Fall 2008

Written Homework # 2

Due at the beginning of class 10/03/08

1. Let $\emptyset \neq I$ and $\{G_i\}_{i \in I}$ be an indexed family of groups. Set

 $\mathcal{G} = \{ f : I \longrightarrow \bigcup_{i \in I} G_i \mid f(i) \in G_i \ \forall i \in I \}.$

(a) Show that \mathcal{G} is a group, where (fg)(i) = f(i)g(i) for all $f, g \in \mathcal{G}$ and $i \in I$.

Suppose that $n \ge 1$ and $I = \{1, 2, ..., n\}$. Then the set bijection $F : \mathcal{G} \longrightarrow G_1 \times \cdots \times G_n$ given by $F(f) = (f(1), \ldots, f(n))$ induces a group structure on the Cartesian product, where

 $(g_1,\ldots,g_n)\cdot(h_1,\ldots,h_n)=(g_1h_1,\ldots,g_nh_n),$

and F is an isomorphism.

- (b) Show that there are two groups (up to isomorphism) of order 4 which are \mathbf{Z}_4 and $\mathbf{Z}_2 \times \mathbf{Z}_2$. [Hint: Suppose that G has order 4. Then $x^2 = e$ for all $x \in G$ or there is an $a \in G$ such that $a^2 \neq e$; in the latter case set $b = a^2$. Write down the group tables in each case.]
- 2. Suppose that G is a finite group and $a^2 = e$ for all $a \in G$.
 - (a) Show that G is abelian.
 - (b) Show that for some $n \ge 0$ there is a sequence of subgroups $(e) = H_0 \subseteq H_1 \subseteq \cdots \subset H_n = G$ of subgroups which satisfies $|H_i : H_{i-1}| = 2$ for all $0 \le i < n$. (In particular, by induction $|G| = 2^n$ for some $n \ge 0$.)

3. Let G be a group and suppose that \mathcal{G} is a partition of G into non-empty sets. Suppose that \mathcal{G} is a group under set product and N is the neutral element of \mathcal{G} . Show for $S \in \mathcal{G}$ that S = aN = Na for all $a \in S$.

4. Let G, G' be groups.

- (a) Suppose that $f, g: G \longrightarrow G'$ are group homomorphisms and set $H = \{a \in G \mid f(a) = g(a)\}$. Show that $H \leq G$.
- (b) Continuing with part (a), suppose that $G = \langle S \rangle$ for some $S \subseteq G$. Show that f = g if and only if f(s) = g(s) for all $a \in S$.

- (c) Suppose that $H, K \leq G$ and $H = \langle S \rangle$, $K = \langle T \rangle$ where $S, T \subseteq G$. Suppose that st = ts for all $s \in S$ and $t \in T$. Show that hk = kh for all $h \in H$ and $k \in K$. [Hint: First consider the relationship between the subgroups H and $C_G(\{t\})$ for all $t \in T$.]
- (d) Continuing with part (c), suppose that H, K are abelian. Show that $HK \leq G$ and is abelian.

5. Here we consider subgroups of order 6. Let G be a group. The exercise establishes that there are two such groups up to isomorphism, namely \mathbf{Z}_6 and S_3 .

- (a) Suppose that G is a group and $a, b \in G$ have orders m an n respectively, where (m, n) = 1, and ab = ba. Show that ab has order mn.
- (b) Suppose G has order 6 and is abelian. Show that $G \simeq \mathbb{Z}_6$. (You may assume the exponent law $(ab)^{\ell} = a^{\ell}b^{\ell}$ for all $\ell \in \mathbb{Z}$, which incidently holds if and only if ab = ba.)

Now Suppose that G is non-abelian and has order 6.

- (c) Use the class equation to show that G has an element a of order 2.
- (d) Show that $H = \langle a \rangle$ is not a normal subgroup of G. [Hint: Show that $H \trianglelefteq G$ implies $H \subseteq Z(G)$.]
- (e) Let A be the set of left cosets of H and let G act on A by $g \cdot (aH) = gaH$ for all $g \in G$ and $aH \in A$. Show that the induced representation $\pi : G \longrightarrow S_A$ is an isomorphism. (Thus $G \simeq S_A \simeq S_3$ since |A| = 3.)