Written Homework \# 2 Solution

10/09/08

1. (20 points) The challenge of part (a) is not to fall asleep. A part of basic algebra is checking mundane details. Let $f, g, h \in \mathcal{G}$.
(a) ($\mathbf{9} \mathbf{~ p t s})$ Let $i \in I$. Since the binary operation in G_{i} is associative

$$
\begin{aligned}
((f g) h)(i) & =((f g)(i)) h(i) \\
& =(f(i) g(i)) h(i) \\
& =f(i)(g(i) h(i)) \\
& =f(i)((g h)(i)) \\
& =(f(g h))(i) .
\end{aligned}
$$

We have shown that $(f g) h=f(g h)$.
Let e_{i} be the identity element of G_{i} for all $i \in$ and define $e \in \mathcal{G}$ by $e(i)=e_{i}$ for all $i \in I$. Then

$$
(f e)(i)=f(i) e(i)=f(i) e_{i}=f(i)=e_{i} f(i)=(e f)(i)
$$

for all $i \in I$ means that $f e=f=e f$. Thus e is an identity element for \mathcal{G}.
Define $f^{\prime} \in \mathcal{G}$ by $f^{\prime}(i)=f(i)^{-1}$ for all $i \in I$. The calculations

$$
\left(f f^{\prime}\right)(i)=f(i) f^{\prime}(i)=f(i) f(i)^{-1}=e_{i}=e(i)
$$

and

$$
\left(f^{\prime} f\right)(i)=f^{\prime}(i) f(i)=f(i)^{-1} f(i)=e_{i}=e(i)
$$

show that $f f^{\prime}=e=f^{\prime} f$. Therefore f has an inverse which is f^{\prime}.
(b) ($\mathbf{1 1} \mathbf{~ p t s) ~ T a b l e s ~ f o r ~ f i n i t e ~ g r o u p s ~ h a v e ~ t h e ~ p r o p e r t y ~ t h a t ~ e a c h ~ e l e m e n t ~ o f ~ t h e ~ g r o u p ~ m u s t ~ a p p e a r ~}$ exactly once in each row and in each column (cancellation property). We may write $G=\{e, a, b, c\}$, where e is the identity element of G.

	e	a	b	c
e	e	a	b	c

Case 1: $x^{2}=e$ for all $x \in G$. Then the table looks like $\begin{array}{llllll}\mathrm{a} & \mathrm{a} & \mathrm{e} & \cdot & . & \text { We are forced to fill in } \\ & \mathrm{b} & \mathrm{b} & \cdot & \mathrm{e} & .\end{array}$

b	b	\cdot	e	\cdot
c	c	\cdot	\cdot	e

the columns (left to right) | a | a | e | \cdot | \cdot | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | b | b | \mathbf{c} | e | \cdot |
| | c | c | b | \cdot | e |

	e	a	b	c
e	e	a	b	c
a	a	e	\mathbf{c}	\cdot
b	b	c	e	\cdot
c	c	b	\mathbf{a}	e

	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c	e	a
c	c	b	a	e

Thus the table must be | | e | a | b | c |
| :---: | :---: | :---: | :---: | :---: |
| | e | e | a | b |
| a | a | e | c | b |
| b | b | c | e | a |
| c | c | b | a | e |

$\mathbf{Z}_{2} \times \mathbf{Z}_{2}$ realizes the table. Let $x=(1,0)$ and $y=(0,1)$. Set $z=x+y=(1,1)$ and $0=(0,0)$.

$$
\begin{array}{r}
\text { Then the table for } \mathbf{Z}_{2} \times \mathbf{Z}_{2} \text { is } \begin{array}{rcccc}
& 0 & \mathrm{x} & \mathrm{y} & \mathrm{z} \\
\cline { 2 - 6 } & 0 & 0 & \mathrm{x} & \mathrm{y} \\
\mathrm{x} & \mathrm{z} \\
\mathrm{x} & 0 & \mathrm{z} & \mathrm{y} \\
\mathrm{y} & \mathrm{y} & \mathrm{z} & 0 & \mathrm{x} \\
\mathrm{z} & \mathrm{z} & \mathrm{y} & \mathrm{x} & 0
\end{array} \\
f(0)=e, \quad f(x)=a, \quad f(y)=b, \quad f(z)=c
\end{array}
$$

is an isomorphism of groups.
Case 2: $x^{2} \neq e$ for some $x \in G$. We may assume $a^{2}=b \neq e$ (Why?) Thus the table looks like

	e	a	b	c
e	e	a	b	c
a	a	b	\cdot	\cdot
b	b	\cdot	\cdot	\cdot
c	c	\cdot	\cdot	\cdot

The second row and second column must be filled in

	e	a	b	c
e	e	a	b	c
a	a	b	c	e
b which				
b	b	c	\cdot	\cdot
c	c	e	\cdot	\cdot

	e	a	b	c			e	a	b		c	
e	e	a	b	c		e	e	a	b		c	
a	a	b	c	e	and	a	a	b	c		e	Thus the table is
b	b	c	e	.		b	b	c	e		a	
c	c	e	a	-		c	c	e	a		b	

	e	a	b	c
e	e	a	b	c
a	a	b	c	e
b	b	c	e	a
c	c	e	a	b

$$
\begin{array}{c|llll}
& 0 & 1 & 2 & 3 \\
\hline 0 & 0 & 1 & 2 & 3
\end{array}
$$

\mathbf{Z}_{4} is given by	1	1	2	3	0	
	2	2	3	0	1	
	3	3	0	1	2	

$$
f(0)=e, \quad f(1)=a, \quad f(2)=b, \quad f(3)=c
$$

is an isomorphism.
2. (20 points) The condition $a^{2}=e$ for all $a \in G$ is equivalent to $a=a^{-1}$ for all $a \in G$.
(a) $(7 \mathrm{pts})$ Let $a, b \in G$. From $a b a b=(a b)^{2}=e$ we deduce $a b=b^{-1} a^{-1}=b a$.
(b) (13 pts) If $|G|=1,2$ we are done.

Note: The condition $0 \leq i<n$ should have been $0<i \leq n$.
Suppose $|G|>2$. Since G is abelian G is not simple; else, since all subgroups of G are normal by part (a), G is cyclic and $G \simeq \mathbf{Z}_{2}$ as $G=<a>$ for some $a \in G$ and $a^{2}=e$. Therefore there is a
(normal) subgroup H of G which satisfies $(e) \neq H \neq G$. Since G is finite there is a maximal such subgroup which we call, by slight abuse of notation, H as well.
¿From $|G|=|G / H||H|$ we now conclude that $1<|G / H|,|H|<|G|$. By the Fourth Isomorphism Theorem G / H is simple. Thus G / H is cyclic of order 2, by our argument above, which means $|G: H|=2$.

By induction on $|G|$ there is an $m \geq 0$ and a chain of subgroups $(e)=H_{0} \subseteq H_{1} \subseteq \cdots \subseteq H_{m}=H$ such that $\left|H_{i}: H_{i-1}\right|=2$ for all $0<i \leq m$. Set $n=m+1$ and $G=H_{n}$. Thus our conclusion follows by induction on $|G|$.
3. ($\mathbf{1 5}$ points) Let $a \in G$. Then $a \in S$ for a unique $S \in \mathcal{G}$ since \mathcal{G} partitions G. Therefore $\pi: G \longrightarrow \mathcal{G}$ given by $\pi(a)=S$ is a well-defined function.

Now suppose $b \in \mathcal{G}$ and let $T \in \mathcal{G}$ satisfy $b \in T$. Then $a b \in S T$ and $S T \in \mathcal{G}$ by assumption. Therefore $\pi(a b)=S T=\pi(a) \pi(b)$ which means that π is a group homomorphism.

Suppose $N \in \mathcal{G}$ satisfies $e \in N$. Then $N=\pi(e)$ is the neutral element of \mathcal{G}. As

$$
S=\pi^{-1}(\{S\})=\pi^{-1}(\{\pi(a)\})=a(\operatorname{ker} \pi)=(\operatorname{ker} \pi) a
$$

and $N=\pi^{-1}(\{N\})=\operatorname{ker} \pi$ we conclude that $S=a N=N a$.
4. (20 points)
(a) (5 pts) $e \in H$ as $f(e)=e^{\prime}=g(e)$; thus $H \neq \emptyset$. Let $a, b \in H$. The calculation

$$
f\left(a b^{-1}\right)=f(a) f\left(b^{-1}\right)=f(a) f(b)^{-1}=g(a) g(b)^{-1}=g(a) g\left(b^{-1}\right)=g\left(a b^{-1}\right)
$$

shows that $a b^{-1} \in H$. Therefore $H \leq G$.
(b) (5 pts) Only if. Suppose $f=g$. Then $f(a)=g(a)$ for all $a \in G$; in particular $f(s)=g(s)$ for all $s \in S$. If: Suppose that $f(s)=g(s)$ for all $s \in S$. Then $S \subseteq H$ and consequently $\langle S\rangle \subseteq H$ since the latter is a subgroup of G. Therefore $G=\langle S\rangle \subseteq H(\subseteq G)$ from which $G=H$ follows. We have shown that $f(a)=g(a)$ for all $a \in G$, or equivalently $f=g$.
(c) ($\mathbf{5} \mathbf{~ p t s}$) First of all suppose that S is any subset of G and $a \in G$ satisfies $s a=a s$ for all $s \in S$. Then $S \subseteq \mathrm{C}_{G}(\{a\})$ which means $\langle S\rangle \subseteq \mathrm{C}_{G}(\{a\})$ since the latter is a subgroup of G.

Now let S, T be as in part (c) and let $t \in T$. Since $s t=t s$ for all $s \in S, H=<S>\subseteq \mathrm{C}_{G}(\{t\})$. We have shown $h t=t h$ for all $h \in H$.

Now let $h \in H$. Then $T \subseteq \mathrm{C}_{G}(\{h\})$ and thus $K=<T>\subseteq \mathrm{C}_{G}(\{h\})$. Therefore $h k=k h$ for all $k \in K$.
(d) (5 pts) By part (c) $H K=K H$ and therefore $H K \leq G$. Let $a, a^{\prime} \in H K$. Then $a=h k$ and $a^{\prime}=h^{\prime} k^{\prime}$ for some $h, h^{\prime} \in H$ and $k, k^{\prime} \in K$. Therefore

$$
a a^{\prime}=h k h^{\prime} k^{\prime}=h h^{\prime} k k^{\prime}=h^{\prime} h k^{\prime} k=h^{\prime} k^{\prime} h k=a^{\prime} a
$$

which shows that $H K$ is commutative.
5. (25 points) For $a \in G$, where G is a finite group, recall that the order of a, denoted $|a|$, is the least positive integer n satisfying $a^{n}=e$ and $|a|=|\langle a\rangle|$.
(a) (5 pts) $(a b)^{m}=a^{m} b^{m}=e b^{m}$. Thus $\left.\left\langle b^{m}\right\rangle \subseteq<a b\right\rangle$. Since $\left\langle b^{m}\right\rangle=\left\langle b^{(m, n)}\right\rangle=\langle b\rangle$, by Lagrange's Theorem $m \|<a b>\mid$. Since $b a=a b$ and $(n, m)=1$, we conclude $n \|<a b>\mid$. Thus $m n\left||<a b>|\right.$ since $(m, n)=1$. The calculation $(a b)^{m n}=a^{m n} b^{m n}=\left(a^{m}\right)^{n}\left(b^{n}\right)^{m}=e^{n} e^{m}=e$ shows that $|<a b\rangle|\mid m n$. Therefore $m n=|<a b\rangle|=|a b|$.
(b) ($5 \mathbf{p t s}$) The possible orders of elements of G are $1,2,3$, or 6 since $|G|=6$. We will show that $x^{2}=e$ for all $x \in G$ or $x^{3}=e$ for all $x \in G$ are not possible.
$x^{2}=e$ for all $x \in G$ is ruled out by Problem 2 since $|G| \neq 2^{n}$ for all $n \geq 0$. Suppose $x^{3}=e$ for all $x \in G$. Then G has different subgroups H, K of order 3 . Since $H \cap K=H$ implies $H \subseteq K$ and consequently $H=K, H \cap K \neq K$. By Lagrange's Theorem $H \cap K=(e)$. Thus $|G| \geq|H K|=|H||K| /|H \cap K|=9>|G|$, a contradiction. Thus $x^{3}=e$ for all $x \in G$ is ruled out.

Since $|G| \neq 2^{n}$ for all $n \geq 0$, by Problem 2, $a^{2} \neq e$ for some $a \in G$. Thus G has an element of order 3 or 6 . In the latter case $G \simeq \mathbf{Z}_{6}$. Thus we may assume that G has an element a of order 3 .

Our conclusion: either G has an element of order 6 or elements a, b of orders 2 and 3 respectively. By part (a) the product $a b$ has order 6 . Thus G has an element of order 6 which means $G \simeq \mathbf{Z}_{6}$.
(c) ($5 \mathbf{~ p t s}$) Observe that $\mathrm{Z}(G)=(e)$ since G is non-abelian. Otherwise $\mathrm{Z}(G)$ has order 2 or 3 by Lagrange's Theorem. Since $|G|=6$, by the same if $L \leq G$ and $\mathrm{Z}(G) \subseteq L$ then $L=\mathrm{Z}(G)$ or $L=G$. Since G is not abelian there ia a $a \not m Z(G)$. By Problem $4 L=\langle a\rangle \mathrm{Z}(G)$ is an abelian subgroup of G which properly contains $\mathrm{Z}(G)$. Thus $L=G$, a contradiction. W have Shown $\mathrm{Z}(G)=(e)$.

The class equation reduces to $6=1+\ell 2+m 3+n 6$ for some $\ell, m, n \geq 0$. Therefore $\ell=m=1$ and $n=0$.
(d) (5 pts) More generally, suppose that G is any group and $H=<a\rangle \unlhd G$ has 2 elements. Let $g \in G$. Then $\{e, a\}=H=g H g^{-1}=\left\{g e g^{-1}, g a g^{-1}\right\}=\left\{e, g a g^{-1}\right\}$ means $g a g^{-1}=a$. Therefore $a \in \mathrm{Z}(G)$ which means $H \subseteq \mathrm{Z}(G)$.

Since $\mathrm{Z}(G)=(e)$ for our particular G, which wasshown for part (c), H is not normal.
(e) ($\mathbf{5} \mathbf{~ p t s}$) Note that $\operatorname{Ker} \pi \subseteq H$. Since $|H|=2$ either $\operatorname{Ker} \pi=(e)$ or $\operatorname{ker} \pi=H$. As $\operatorname{Ker} \pi$ is a normal subgroup of G and, by part (d), H is not, $\operatorname{Ker} \pi=(e)$. Therefore π is injective and thus bijective since $|G|=6=\left|S_{A}\right|$.

