Fall 2008

Radford

Written Homework # 1 Solution

10/13/08

1. (**20 points**)

(a) (8 pts) This is straightforward. $a^{m+0} = a^m = a^m e = a^m a^0$; thus the formula holds when n = 0. Suppose $n \ge 0$ and the formula holds. Then $a^{m+(n+1)} = a^{(m+n)+1} = a^{m+n}a = (a^m a^n)a = a^m (a^n a) = a^m a^{(n+1)}$. Thus the formula holds for n + 1 By induction the formula holds for all $n \ge 0$.

(b) (6 pts) Several cases. Let $m, n \ge 0$. In light of part (a) it suffices to establish:

$$a^{m-n} = a^m a^{-n}; \tag{1}$$

$$a^{-m+n} = a^{-m}a^n; (2)$$

$$a^{-m-n} = a^{-m}a^{-n}. (3)$$

Since the exponents in (3) are negative, by part (a), replacing a by a^{-1} ,

$$a^{-m-n} = a^{-(m+n)} = (a^{-1})^{m+n} = (a^{-1})^m (a^{-1})^n = a^{-m} a^{-n}$$

We need only establish (1) and (2).

Suppose $m - n \ge 0$. Then by part (a) $a^m = a^{(m-n)+n} = a^{m-n}a^n$. Therefore $a^m(a^n)^{-1} = a^{m-n}$. Using part (a), by induction on $n \ge 0$ it follows that $(a^n)^{-1} = a^{-n}$. Thus (1) holds when $m - n \ge 0$. Writing $a^m = a^{n+(m-n)}$, the preceding calculations show that $a^m a^{-n} = a^{-n}a^m$. Now it is easy to see that all powers of a commute. Noting that $-(n-m) \ge 0$ when m - n < 0, (1) is established.

Note that (2) follows from (1) at this point.

(c) (6 pts) (Sketch) When $m, n \ge 0$ the formula follows by induction on n. Noting that $(a^m)^{-1} = a^{-m} = (a^{-1})^m$ for $m \ge 0$ the other cases follow.

2. (**20 points**)

(a) (5 pts) $s^2(i) = s(s(i)) = -(-i) = i$ for all $i \in \mathbf{Z}_n$. By induction on ℓ it follows that $r^{\ell}(i) = i + \ell$ for all $i \in \mathbf{Z}_n$ and $0 \leq \ell < n$ (that is for $\ell \in \mathbf{Z}_n$). Therefore $r^n(i) = r(r^{n-1}(i)) = r(i + (n-1)) = i + (n-1) + 1 = i$ for all $0 \leq i < n$. Therefore $s^2 = I = r^n$. Now $(srs)(i) = s(r(s(i))) = s(r(-i)) = s(-i+1) = -(-i+1) = i - 1 = i + (n-1) = r^{(n-1)}(i)$ for all $i \in \mathbf{Z}_n$. Now $r^{-1} = r^{(n-1)}$ since $r^n = I$. Therefore $srs = r^{(n-1)} = r^{-1}$.

(b) (5 pts) Observe that $s^{\ell}(i) = (-1)^{\ell}i$ for $0 \leq \ell < 2$ and $i \in \mathbf{Z}_n$. Thus $r^k s^{\ell}(i) = r^k(s^{\ell}(i)) = r^k((-1)^{\ell}i) = (-1)^{\ell}i + k$ for all $i \in \mathbf{Z}_n$.

Now suppose that $0 \leq \ell, \ell' < 2$ and $0 \leq k, k' < n$ and $s^{\ell}r^k = s^{\ell'}r^{k'}$. Applying both sides of this equation to $i \in \mathbb{Z}_n$ gives

$$(-1)^{\ell}i + k = (-1)^{\ell'}i + k'$$

for all $i \in \mathbf{Z}_n$. Setting i = 0 we see that k = k'. Setting i = 1 gives $(-1)^{\ell} = (-1)^{\ell'} \in \mathbf{Z}_n$. Therefore ℓ, ℓ' are both even or are both odd since $-1 \neq 1$. The latter follows since n > 2. Thus $\ell = \ell'$ since $0 \leq \ell, \ell' < 2$.

We have shown that the elements listed in part (b) are distinct; thus there are 2n of them. Since $|D_{2n}| = 2n$ part (b) follows.

(c) (5 pts) Here Problem 1 comes into play also. $sr^0s = ss = I = r^0 = r^{(n-1)0}$ and if the formula holds for $\ell \geq 0$ then $sr^{\ell+1}s = sr^{\ell}rs = sr^{\ell}ssrs = r^{(n-1)\ell}r^{(n-1)} = r^{(n-1)\ell+(n-1)} = r^{(n-1)(\ell+1)}$. Thus $sr^{\ell}s = r^{(n-1)\ell}$ for all $\ell \geq 0$ by induction on ℓ . As $r^{(n-1)} = r^{-1}$, $r^{(n-1)\ell} = (r^{(n-1)})^{\ell} = (r^{-1})^{\ell} = r^{-\ell}$ for $\ell \geq 0$.

(d) (5 pts) Let $\ell \ge 0$. Then $s^0 r^\ell s^0 = r^\ell$ and, by part (c), $s^1 r^\ell s^1 = r^{(n-1)\ell}$. Note $s = s^{-1}$. Therefore $s^i r^\ell s^i = r^{(n-1)i\ell}$, or equivalently $s^i r^\ell = r^{(n-1)i\ell} s^i$, for all $0 \le i < 2$ and $\ell \ge 0$. Therefore

$$(r^{\ell}s^{i})(r^{\ell'}s^{i'}) = r^{\ell}s^{i}r^{\ell'}s^{i'} = r^{\ell}r^{(n-1)^{i}\ell'}s^{i}s^{i'} = r^{\ell+(n-1)^{i}\ell'}s^{i+i'};$$

take i'' = i + i' and $\ell'' = \ell + (n-1)^i \ell'$.

3. (20 points) We will assume f(e) = e' and $f(a^{-1}) = f(a)^{-1}$ for all $a \in G$.

(a) (3 pts) Since $A \leq G$, by definition $A \neq \emptyset$. Therefore $f(A) \neq \emptyset$.

Suppose $x, y \in f(A)$. Then x = f(a) and y = f(b) for some $a, b \in A$. Thus $xy^{-1} = f(a)f(b)^{-1} = f(a)f(b^{-1}) = f(ab^{-1}) \in f(A)$ as $ab^{-1} \in A$. Therefore $f(A) \leq G'$.

(b) (3 pts) first of all $e' \in A'$ since $A' \leq G'$. Thus $e \in f^{-1}(A')$ as f(e) = e'. Therefore $f^{-1}(A') \neq \emptyset$. Suppose $a, b \in f^{-1}(A')$. Then $f(a), f(b) \in A'$. Therefore $f(ab^{-1}) = f(a)f(b^{-1}) = f(a)f(b)^{-1} \in A'$ since $A' \leq G'$. Thus $ab^{-1} \in f^{-1}(A')$. We have shown $f^{-1}(A') \leq G$.

(c) (3 pts) We first show that $f(a^n) = f(a)^n$ for all $n \ge 0$ by induction on n. Since $f(a^0) = f(e) = e' = f(a)^0$ the statement is true for n = 0.

Suppose the statement is true for $n \ge 0$. Then $f(a)^{n+1} = f(a)^n f(a) = f(a^n) f(a) = f(a^n a) = f(a^{n+1})$. Thus the statement is true for all $n \ge 0$ by induction on n.

If n < 0 then -n > 0 and by the preceding calculation $f(a^n) = f((a^{-1})^{-n}) = f(a^{-1})^{-n} = (f((a)^{-1})^{-n}) = f(a^n)$.

(d) (3 pts) We establish the contrapositive. Suppose that $|a| = n < \infty$. Then $e' = f(e) = f(a^n) = f(a)^n$ shows that $|f(a)| < \infty$.

(e) (3 pts) We continue with part (d). $f(a)^n = e'$ means that f(a) has finite order m and m|n by Theorem 1(b) of "Supplement to Section 2.3".

(f) (3 pts) By part (e) |f(a)| is finite and $|f(a)| \le |a|$. Replacing f by f^{-1} we conclude $|a| = |f^{-1}(f(a))|$ is finite and $|a| \le |f(a)|$. Therefore |a| = |f(a)|.

(g) (2 pts) If n = 1 then both \mathbf{Z}_{n^2} and \mathbf{Z}_n , hence $\mathbf{Z}_n \times \mathbf{Z}_n$, are the trivial group with one element. Thus $\mathbf{Z}_{n^2} \simeq \mathbf{Z}_n \times \mathbf{Z}_n$ when n = 1. Suppose $\mathbf{Z}_{n^2} \simeq \mathbf{Z}_n \times \mathbf{Z}_n$. Since \mathbf{Z}_{n^2} has an element of order n^2 , and the orders of elements of \mathbf{Z}_n , hence $\mathbf{Z}_n \times \mathbf{Z}_n$, divide n, it follows that $n^2 | n$. Therefore n | 1 or equivalently n = 1.

4. (20 points) Let
$$g, g' \in G$$
. Then $g = \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}$, $g' = \begin{pmatrix} 1 & a' & b' \\ 0 & 1 & c' \\ 0 & 0 & 1 \end{pmatrix}$ for some $a, a', b, b', c, c' \in \mathbf{R}$. Observe that $gg' = \begin{pmatrix} 1 & a' + a & b' + ac' + b \\ 0 & 1 & c' + c \\ 0 & 0 & 1 \end{pmatrix}$, and therefore $g'g = \begin{pmatrix} 1 & a + a' & b + a'c + b' \\ 0 & 1 & c + c' \\ 0 & 0 & 1 \end{pmatrix}$.

(a) (5 pts) No. One reason A is not closed under multiplication. Take a = a' = c = c' = 1 and b = b' = 0. Then $g, g' \in A$ but $gg' \notin A$ as $b' + ac' + b = 1 \neq 0$.

(b) (5 pts) Let $g \in G$. Then $g \in C_G(A)$ if and only if gg' = g'g for all $g' \in A$ if and only if

$$\forall a', b'c' \in \mathbf{R}, a' = c' \text{ and } b' = 0 \text{ implies } ac' = a'c \tag{4}$$

Suppose (4) holds. Then taking a' = c' = 1 and b' = 0 we conclude a = c. If a = c then (4) holds. Therefore $C_G(A) = \{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & a \\ 0 & 0 & 1 \end{pmatrix} \mid a, b \in \mathbf{R} \}.$

Comment: Careful with the quantifiers. The conclusion a = c should be justified by a specific choice of numbers.

(c) (5 pts) Suppose $g \in N_G(A)$. Then for $g' \in A$ there exists a $g'' \in A$ such that g'g = g''g as gA = Ag. In terms of matrix entries: for all $a', b', c' \in \mathbf{R}$ such that a' = c' and b' = 0 there exist $a'', b'', c'' \in \mathbf{R}$ such that a'' = c'' and b'' = 0 imply the equations

$$a + a' = a'' + a,$$
 $b' + ac' + b = b + a''c + b'',$ $c' + c = c + c'',$

or equivalently

$$a' = a'', \qquad ac' = a''c, \qquad c' = c'',$$

or equivalently

$$a' = a'', \qquad ac' = c'c, \qquad c' = c''$$

hold. (Why?) Thus with a' = c' = 1 and b' = 0 we conclude a = c. Therefore $g \in C_G(A)$. We have shown $N_G(A) \subseteq C_G(A)$. Since $C_G(A) \subseteq G_G(A)$ holds generally, $N_G(A) = C_G(A)$.

(d) (5 pts) The set of part (d) is a subgroup of G since it is a centralizer which is always a subgroup of G.

5. (20 points) We use results from "Section 2.3 Supplement" on the course web page.

(a) (5 pts) The number of subgroups of G is the number of positive divisors of |G| = 33 = 3.11. Thus there are 4.

(b) (5 pts) Since $\langle a^{-91} \rangle = \langle a^{91} \rangle = \langle a^{(33,91)} \rangle = \langle a^{(3\cdot11,7\cdot13)} \rangle = \langle a^1 \rangle = \langle a \rangle$ it follows that $|a^{-91}| = |\langle a^{-91} \rangle| = |\langle a \rangle| = |a| = 33.$

(c) (5 pts) a^{ℓ} is a generator if and only if $(\ell, 33) = 1$. Thus our list consists of multiples of each of the prime factors of 33, where $0 \leq \ell < 33$. The list is

0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30; 11, 22.

(d) (5 pts) $\langle a^{12} \rangle = \langle a^{(12,33)} \rangle = \langle a^3 \rangle$ which has elements

 $e = a^0, a^3, a^6, a^9, a^{12}, a^{15}, a^{18}, a^{21}, a^{24}, a^{27}, a^{30}.$