
Math 516 Fall 2008 Radford

Written Homework # 1 Solution
10/13/08

1. (20 points)

(a) (8 pts) This is straightforward. am+0 = am = ame = ama0; thus the formula holds when n = 0.
Suppose n ≥ 0 and the formula holds. Then am+(n+1) = a(m+n)+1 = am+na = (aman)a = am(ana) =
ama(n+1). Thus the formula holds for n + 1 By induction the formula holds for all n ≥ 0.

(b) (6 pts) Several cases. Let m,n ≥ 0. In light of part (a) it suffices to establish:

am−n = ama−n; (1)

a−m+n = a−man; (2)

a−m−n = a−ma−n. (3)

Since the exponents in (3) are negative, by part (a), replacing a by a−1,

a−m−n = a−(m+n) = (a−1)m+n = (a−1)m(a−1)n = a−ma−n.

We need only establish (1) and (2).
Suppose m − n ≥ 0. Then by part (a) am = a(m−n)+n = am−nan. Therefore am(an)−1 = am−n.

Using part (a), by induction on n ≥ 0 it follows that (an)−1 = a−n. Thus (1) holds when m−n ≥ 0.
Writing am = an+(m−n), the preceding calculations show that ama−n = a−nam. Now it is easy to
see that all powers of a commute. Noting that −(n−m) ≥ 0 when m− n < 0, (1) is established.

Note that (2) follows from (1) at this point.

(c) (6 pts) (Sketch) When m, n ≥ 0 the formula follows by induction on n. Noting that (am)−1 =
a−m = (a−1)m for m ≥ 0 the other cases follow.

2. (20 points)

(a) (5 pts) s2(i) = s(s(i)) = −(−i) = i for all i ∈ Zn. By induction on ` it follows that r`(i) = i+ `
for all i ∈ Zn and 0 ≤ ` < n (that is for ` ∈ Zn). Therefore rn(i) = r(rn−1(i)) = r(i + (n − 1)) =
i+(n− 1)+1 = i for all 0 ≤ i < n. Therefore s2 = I = rn. Now (srs)(i) = s(r(s(i))) = s(r(−i)) =
s(−i + 1) = −(−i + 1) = i − 1 = i + (n − 1) = r(n−1)(i) for all i ∈ Zn. Now r−1 = r(n−1) since
rn = I. Therefore srs = r(n−1) = r−1.

(b) (5 pts) Observe that s`(i) = (−1)`i for 0 ≤ ` < 2 and i ∈ Zn. Thus rks`(i) = rk(s`(i)) =
rk((−1)`i) = (−1)`i + k for all i ∈ Zn.
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Now suppose that 0 ≤ `, `′ < 2 and 0 ≤ k, k′ < n and s`rk = s`′rk′ . Applying both sides of this
equation to i ∈ Zn gives

(−1)`i + k = (−1)`′i + k′

for all i ∈ Zn. Setting i = 0 we see that k = k′. Setting i = 1 gives (−1)` = (−1)`′ ∈ Zn. Therefore
`, `′ are both even or are both odd since −1 6= 1. The latter follows since n > 2. Thus ` = `′ since
0 ≤ `, `′ < 2.

We have shown that the elements listed in part (b) are distinct; thus there are 2n of them. Since
|D2n| = 2n part (b) follows.

(c) (5 pts) Here Problem 1 comes into play also. sr0s = ss = I = r0 = r(n−1)0 and if the formula
holds for ` ≥ 0 then sr`+1s = sr`rs = sr`ssrs = r(n−1)`r(n−1) = r(n−1)`+(n−1) = r(n−1)(`+1). Thus
sr`s = r(n−1)` for all ` ≥ 0 by induction on `. As r(n−1) = r−1, r(n−1)` = (r(n−1))` = (r−1)` = r−` for
` ≥ 0.

(d) (5 pts) Let ` ≥ 0. Then s0r`s0 = r` and, by part (c), s1r`s1 = r(n−1)`. Note s = s−1. Therefore
sir`si = r(n−1)i`, or equivalently sir` = r(n−1)i`si, for all 0 ≤ i < 2 and ` ≥ 0. Therefore

(r`si)(r`′si′) = r`sir`′si′ = r`r(n−1)i`′sisi′ = r`+(n−1)i`′si+i′ ;

take i′′ = i + i′ and `′′ = ` + (n− 1)i`′.

3. (20 points) We will assume f(e) = e′ and f(a−1) = f(a)−1 for all a ∈ G.

(a) (3 pts) Since A ≤ G, by definition A 6= ∅. Therefore f(A) 6= ∅.
Suppose x, y ∈ f(A). Then x = f(a) and y = f(b) for some a, b ∈ A. Thus xy−1 = f(a)f(b)−1 =

f(a)f(b−1) = f(ab−1) ∈ f(A) as ab−1 ∈ A. Therefore f(A) ≤ G′.

(b) (3 pts) first of all e′ ∈ A′ since A′ ≤ G′. Thus e ∈ f−1(A′) as f(e) = e′. Therefore f−1(A′) 6= ∅.
Suppose a, b ∈ f−1(A′). Then f(a), f(b) ∈ A′. Therefore f(ab−1) = f(a)f(b−1) = f(a)f(b)−1 ∈

A′ since A′ ≤ G′. Thus ab−1 ∈ f−1(A′). We have shown f−1(A′) ≤ G.

(c) (3 pts) We first show that f(an) = f(a)n for all n ≥ 0 by induction on n. Since f(a0) = f(e) =
e′ = f(a)0 the statement is true for n = 0.

Suppose the statement is true for n ≥ 0. Then f(a)n+1 = f(a)nf(a) = f(an)f(a) = f(ana) =
f(an+1). Thus the statement is true for all n ≥ 0 by induction on n.

If n < 0 then −n > 0 and by the preceding calculation f(an) = f((a−1)−n) = f(a−1)−n =
(f((a)−1)−n) = f(an).

(d) (3 pts) We establish the contrapositive. Suppose that |a| = n < ∞. Then e′ = f(e) = f(an) =
f(a)n shows that |f(a)| < ∞.

(e) (3 pts) We continue with part (d). f(a)n = e′ means that f(a) has finite order m and m|n by
Theorem 1(b) of “Supplement to Section 2.3”.

(f) (3 pts) By part (e) |f(a)| is finite and |f(a)| ≤ |a|. Replacing f by f−1 we conclude |a| =
|f−1(f(a))| is finite and |a| ≤ |f(a)|. Therefore |a| = |f(a)|.
(g) (2 pts) If n = 1 then both Zn2 and Zn, hence Zn×Zn, are the trivial group with one element.
Thus Zn2 ' Zn×Zn when n = 1.

2



Suppose Zn2 ' Zn×Zn. Since Zn2 has an element of order n2, and the orders of elements of Zn,
hence Zn×Zn, divide n, it follows that n2|n. Therefore n|1 or equivalently n = 1.

4. (20 points) Let g, g′ ∈ G. Then g =




1 a b
0 1 c
0 0 1


, g′ =




1 a′ b′

0 1 c′

0 0 1


 for some a, a′, b, b′, c, c′ ∈

R. Observe that gg′ =




1 a′ + a b′ + ac′ + b
0 1 c′ + c
0 0 1


, and therefore g′g =




1 a + a′ b + a′c + b′

0 1 c + c′

0 0 1


.

(a) (5 pts) No. One reason A is not closed under multiplication. Take a = a′ = c = c′ = 1 and
b = b′ = 0. Then g, g′ ∈ A but gg′ 6∈ A as b′ + ac′ + b = 1 6= 0.

(b) (5 pts) Let g ∈ G. Then g ∈ CG(A) if and only if gg′ = g′g for all g′ ∈ A if and only if

∀ a′, b′c′ ∈ R, a′ = c′ and b′ = 0 implies ac′ = a′c (4)

Suppose (4) holds. Then taking a′ = c′ = 1 and b′ = 0 we conclude a = c. If a = c then (4) holds.

Therefore CG(A) = {



1 a b
0 1 a
0 0 1


 | a, b ∈ R}.

Comment: Careful with the quantifiers. The conclusion a = c should be justified by a specific choice
of numbers.

(c) (5 pts) Suppose g ∈ NG(A). Then for g′ ∈ A there exists a g′′ ∈ A such that g′g = g′′g as
gA = Ag. In terms of matrix entries: for all a′, b′, c′ ∈ R such that a′ = c′ and b′ = 0 there exist
a′′, b′′, c′′ ∈ R such that a′′ = c′′ and b′′ = 0 imply the equations

a + a′ = a′′ + a, b′ + ac′ + b = b + a′′c + b′′, c′ + c = c + c′′,

or equivalently
a′ = a′′, ac′ = a′′c, c′ = c′′,

or equivalently
a′ = a′′, ac′ = c′c, c′ = c′′,

hold. (Why?) Thus with a′ = c′ = 1 and b′ = 0 we conclude a = c. Therefore g ∈ CG(A). We have
shown NG(A) ⊆ CG(A). Since CG(A) ⊆ GG(A) holds generally, NG(A) = CG(A).

(d) (5 pts) The set of part (d) is a subgroup of G since it is a centralizer which is always a subgroup
of G.

5. (20 points) We use results from “Section 2.3 Supplement” on the course web page.

(a) (5 pts) The number of subgroups of G is the number of positive divisors of |G| = 33 = 3·11.
Thus there are 4.

(b) (5 pts) Since <a−91> = <a91> = <a(33,91)> = <a(3·11,7·13)> = <a1> = <a> it follows that
|a−91| = |<a−91>| = |<a>| = |a| = 33.
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(c) (5 pts) a` is a generator if and only if (`, 33) = 1. Thus our list consists of multiples of each of
the prime factors of 33, where 0 ≤ ` < 33. The list is

0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30; 11, 22.

(d) (5 pts) <a12> = <a(12,33)> = <a3> which has elements

e = a0, a3, a6, a9, a12, a15, a18, a21, a24, a27, a30.
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