Basic Examples of Rings

10/28/08 Radford

Let S be be a non-empty set and let G be a semigroup. We define a binary operation on the set $\operatorname{Fun}(S, G)$ of all functions $f: S \longrightarrow G$ by pointwise multiplication, that is

$$
\begin{equation*}
(f g)(s)=f(s) g(s) \tag{1}
\end{equation*}
$$

for all $f, g \in \operatorname{Fun}(S, G)$ and $s \in S$. Observe that $\operatorname{Fun}(S, G)$ is a semigroup. Further if G is a monoid (respectively group) then $\operatorname{Fun}(S, G)$ is a monoid (respectively group).

If the binary operation of S is written as addition then (1) is written

$$
\begin{equation*}
(f+g)(s)=f(s)+g(s) \tag{2}
\end{equation*}
$$

for all $f, g \in \operatorname{Fun}(S, G)$ and $s \in S$. If S is abelian then $\operatorname{Fun}(S, G)$ is abelian.
Lemma 1 Suppose that $S=G=A$ is an (additive) abelian group. Then the set $\operatorname{End}(A)$ of group endomorphisms of A is an additive subgroup of Fun (A, A) which is a ring with identity I_{A} whose product is composition.

A comment on the lemma. Note that $\operatorname{Fun}(A, A)$ is an additive abelian group and a monoid under function composition. The distributive law $(f+$ $g) \circ h=f \circ h+g \circ h$ holds for all $f, g, h \in \operatorname{Fun}(S, G)$. For $f \in \operatorname{Fun}(S, G)$ the other distributive law

$$
\begin{equation*}
f \circ(g+h)=f \circ g+f \circ h \tag{3}
\end{equation*}
$$

holds for all $g, h \in \operatorname{Fun}(S, G)$ if and only if $f \in \operatorname{nd}(A)$. The necessity is seen by taking g, h to be constant functions.

Note the analogy between $\operatorname{End}(A)$, where A is an abelian group, and S_{A}, where A is a non-empty set.

From this point on R is a ring. Then $\operatorname{Fun}(S, R)$ is an additive abelian group. We will assume S has additional structure which will give certain additive subgroups \mathcal{R} of $\operatorname{Fun}(S, R)$ a multiplication which affords \mathcal{R} a ring structure.

Definition $1 A$ partial semigroup is a triple (S, \mathcal{S}, m), where S, \mathcal{S} are nonempty sets, $\mathcal{S} \subseteq S \times S$, and $m: \mathcal{S} \longrightarrow S, \quad(a, b) \mapsto a b$, is a function which satisfies: $(a, b),(a b, c) \in \mathcal{S}$ if and only if $(b, c),(a, b c) \in \mathcal{S}$, in which case $(a b) c=a(b c)$, for all $a, b, c \in S$.

Note that a semigroup is a partial semigroup. We will denote a partial semigroup (S, \mathcal{S}, m) by the set S, following the notation convention for semigroups and other algebraic structures.

From this point on S is a partial semigroup. Let $a, b, c \in S$. We say that $a b$ is defined if $(a, b) \in \mathcal{S}$. The technical condition in the definition can be restated as: $a b$ and $(a b) c$ are defined if and only if $b c$ and $a(b c)$ are defined, in which case $(a b) c=a(b c)$.

For $f, g \in \operatorname{Fun}(S, R)$ and $s \in S$ let

$$
S_{f, g, s}=\{(u, v) \in \mathcal{S} \mid u v=s, f(u), g(v) \neq 0\} .
$$

Observe that if $S_{f, g, s}$ is finite and not empty then

$$
\begin{equation*}
(f g)(s)=\sum_{(u, v) \in \mathcal{S}, u v=s} f(u) g(v) \tag{4}
\end{equation*}
$$

is well-defined since the sum has terms and the number of non-zero terms is finite. If $S_{f, g, s}=\emptyset$ then we set $(f g)(s)=0$.

Proposition 1 Let S be a partial semigroup, let R be a ring, and suppose $\mathcal{R} \subseteq \operatorname{Fun}(S, R)$ be an additive subgroup such that for all $f, g \in \mathcal{R}$ the sets $S_{f, g, s}$ are finite for all $s \in S$ and $f g \in \mathcal{R}$, where the product is defined by (4). Then \mathcal{R} is a ring under these operations.

Proof: We begin a proof. Establishing associativity showcases the role of partial semigroups. Suppose $f, g, h \in \mathcal{R}$. Then for $s \in S$ we have

$$
\begin{aligned}
((f g) h)(s) & =\sum_{\substack{(x, w) \in \mathcal{S} \\
x w w=S}}(f g)(x) g(w) \\
& =\sum_{\substack{(x, w) \in \mathcal{S} \\
x w=S}}\left(\sum_{\substack{(u, v) \in \mathcal{S} \\
u v v=x}}(f(u) g(v)) g(w)\right) \\
& =\sum_{\substack{(u, v, w) \in S \times S \times S \\
(u, v),(u v, w) \in \mathcal{S},(u v) w=s}}(f(u) g(v)) g(w) .
\end{aligned}
$$

The last equation follows from the fact that there is a set bijection between

$$
\{((x, w),(u, v)) \mid(x, w),(u, v) \in \mathcal{S}, x w=s, u v=x\}
$$

and

$$
\{(u, v, w) \in S \times S \times S \mid(u, v),(u v, w) \in \mathcal{S},(u v) w=s\}
$$

given by

$$
((x, w),(u, v)) \mapsto(u, v, w)
$$

whose inverse is given by

$$
(u, v, w) \mapsto((u v, w),(u, v)) .
$$

Likewise

$$
(f(g h))(s)=\sum_{\substack{(u, v, w) \in S \times S \times S \\(v, w),(u, v w) \in \mathcal{S}, u(v w)=s}} f(u)(g(v) g(w)) .
$$

Thus $((f g) h)(s)=(f(g h))(s)$ for all $s \in S$ which means $(f g) h=f(g h)$
Example 1 Let the set \mathcal{R} consist of all functions $f: S \longrightarrow R$ such that $f(s)=0$ except for finitely many $s \in S$. Then the hypothesis of Proposition 1 is satisfied and therefore \mathcal{R} is a ring with addition and multiplication given by (2) and (4) respectively.

We can represent elements $f \in \mathcal{R}$ by sums $\sum_{i=1}^{n} a_{i} s_{i}$, where $s_{1}, \ldots, s_{n} \in S$ are distinct, $a_{1}, \ldots, a_{n} \in R$, and

$$
f(s)=\left\{\begin{array}{ll}
a_{i} & : s=s_{i} \text { for some } 1 \leq i \leq n \\
0 & :
\end{array} \text { otherwise } .\right.
$$

Suppose that S is a semigroup. Then

$$
(a g)(b h)=a b(g h) \text { for all } a, b \in R \text { and } g, h \in S .
$$

In this case

$$
\left(\sum_{i=1}^{n} a_{i} g_{i}\right)\left(\sum_{i=1}^{n} b_{i} h_{i}\right)=\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i} b_{j}\left(g_{i} h_{j}\right) .
$$

In this case \mathcal{R} is a called the semigroup ring of S with coefficients in R and is denoted $R S$. If S is a monoid (respectively group) then $R S$ is called the monoid (respectively group) ring of S with coefficients in R.

Example 2 Let $S=\mathbf{Z}$ under addition and let \mathcal{R} be the set of all functions $f: \mathbf{Z} \longrightarrow R$ such that there exists an $N \in \mathbf{Z}$ such that $f(n)=0$ for all $n<N$. Write such a function as a formal sum

$$
f=\sum_{n=N}^{\infty} a_{n} x^{n}, \quad \text { where } f(n)=a_{n} \quad \forall n \geq N
$$

Then the hypothesis of Proposition 1 is satisfied and therefore \mathcal{R} is a ring with addition and multiplication given by (2) and (4) respectively.

Suppose that R is commutative. Then the ring \mathcal{R} of the preceding example is called the ring of formal Laurent series with coefficients in R and is denoted $R((x))$. The set of all $f \in R((x))$ of the form $f=\sum_{n=0}^{\infty} a_{n} x^{n}$ is a subring of $R((x))$ and is called the ring of formal power series with coefficients in R and is denoted $R[[x]]$.

Apropos of Example 1, the set of all $f \in \operatorname{Fun}(\mathbf{Z}, R)$ such that $f(n)=0$ for all but finitely many $n \in \mathbf{Z}$ is a subring of $R[[x]]$ and is called the ring of polynomials in indeterminate x with coefficients in R and is denoted $R[x]$.

When R is a field $R((x))$ is a field and thus $R[[x]], R[x]$ are integral domains.

Let I be a non-empty set. Then $S=I \times I$ is a partial semigroup, where $(i, j) \cdot(k, \ell)$ is defined if and only if $j=k$, in which case $(i, j) \cdot(k, \ell)=(i, \ell)$.

Example 3 Let I be finite. Then $\mathcal{R}=\operatorname{Fun}(S, R)$ is a ring with operations given by (2) and (4) respectively by virtue of Example 1.

The preceding example is very familiar. Identify $f \in \mathcal{R}$ with $\left(a_{i j}\right)$, where $f((i, j))=a_{i j}$. Under this identification $\mathcal{R}=\mathrm{M}_{n}(R)$, the ring of $n \times n$ matrices with coefficients in R, where $n=|I|$.

When I is not necessarily finite there are interesting variations on \mathcal{R} of the preceding example. For example, \mathcal{R} can be taken to be the ring of all "row finite matrices" with coefficients in R. Row finite matrices are those functions $f=\left(a_{i j}\right)$, where for all $i \in I$ there are only finitely many $j \in I$ such that $a_{i j} \neq 0$. Likewise \mathcal{R} can be taken to be the ring of all "column finite matrices" with coefficients in R. Column finite matrices are those functions $f=\left(a_{i j}\right)$, where for all $j \in I$ there are only finitely many $i \in I$ such that $a_{i j} \neq 0$.

