Fall 2008

Radford

Written Homework # 3

Due at the beginning of class 10/24/08

- 1. Let G be a group of order $p^n q$, where p, q are primes and $p^n = q + 1$. Show that G is not simple.
- 2. Let G be a group of order pqr, where p, q and r are distinct primes. Show that G is not simple.
- 3. Use Sylow's Theorem $(\S4.5)$ to prove Cauchy's Theorem $(\S3.2)$.
- 4. Let $G = S_n$, where $n \ge 5$, and $H \le G$ satisfies |G:H| < n. Show that H = G or $H = A_n$.
- 5. Let G_1, G_2 be groups. A product of G_1 and G_2 is a triple (P, π_1, π_2) , where
- (P1) P is a group and $\pi_i : P \longrightarrow G_i$ is a homomorphism for i = 1, 2;
- (P1) If (P', π'_1, π'_2) satisfies (P1) then there is a homomorphism $f : P' \longrightarrow P$ determined by $\pi_i \circ f = \pi'_i$ for i = 1, 2.

Show:

- (a) There is a product (P, π_1, π_2) of G_1 and G_2 ;
- (b) If (P, π_1, π_2) and (P', π'_1, π'_2) are products of G_1 and G_2 there is an isomorphism $f: P \longrightarrow P'$.