
Math 516 Fall 2008 Radford

Written Homework # 2 Solution
10/09/08

1. (20 points) The challenge of part (a) is not to fall asleep. A part of basic algebra is checking
mundane details. Let f, g, h ∈ G.

(a) (9 pts) Let i ∈ I. Since the binary operation in Gi is associative

((fg)h)(i) = ((fg)(i))h(i)

= (f(i)g(i))h(i)

= f(i)(g(i)h(i))

= f(i)((gh)(i))

= (f(gh))(i).

We have shown that (fg)h = f(gh).
Let ei be the identity element of Gi for all i ∈ and define e ∈ G by e(i) = ei for all i ∈ I. Then

(fe)(i) = f(i)e(i) = f(i)ei = f(i) = eif(i) = (ef)(i)

for all i ∈ I means that fe = f = ef . Thus e is an identity element for G.
Define f ′ ∈ G by f ′(i) = f(i)−1 for all i ∈ I. The calculations

(ff ′)(i) = f(i)f ′(i) = f(i)f(i)−1 = ei = e(i)

and
(f ′f)(i) = f ′(i)f(i) = f(i)−1f(i) = ei = e(i)

show that ff ′ = e = f ′f . Therefore f has an inverse which is f ′.

(b) (11 pts) Tables for finite groups have the property that each element of the group must appear
exactly once in each row and in each column (cancellation property). We may write G = {e, a, b, c},
where e is the identity element of G.

Case 1: x2 = e for all x ∈ G. Then the table looks like

e a b c
e e a b c
a a e · ·
b b · e ·
c c · · e

We are forced to fill in

the columns (left to right)

e a b c
e e a b c
a a e · ·
b b c e ·
c c b · e

e a b c
e e a b c
a a e c ·
b b c e ·
c c b a e

e a b c
e e a b c
a a e c b
b b c e a
c c b a e
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Thus the table must be

e a b c
e e a b c
a a e c b
b b c e a
c c b a e

Z2×Z2 realizes the table. Let x = (1, 0) and y = (0, 1). Set z = x + y = (1, 1) and 0 = (0, 0).

Then the table for Z2×Z2 is

0 x y z
0 0 x y z
x x 0 z y
y y z 0 x
z z y x 0

Thus f : Z2×Z2 −→ G given by

f(0) = e, f(x) = a, f(y) = b, f(z) = c

is an isomorphism of groups.

Case 2: x2 6= e for some x ∈ G. We may assume a2 = b 6= e (Why?) Thus the table looks like
e a b c

e e a b c
a a b · ·
b b · · ·
c c · · ·

The second row and second column must be filled in

e a b c
e e a b c
a a b c e
b b c · ·
c c e · ·

which

forces

e a b c
e e a b c
a a b c e
b b c e ·
c c e a ·

and

e a b c
e e a b c
a a b c e
b b c e a
c c e a b

Thus the table is

e a b c
e e a b c
a a b c e
b b c e a
c c e a b

The table for

Z4 is given by

0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

Thus f : Z4 −→ G given by

f(0) = e, f(1) = a, f(2) = b, f(3) = c

is an isomorphism.

2. (20 points) The condition a2 = e for all a ∈ G is equivalent to a = a−1 for all a ∈ G.

(a) (7 pts) Let a, b ∈ G. From abab = (ab)2 = e we deduce ab = b−1a−1 = ba.

(b) (13 pts) If |G| = 1, 2 we are done.

Note: The condition 0 ≤ i < n should have been 0 < i ≤ n.
Suppose |G| > 2. Since G is abelian G is not simple; else, since all subgroups of G are normal

by part (a), G is cyclic and G ' Z2 as G = <a> for some a ∈ G and a2 = e. Therefore there is a
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(normal) subgroup H of G which satisfies (e) 6= H 6= G. Since G is finite there is a maximal such
subgroup which we call, by slight abuse of notation, H as well.

¿From |G| = |G/H||H| we now conclude that 1 < |G/H|, |H| < |G|. By the Fourth Isomorphism
Theorem G/H is simple. Thus G/H is cyclic of order 2, by our argument above, which means
|G : H| = 2.

By induction on |G| there is an m ≥ 0 and a chain of subgroups (e) = H0 ⊆ H1 ⊆ · · · ⊆ Hm = H
such that |Hi : Hi−1| = 2 for all 0 < i ≤ m. Set n = m + 1 and G = Hn. Thus our conclusion
follows by induction on |G|.
3. (15 points) Let a ∈ G. Then a ∈ S for a unique S ∈ G since G partitions G. Therefore
π : G −→ G given by π(a) = S is a well-defined function.

Now suppose b ∈ G and let T ∈ G satisfy b ∈ T . Then ab ∈ ST and ST ∈ G by assumption.
Therefore π(ab) = ST = π(a)π(b) which means that π is a group homomorphism.

Suppose N ∈ G satisfies e ∈ N . Then N = π(e) is the neutral element of G. As

S = π−1({S}) = π−1({π(a)}) = a(ker π) = (ker π)a

and N = π−1({N}) = ker π we conclude that S = aN = Na.

4. (20 points)

(a) (5 pts) e ∈ H as f(e) = e′ = g(e); thus H 6= ∅. Let a, b ∈ H. The calculation

f(ab−1) = f(a)f(b−1) = f(a)f(b)−1 = g(a)g(b)−1 = g(a)g(b−1) = g(ab−1)

shows that ab−1 ∈ H. Therefore H ≤ G.

(b) (5 pts) Only if. Suppose f = g. Then f(a) = g(a) for all a ∈ G; in particular f(s) = g(s) for
all s ∈ S. If: Suppose that f(s) = g(s) for all s ∈ S. Then S ⊆ H and consequently <S> ⊆ H
since the latter is a subgroup of G. Therefore G = <S> ⊆ H(⊆ G) from which G = H follows. We
have shown that f(a) = g(a) for all a ∈ G, or equivalently f = g.

(c) (5 pts) First of all suppose that S is any subset of G and a ∈ G satisfies sa = as for all s ∈ S.
Then S ⊆ CG({a}) which means <S> ⊆ CG({a}) since the latter is a subgroup of G.

Now let S, T be as in part (c) and let t ∈ T . Since st = ts for all s ∈ S, H = <S> ⊆ CG({t}).
We have shown ht = th for all h ∈ H.

Now let h ∈ H. Then T ⊆ CG({h}) and thus K = <T> ⊆ CG({h}). Therefore hk = kh for all
k ∈ K.

(d) (5 pts) By part (c) HK = KH and therefore HK ≤ G. Let a, a′ ∈ HK. Then a = hk and
a′ = h′k′ for some h, h′ ∈ H and k, k′ ∈ K. Therefore

aa′ = hkh′k′ = hh′kk′ = h′hk′k = h′k′hk = a′a

which shows that HK is commutative.

5. (25 points) For a ∈ G, where G is a finite group, recall that the order of a, denoted |a|, is the
least positive integer n satisfying an = e and |a| = |<a>|.
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(a) (5 pts) (ab)m = ambm = ebm. Thus <bm> ⊆ <ab>. Since <bm> = <b(m,n)> = <b>, by
Lagrange’s Theorem m||<ab>|. Since ba = ab and (n,m) = 1, we conclude n||<ab>|. Thus
mn||<ab>| since (m,n) = 1. The calculation (ab)mn = amnbmn = (am)n(bn)m = enem = e shows
that |<ab>||mn. Therefore mn = |<ab>| = |ab|.
(b) (5 pts) The possible orders of elements of G are 1, 2, 3, or 6 since |G| = 6. We will show that
x2 = e for all x ∈ G or x3 = e for all x ∈ G are not possible.

x2 = e for all x ∈ G is ruled out by Problem 2 since |G| 6= 2n for all n ≥ 0. Suppose
x3 = e for all x ∈ G. Then G has different subgroups H, K of order 3. Since H∩K = H implies
H ⊆ K and consequently H = K, H∩K 6= K. By Lagrange’s Theorem H∩K = (e). Thus
|G| ≥ |HK| = |H||K|/|H∩K| = 9 > |G|, a contradiction. Thus x3 = e for all x ∈ G is ruled out.

Since |G| 6= 2n for all n ≥ 0, by Problem 2, a2 6= e for some a ∈ G. Thus G has an element of
order 3 or 6. In the latter case G ' Z6. Thus we may assume that G has an element a of order 3.

Our conclusion: either G has an element of order 6 or elements a, b of orders 2 and 3 respectively.
By part (a) the product ab has order 6. Thus G has an element of order 6 which means G ' Z6.

(c) (5 pts) Observe that Z(G) = (e) since G is non-abelian. Otherwise Z(G) has order 2 or 3 by
Lagrange’s Theorem. Since |G| = 6, by the same if L ≤ G and Z(G) ⊆ L then L = Z(G) or L = G.
Since G is not abelian there ia a a 6 inZ(G). By Problem 4 L = <a>Z(G) is an abelian subgroup of
G which properly contains Z(G). Thus L = G, a contradiction. W have Shown Z(G) = (e).

The class equation reduces to 6 = 1 + `2 + m3 + n6 for some `,m, n ≥ 0. Therefore ` = m = 1
and n = 0.

(d) (5 pts) More generally, suppose that G is any group and H = <a> £ G has 2 elements. Let
g ∈ G. Then {e, a} = H = gHg−1 = {geg−1, gag−1} = {e, gag−1} means gag−1 = a. Therefore
a ∈ Z(G) which means H ⊆ Z(G).

Since Z(G) = (e) for our particular G, which wasshown for part (c), H is not normal.

(e) (5 pts) Note that Ker π ⊆ H. Since |H| = 2 either Ker π = (e) or ker π = H. As Ker π is a
normal subgroup of G and, by part (d), H is not, Ker π = (e). Therefore π is injective and thus
bijective since |G| = 6 = |SA|.
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