = s, f(u), g(v) 6= 0}.
Observe that if Sf,g,s is finite and not empty then

(fg)(s) =
∑

(u,v)∈S, uv=s

f(u)g(v) (4)

is well-defined since the sum has terms and the number of non-zero terms is
finite. If Sf,g,s = ∅ then we set (fg)(s) = 0.

Proposition 1 Let S be a partial semigroup, let R be a ring, and suppose
R ⊆ Fun (S, R) be an additive subgroup such that for all f, g ∈ R the sets
Sf,g,s are finite for all s ∈ S and fg ∈ R, where the product is defined by (4).
Then R is a ring under these operations.

Proof: We begin a proof. Establishing associativity showcases the role of
partial semigroups. Suppose f, g, h ∈ R. Then for s ∈ S we have

((fg)h)(s) =
∑

(x,w)∈S
xw=s

(fg)(x)g(w)

=
∑

(x,w)∈S
xw=s




∑

(u,v)∈S
uv=x

(f(u)g(v))g(w)




=
∑

(u,v,w)∈S×S×S

(u,v),(uv,w)∈S, (uv)w=s

(f(u)g(v))g(w).
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The last equation follows from the fact that there is a set bijection between

{((x,w), (u, v)) | (x,w), (u, v) ∈ S, xw = s, uv = x}
and

{(u, v, w) ∈ S×S×S | (u, v), (uv, w) ∈ S, (uv)w = s}
given by

((x,w), (u, v)) 7→ (u, v, w)

whose inverse is given by

(u, v, w) 7→ ((uv, w), (u, v)).

Likewise
(f(gh))(s) =

∑

(u,v,w)∈S×S×S

(v,w), (u,vw)∈S, u(vw)=s

f(u)(g(v)g(w)).

Thus ((fg)h)(s) = (f(gh))(s) for all s ∈ S which means (fg)h = f(gh) 2

Example 1 Let the set R consist of all functions f : S −→ R such that
f(s) = 0 except for finitely many s ∈ S. Then the hypothesis of Proposition
1 is satisfied and therefore R is a ring with addition and multiplication given
by (2) and (4) respectively.

We can represent elements f ∈ R by sums
∑n

i=1 aisi, where s1, . . . , sn ∈ S
are distinct, a1, . . . , an ∈ R, and

f(s) =

{
ai : s = si for some 1 ≤ i ≤ n
0 : otherwise

.

Suppose that S is a semigroup. Then

(ag)(bh) = ab(gh) for all a, b ∈ R and g, h ∈ S.

In this case (
n∑

i=1

aigi

) (
n∑

i=1

bihi

)
=

n∑

i=1

m∑

j=1

aibj(gihj).

In this case R is a called the semigroup ring of S with coefficients in R and
is denoted RS. If S is a monoid (respectively group) then RS is called the
monoid (respectively group) ring of S with coefficients in R.
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Example 2 Let S = Z under addition and let R be the set of all functions
f : Z −→ R such that there exists an N ∈ Z such that f(n) = 0 for all
n < N . Write such a function as a formal sum

f =
∞∑

n=N

anxn, where f(n) = an ∀n ≥ N .

Then the hypothesis of Proposition 1 is satisfied and therefore R is a ring
with addition and multiplication given by (2) and (4) respectively.

Suppose that R is commutative. Then the ring R of the preceding ex-
ample is called the ring of formal Laurent series with coefficients in R and
is denoted R((x)). The set of all f ∈ R((x)) of the form f =

∑∞
n=0 anx

n

is a subring of R((x)) and is called the ring of formal power series with
coefficients in R and is denoted R[[x]].

Apropos of Example 1, the set of all f ∈ Fun (Z, R) such that f(n) = 0
for all but finitely many n ∈ Z is a subring of R[[x]] and is called the ring of
polynomials in indeterminate x with coefficients in R and is denoted R[x].

When R is a field R((x)) is a field and thus R[[x]], R[x] are integral
domains.

Let I be a non-empty set. Then S = I×I is a partial semigroup, where
(i, j)·(k, `) is defined if and only if j = k, in which case (i, j)·(k, `) = (i, `).

Example 3 Let I be finite. Then R = Fun (S,R) is a ring with operations
given by (2) and (4) respectively by virtue of Example 1.

The preceding example is very familiar. Identify f ∈ R with (ai j), where
f((i, j)) = ai j. Under this identification R = Mn(R), the ring of n×n
matrices with coefficients in R, where n = |I|.

When I is not necessarily finite there are interesting variations on R of
the preceding example. For example, R can be taken to be the ring of all
“row finite matrices” with coefficients in R. Row finite matrices are those
functions f = (ai j), where for all i ∈ I there are only finitely many j ∈ I such
that ai j 6= 0. Likewise R can be taken to be the ring of all “column finite
matrices” with coefficients in R. Column finite matrices are those functions
f = (ai j), where for all j ∈ I there are only finitely many i ∈ I such that
ai j 6= 0.
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