Fall 2008

Radford

Written Homework # 1

Due at the beginning of class 09/12/08

1. Let G be a group and $a \in G$. Recall a^n is defined by $a^n = \begin{cases} e : n = 0; \\ a^{n-1}a : n > 0; \\ (a^{-1})^{-n} : n < 0 \end{cases}$

- (a) Let $m \ge 0$. Show, by induction, that $a^{m+n} = a^m a^n$ for all $n \ge 0$.
- (b) Use part (a) to show that $a^{m+n} = a^m a^n$ for all $m, n \in \mathbb{Z}$.
- (c) Use part (b) to show that $a^{mn} = (a^m)^n$ for all $m, n \in \mathbb{Z}$.

2. Suppose that $n \ge 3$. We have shown that the dihedral group D_{2n} has order 2n and has elements (reflections) r, s which can be thought of as the permutations of \mathbf{Z}_n defined by

 $r(i) = i + 1 \qquad \text{and} \qquad s(i) = -i$

for all $i \in \mathbf{Z}_n$. We think of \mathbf{Z}_n as the group under addition modulo n.

- (a) Show that $s^2 = I = r^n$, $srs = r^{n-1} = r^{-1}$. (In particular $s^{-1} = s$.)
- (b) Show that $D_{2n} = \{I, r, \dots, r^{n-1}, s, rs, \dots, r^{n-1}s\}.$
- (c) Use part (a) to show that $sr^{\ell}s = r^{(n-1)\ell} = r^{-\ell}$ for all $0 \leq \ell$.
- (d) Use part (c) to find a formula of the form $(r^{\ell}s^{i})(r^{\ell'}s^{i'}) = r^{\ell''}s^{i''}$, where $0 \leq i, i' \leq 1$ and $0 \leq \ell, \ell' \leq n-1$. (Find integers i'' and ℓ'' .)

Suppose that $f: X \longrightarrow X'$ is a function. For $A \subseteq X$ set $f(A) = \{f(x) \mid x \in A\}$ and for $A' \subseteq X'$ set $f^{-1}(A') = \{x \in X \mid f(x) \in A'\}.$

3. Suppose $f: G \longrightarrow G'$ is a group homomorphism and $a \in G$.

- (a) Suppose that $A \leq G$. Show that $f(A) \leq G'$. (Thus $\text{Im } f = f(G) \leq G'$.)
- (b) Suppose that $A' \leq G'$. Show that $f^{-1}(A') \leq G$. (Thus Ker $f = f^{-1}(\{e\}) \leq G$.)
- (c) Let $a \in G$. Show that $f(a^n) = f(a)^n$ for all $n \in \mathbb{Z}$. You may assume that f(e) = e' and $f(a^{-1}) = f(a)^{-1}$.

- (d) Show that |f(a)| infinite implies |a| infinite. (This is equivalent to |a| finite implies |f(a)| finite.)
- (e) Suppose that |a| is finite. Show that |f(a)| is finite and divides |a|.
- (f) Suppose that f is an isomorphism and |a| is finite. Show that |f(a)| is finite and |a| = |f(a)|.
- (g) Let $n \ge 1$. Determine when $\mathbf{Z}_{n^2} \simeq \mathbf{Z}_n \times \mathbf{Z}_n$.

4. Let $G = H(\mathbf{R})$ be the Hiesenberg group, where \mathbf{R} is the field of real numbers, and consider the subset $A = \{ \begin{pmatrix} 1 & a & 0 \\ 0 & 1 & a \\ 0 & 0 & 1 \end{pmatrix} | a \in \mathbf{R} \}$ of G.

- (a) Determine whether or not A is a subgroup of G.
- (b) Find $C_G(A)$.
- (c) Find $N_G(A)$.
- (d) Determine whether or not $A = \{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & a \\ 0 & 0 & 1 \end{pmatrix} \mid a, b \in \mathbf{R} \}$ is a subgroup of G.

5. Let $G = \langle a \rangle$ be a cyclic group of order 33.

- (a) Find the number of subgroups of G.
- (b) Find $|a^{-91}|$.
- (c) List the elements of G in the form a^{ℓ} , where $0 \leq \ell < 33$, which are *not* generators.
- (d) List the elements of $\langle a^{12} \rangle$ in the form a^{ℓ} , where $0 \leq \ell < 33$.