Written Homework \# 2

Due at the beginning of class 10/03/08

1. Let $\emptyset \neq I$ and $\left\{G_{i}\right\}_{i \in I}$ be an indexed family of groups. Set

$$
\mathcal{G}=\left\{f: I \longrightarrow \cup_{i \in I} G_{i} \mid f(i) \in G_{i} \forall i \in I\right\} .
$$

(a) Show that \mathcal{G} is a group, where $(f g)(i)=f(i) g(i)$ for all $f, g \in \mathcal{G}$ and $i \in I$.

Suppose that $n \geq 1$ and $I=\{1,2, \ldots, n\}$. Then the set bijection $F: \mathcal{G} \longrightarrow G_{1} \times \cdots \times G_{n}$ given by $F(f)=(f(1), \ldots, f(n))$ induces a group structure on the Cartesian product, where

$$
\left(g_{1}, \ldots, g_{n}\right) \cdot\left(h_{1}, \ldots, h_{n}\right)=\left(g_{1} h_{1}, \ldots, g_{n} h_{n}\right),
$$

and F is an isomorphism.
(b) Show that there are two groups (up to isomorphism) of order 4 which are \mathbf{Z}_{4} and $\mathbf{Z}_{2} \times \mathbf{Z}_{2}$. [Hint: Suppose that G has order 4. Then $x^{2}=e$ for all $x \in G$ or there is an $a \in G$ such that $a^{2} \neq e$; in the latter case set $b=a^{2}$. Write down the group tables in each case.]
2. Suppose that G is a finite group and $a^{2}=e$ for all $a \in G$.
(a) Show that G is abelian.
(b) Show that for some $n \geq 0$ there is a sequence of subgroups $(e)=H_{0} \subseteq H_{1} \subseteq \cdots \subset H_{n}=G$ of subgroups which satisfies $\left|H_{i}: H_{i-1}\right|=2$ for all $0 \leq i<n$. (In particular, by induction $|G|=2^{n}$ for some $n \geq 0$.)
3. Let G be a group and suppose that \mathcal{G} is a partition of G into non-empty sets. Suppose that \mathcal{G} is a group under set product and N is the neutral element of \mathcal{G}. Show for $S \in \mathcal{G}$ that $S=a N=N a$ for all $a \in S$.
4. Let G, G^{\prime} be groups.
(a) Suppose that $f, g: G \longrightarrow G^{\prime}$ are group homomorphisms and set $H=\{a \in G \mid f(a)=g(a)\}$. Show that $H \leq G$.
(b) Continuing with part (a), suppose that $G=<S\rangle$ for some $S \subseteq G$. Show that $f=g$ if and only if $f(s)=g(s)$ for all $a \in S$.
(c) Suppose that $H, K \leq G$ and $H=<S>, K=<T>$ where $S, T \subseteq G$. Suppose that $s t=t s$ for all $s \in S$ and $t \in T$. Show that $h k=k h$ for all $h \in H$ and $k \in K$. [Hint: First consider the relationship between the subgroups H and $C_{G}(\{t\})$ for all $t \in T$.]
(d) Continuing with part (c), suppose that H, K are abelian. Show that $H K \leq G$ and is abelian.
5. Here we consider subgroups of order 6. Let G be a group. The exercise establishes that there are two such groups up to isomorphism, namely \mathbf{Z}_{6} and S_{3}.
(a) Suppose that G is a group and $a, b \in G$ have orders m an n respectively, where $(m, n)=1$, and $a b=b a$. Show that $a b$ has order $m n$.
(b) Suppose G has order 6 and is abelian. Show that $G \simeq \mathbf{Z}_{6}$. (You may assume the exponent law $(a b)^{\ell}=a^{\ell} b^{\ell}$ for all $\ell \in \mathbf{Z}$, which incidently holds if and only if $a b=b a$.)

Now Suppose that G is non-abelian and has order 6 .
(c) Use the class equation to show that G has an element a of order 2 .
(d) Show that $H=\langle a\rangle$ is not a normal subgroup of G. [Hint: Show that $H \unlhd G$ implies $H \subseteq Z(G)$.
(e) Let A be the set of left cosets of H and let G act on A by $g \cdot(a H)=g a H$ for all $g \in G$ and $a H \in A$. Show that the induced representation $\pi: G \longrightarrow S_{A}$ is an isomorphism. (Thus $G \simeq S_{A} \simeq S_{3}$ since $|A|=3$.)

