Written Homework \# 1 Solution

10/13/08

1. (20 points)

(a) ($8 \mathbf{~ p t s}$) This is straightforward. $a^{m+0}=a^{m}=a^{m} e=a^{m} a^{0}$; thus the formula holds when $n=0$. Suppose $n \geq 0$ and the formula holds. Then $a^{m+(n+1)}=a^{(m+n)+1}=a^{m+n} a=\left(a^{m} a^{n}\right) a=a^{m}\left(a^{n} a\right)=$ $a^{m} a^{(n+1)}$. Thus the formula holds for $n+1$ By induction the formula holds for all $n \geq 0$.
(b) ($\mathbf{6} \mathrm{pts}$) Several cases. Let $m, n \geq 0$. In light of part (a) it suffices to establish:

$$
\begin{gather*}
a^{m-n}=a^{m} a^{-n} ; \tag{1}\\
a^{-m+n}=a^{-m} a^{n} ; \tag{2}\\
a^{-m-n}=a^{-m} a^{-n} . \tag{3}
\end{gather*}
$$

Since the exponents in (3) are negative, by part (a), replacing a by a^{-1},

$$
a^{-m-n}=a^{-(m+n)}=\left(a^{-1}\right)^{m+n}=\left(a^{-1}\right)^{m}\left(a^{-1}\right)^{n}=a^{-m} a^{-n} .
$$

We need only establish (1) and (2).
Suppose $m-n \geq 0$. Then by part (a) $a^{m}=a^{(m-n)+n}=a^{m-n} a^{n}$. Therefore $a^{m}\left(a^{n}\right)^{-1}=a^{m-n}$. Using part (a), by induction on $n \geq 0$ it follows that $\left(a^{n}\right)^{-1}=a^{-n}$. Thus (1) holds when $m-n \geq 0$. Writing $a^{m}=a^{n+(m-n)}$, the preceding calculations show that $a^{m} a^{-n}=a^{-n} a^{m}$. Now it is easy to see that all powers of a commute. Noting that $-(n-m) \geq 0$ when $m-n<0,(1)$ is established.

Note that (2) follows from (1) at this point.
(c) ($6 \mathbf{p t s}$) (Sketch) When $m, n \geq 0$ the formula follows by induction on n. Noting that $\left(a^{m}\right)^{-1}=$ $a^{-m}=\left(a^{-1}\right)^{m}$ for $m \geq 0$ the other cases follow.
2. (20 points)
(a) (5 pts) $s^{2}(i)=s(s(i))=-(-i)=i$ for all $i \in \mathbf{Z}_{n}$. By induction on ℓ it follows that $r^{\ell}(i)=i+\ell$ for all $i \in \mathbf{Z}_{n}$ and $0 \leq \ell<n$ (that is for $\ell \in \mathbf{Z}_{n}$). Therefore $r^{n}(i)=r\left(r^{n-1}(i)\right)=r(i+(n-1))=$ $i+(n-1)+1=i$ for all $0 \leq i<n$. Therefore $s^{2}=I=r^{n}$. Now $($ srs $)(i)=s(r(s(i)))=s(r(-i))=$ $s(-i+1)=-(-i+1)=i-1=i+(n-1)=r^{(n-1)}(i)$ for all $i \in \mathbf{Z}_{n}$. Now $r^{-1}=r^{(n-1)}$ since $r^{n}=I$. Therefore srs $=r^{(n-1)}=r^{-1}$.
(b) ($\mathbf{5} \mathbf{p t s}$) Observe that $s^{\ell}(i)=(-1)^{\ell} i$ for $0 \leq \ell<2$ and $i \in \mathbf{Z}_{n}$. Thus $r^{k} s^{\ell}(i)=r^{k}\left(s^{\ell}(i)\right)=$ $r^{k}\left((-1)^{\ell} i\right)=(-1)^{\ell} i+k$ for all $i \in \mathbf{Z}_{n}$.

Now suppose that $0 \leq \ell, \ell^{\prime}<2$ and $0 \leq k, k^{\prime}<n$ and $s^{\ell} r^{k}=s^{\ell^{\prime}} r^{k^{\prime}}$. Applying both sides of this equation to $i \in \mathbf{Z}_{n}$ gives

$$
(-1)^{\ell} i+k=(-1)^{\ell^{\prime}} i+k^{\prime}
$$

for all $i \in \mathbf{Z}_{n}$. Setting $i=0$ we see that $k=k^{\prime}$. Setting $i=1$ gives $(-1)^{\ell}=(-1)^{\ell^{\prime}} \in \mathbf{Z}_{n}$. Therefore ℓ, ℓ^{\prime} are both even or are both odd since $-1 \neq 1$. The latter follows since $n>2$. Thus $\ell=\ell^{\prime}$ since $0 \leq \ell, \ell^{\prime}<2$.

We have shown that the elements listed in part (b) are distinct; thus there are $2 n$ of them. Since $\left|D_{2 n}\right|=2 n$ part (b) follows.
(c) (5 pts) Here Problem 1 comes into play also. $s r^{0} s=s s=I=r^{0}=r^{(n-1) 0}$ and if the formula holds for $\ell \geq 0$ then $s r^{\ell+1} s=s r^{\ell} r s=s r^{\ell} s s r s=r^{(n-1) \ell} r^{(n-1)}=r^{(n-1) \ell+(n-1)}=r^{(n-1)(\ell+1)}$. Thus $s r^{\ell} s=r^{(n-1) \ell}$ for all $\ell \geq 0$ by induction on ℓ. As $r^{(n-1)}=r^{-1}, r^{(n-1) \ell}=\left(r^{(n-1)}\right)^{\ell}=\left(r^{-1}\right)^{\ell}=r^{-\ell}$ for $\ell \geq 0$.
(d) ($5 \mathbf{~ p t s}$) Let $\ell \geq 0$. Then $s^{0} r^{\ell} s^{0}=r^{\ell}$ and, by part (c), $s^{1} r^{\ell} s^{1}=r^{(n-1) \ell}$. Note $s=s^{-1}$. Therefore $s^{i} r^{\ell} s^{i}=r^{(n-1)^{i} \ell}$, or equivalently $s^{i} r^{\ell}=r^{(n-1)^{i} \ell} s^{i}$, for all $0 \leq i<2$ and $\ell \geq 0$. Therefore

$$
\left(r^{\ell} s^{i}\right)\left(r^{\ell^{\prime}} s^{i^{\prime}}\right)=r^{\ell} s^{i} r^{\ell^{\prime}} s^{i^{\prime}}=r^{\ell} r^{(n-1)^{i} \ell^{\prime}} s^{i} s^{i^{\prime}}=r^{\ell+(n-1)^{i} \ell^{\prime}} s^{i+i^{\prime}} ;
$$

take $i^{\prime \prime}=i+i^{\prime}$ and $\ell^{\prime \prime}=\ell+(n-1)^{i} \ell^{\prime}$.
3. (20 points) We will assume $f(e)=e^{\prime}$ and $f\left(a^{-1}\right)=f(a)^{-1}$ for all $a \in G$.
(a) (3 pts) Since $A \leq G$, by definition $A \neq \emptyset$. Therefore $f(A) \neq \emptyset$.

Suppose $x, y \in f(A)$. Then $x=f(a)$ and $y=f(b)$ for some $a, b \in A$. Thus $x y^{-1}=f(a) f(b)^{-1}=$ $f(a) f\left(b^{-1}\right)=f\left(a b^{-1}\right) \in f(A)$ as $a b^{-1} \in A$. Therefore $f(A) \leq G^{\prime}$.
(b) ($\mathbf{3} \mathbf{p t s}$) first of all $e^{\prime} \in A^{\prime}$ since $A^{\prime} \leq G^{\prime}$. Thus $e \in f^{-1}\left(A^{\prime}\right)$ as $f(e)=e^{\prime}$. Therefore $f^{-1}\left(A^{\prime}\right) \neq \emptyset$.

Suppose $a, b \in f^{-1}\left(A^{\prime}\right)$. Then $f(a), f(b) \in A^{\prime}$. Therefore $f\left(a b^{-1}\right)=f(a) f\left(b^{-1}\right)=f(a) f(b)^{-1} \in$ A^{\prime} since $A^{\prime} \leq G^{\prime}$. Thus $a b^{-1} \in f^{-1}\left(A^{\prime}\right)$. We have shown $f^{-1}\left(A^{\prime}\right) \leq G$.
(c) ($\mathbf{3} \mathbf{~ p t s})$ We first show that $f\left(a^{n}\right)=f(a)^{n}$ for all $n \geq 0$ by induction on n. Since $f\left(a^{0}\right)=f(e)=$ $e^{\prime}=f(a)^{0}$ the statement is true for $n=0$.

Suppose the statement is true for $n \geq 0$. Then $f(a)^{n+1}=f(a)^{n} f(a)=f\left(a^{n}\right) f(a)=f\left(a^{n} a\right)=$ $f\left(a^{n+1}\right)$. Thus the statement is true for all $n \geq 0$ by induction on n.

If $n<0$ then $-n>0$ and by the preceding calculation $f\left(a^{n}\right)=f\left(\left(a^{-1}\right)^{-n}\right)=f\left(a^{-1}\right)^{-n}=$ $\left(f\left((a)^{-1}\right)^{-n}\right)=f\left(a^{n}\right)$.
(d) (3 pts) We establish the contrapositive. Suppose that $|a|=n<\infty$. Then $e^{\prime}=f(e)=f\left(a^{n}\right)=$ $f(a)^{n}$ shows that $|f(a)|<\infty$.
(e) ($\mathbf{3} \mathbf{~ p t s}$) We continue with part (d). $f(a)^{n}=e^{\prime}$ means that $f(a)$ has finite order m and $m \mid n$ by Theorem 1(b) of "Supplement to Section 2.3".
(f) (3 pts) By part (e) $|f(a)|$ is finite and $|f(a)| \leq|a|$. Replacing f by f^{-1} we conclude $|a|=$ $\left|f^{-1}(f(a))\right|$ is finite and $|a| \leq|f(a)|$. Therefore $|a|=|f(a)|$.
(g) ($\mathbf{2} \mathbf{p t s}$) If $n=1$ then both $\mathbf{Z}_{n^{2}}$ and \mathbf{Z}_{n}, hence $\mathbf{Z}_{n} \times \mathbf{Z}_{n}$, are the trivial group with one element. Thus $\mathbf{Z}_{n^{2}} \simeq \mathbf{Z}_{n} \times \mathbf{Z}_{n}$ when $n=1$.

Suppose $\mathbf{Z}_{n^{2}} \simeq \mathbf{Z}_{n} \times \mathbf{Z}_{n}$. Since $\mathbf{Z}_{n^{2}}$ has an element of order n^{2}, and the orders of elements of \mathbf{Z}_{n}, hence $\mathbf{Z}_{n} \times \mathbf{Z}_{n}$, divide n, it follows that $n^{2} \mid n$. Therefore $n \mid 1$ or equivalently $n=1$.
4. (20 points) Let $g, g^{\prime} \in G$. Then $g=\left(\begin{array}{ccc}1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1\end{array}\right), g^{\prime}=\left(\begin{array}{ccc}1 & a^{\prime} & b^{\prime} \\ 0 & 1 & c^{\prime} \\ 0 & 0 & 1\end{array}\right)$ for some $a, a^{\prime}, b, b^{\prime}, c, c^{\prime} \in$
R. Observe that $g g^{\prime}=\left(\begin{array}{ccc}1 & a^{\prime}+a & b^{\prime}+a c^{\prime}+b \\ 0 & 1 & c^{\prime}+c \\ 0 & 0 & 1\end{array}\right)$, and therefore $g^{\prime} g=\left(\begin{array}{ccc}1 & a+a^{\prime} & b+a^{\prime} c+b^{\prime} \\ 0 & 1 & c+c^{\prime} \\ 0 & 0 & 1\end{array}\right)$.
(a) (5 pts) No. One reason A is not closed under multiplication. Take $a=a^{\prime}=c=c^{\prime}=1$ and $b=b^{\prime}=0$. Then $g, g^{\prime} \in A$ but $g g^{\prime} \notin A$ as $b^{\prime}+a c^{\prime}+b=1 \neq 0$.
(b) (5 pts) Let $g \in G$. Then $g \in \mathrm{C}_{G}(A)$ if and only if $g g^{\prime}=g^{\prime} g$ for all $g^{\prime} \in A$ if and only if

$$
\begin{equation*}
\forall a^{\prime}, b^{\prime} c^{\prime} \in \mathbf{R}, a^{\prime}=c^{\prime} \text { and } b^{\prime}=0 \text { implies } a c^{\prime}=a^{\prime} c \tag{4}
\end{equation*}
$$

Suppose (4) holds. Then taking $a^{\prime}=c^{\prime}=1$ and $b^{\prime}=0$ we conclude $a=c$. If $a=c$ then (4) holds. Therefore $\mathrm{C}_{G}(A)=\left\{\left.\left(\begin{array}{ccc}1 & a & b \\ 0 & 1 & a \\ 0 & 0 & 1\end{array}\right) \right\rvert\, a, b \in \mathbf{R}\right\}$.
Comment: Careful with the quantifiers. The conclusion $a=c$ should be justified by a specific choice of numbers.
(c) (5 pts) Suppose $g \in \mathrm{~N}_{G}(A)$. Then for $g^{\prime} \in A$ there exists a $g^{\prime \prime} \in A$ such that $g^{\prime} g=g^{\prime \prime} g$ as $g A=A g$. In terms of matrix entries: for all $a^{\prime}, b^{\prime}, c^{\prime} \in \mathbf{R}$ such that $a^{\prime}=c^{\prime}$ and $b^{\prime}=0$ there exist $a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime} \in \mathbf{R}$ such that $a^{\prime \prime}=c^{\prime \prime}$ and $b^{\prime \prime}=0$ imply the equations

$$
a+a^{\prime}=a^{\prime \prime}+a, \quad b^{\prime}+a c^{\prime}+b=b+a^{\prime \prime} c+b^{\prime \prime}, \quad c^{\prime}+c=c+c^{\prime \prime},
$$

or equivalently

$$
a^{\prime}=a^{\prime \prime}, \quad a c^{\prime}=a^{\prime \prime} c, \quad c^{\prime}=c^{\prime \prime}
$$

or equivalently

$$
a^{\prime}=a^{\prime \prime}, \quad a c^{\prime}=c^{\prime} c, \quad c^{\prime}=c^{\prime \prime}
$$

hold. (Why?) Thus with $a^{\prime}=c^{\prime}=1$ and $b^{\prime}=0$ we conclude $a=c$. Therefore $g \in \mathrm{C}_{G}(A)$. We have shown $\mathrm{N}_{G}(A) \subseteq \mathrm{C}_{G}(A)$. Since $\mathrm{C}_{G}(A) \subseteq \mathrm{G}_{G}(A)$ holds generally, $\mathrm{N}_{G}(A)=\mathrm{C}_{G}(A)$.
(d) $(5 \mathbf{~ p t s})$ The set of part (d) is a subgroup of G since it is a centralizer which is always a subgroup of G.
5. (20 points) We use results from "Section 2.3 Supplement" on the course web page.
(a) (5 pts) The number of subgroups of G is the number of positive divisors of $|G|=33=3 \cdot 11$. Thus there are 4.
(b) (5 pts) Since $\left\langle a^{-91}\right\rangle=\left\langle a^{91}\right\rangle=\left\langle a^{(33,91)}\right\rangle=\left\langle a^{(3 \cdot 11,7 \cdot 13)}\right\rangle=\left\langle a^{1}\right\rangle=\langle a\rangle$ it follows that $\left|a^{-91}\right|=\left|<a^{-91}>|=|<a\right\rangle|=|a|=33$.
(c) ($5 \mathbf{p t s}) a^{\ell}$ is a generator if and only if $(\ell, 33)=1$. Thus our list consists of multiples of each of the prime factors of 33 , where $0 \leq \ell<33$. The list is

$$
0,3,6,9,12,15,18,21,24,27,30 ; 11,22 .
$$

(d) (5 pts) $\left\langle a^{12}\right\rangle=\left\langle a^{(12,33)}\right\rangle=\left\langle a^{3}\right\rangle$ which has elements

$$
e=a^{0}, a^{3}, a^{6}, a^{9}, a^{12}, a^{15}, a^{18}, a^{21}, a^{24}, a^{27}, a^{30} .
$$

