Fall 2008

Written Homework # 3 Solution

12/01/08

Here is the basis for a solution to the first two problems.

Lemma 1 Suppose G is a group, p is a positive prime, and G has s cyclic subgroups of order p. Then the number of elements of G of order p is s(p-1).

PROOF: Suppose that H_1, \ldots, H_s are the subgroups of order p. Then the non-identity elements of these subgroups account for the elements of G of order p by Lagrange's Theorem. Suppose $H_i \cap H_j \neq (e)$. Choose $e \neq a \in H_i \cap H_j$. Then $a \in H_i, H_j$ and has order p. Thus $H_i = (a) = H_j$. Consequently $H_1 \setminus \{e\} \cup \cdots \cup H_s \setminus \{e\}$ describes a partition of the elements of G of order p. \Box

For a finite group G and positive prime p we let n_p denote the number of Sylow p-subgroups of G. If $|G| = p^n m$, where $n \ge 1$ and (m, p) = 1, then $n_p = 1 + kp$ for some non-negative integer k and $n_p | |G|$. Thus $n_p | m$.

There is a corollary to the proof of the lemma which is stated here for the record. It is generalization of the lemma.

Corollary 1 Suppose G is a group, d is a positive integer, and G has n_d cyclic subgroups of order d. Then the number of elements of G of order d is $n_d\varphi(d)$, were φ is the Euler phi-function. \Box

1. (20 points) Most of the basic details are taken care of by Lemma 1. Since p, q divide |G| it follows by the Sylow Theorems that $n_p, n_q \ge 1$. Suppose that no Sylow q-subgroup is normal. Then $n_q > 1$ which means $n_q = 1 + q = p^n$. The number of elements in G of order q is therefore $n_q(q-1) = p^n(q-1) = p^n q - p^n = |G| - p^n$ by Lemma 1.

Let $S \subseteq G$ be the subset of all elements which do not have order q. Then $|S| = p^n$. Let P be a Sylow p-subgroup of G. Then elements of P have order p^{ℓ} for some $0 \leq \ell \leq n$. Therefore $P \subseteq S$ which means P = S since $|S| = p^n = |P|$. Thus P is the only Sylow p-subgroup of G which means that P is normal. We have shown that G is not simple.

2. (20 points) We may assume p < q < r. Assume that G is simple. Then $n_p, n_q, n_r > 1$. Since $n_p|qr$, $n_q|pr$, and $n_r|pq$ it follows that $n_p \ge q$, $n_q \ge r$ and $n_r = pq$. The number of elements of orders p, q, and r respectively account for

$$\ell = n_p(p-1) + n_q(q-1) + n_r(r-1) \ge q(p-1) + r(q-1) + pq(r-1) = pqr - q - r + rq.$$

Now 1/q + 1/r < 1 as $2 \le p < q < r$. Therefore 0 < -r - q + rq. We have shown that $|G| \ge \ell > |G| - q - r + qr > |G|$, a contradiction. Therefore G is not simple (indeed one of its Sylow subgroups is normal).

3. (20 points) Since p | |G| there is a Sylow *p*-subgroup for *G*. Let $e \neq a \in G$. Since |G| is a power of *p* it follows that (*a*) as order a power of *p* by Lagrange's Theorem. By the theory of cyclic groups (*a*) contains an element of order *p*.

4. (20 points) By assumption $|G : H| \leq n - 1$. Let A be the set of left cosets of H in $G = S_n$ and let $\pi : G \longrightarrow S_A$ be the group homomorphism defined by $\pi(g)(aH) = gaH$ for all $g \in G$ and $aH \in A$. Recall that Ker $\pi \subseteq H$. Since |G| = n! and $|S_A| = |G : H|! \leq (n - 1)!$ it follows that π is not injective. Therefore Ker $\pi \neq (e)$.

Note that ker $\pi \cap A_n$ is a normal subgroup of A_n . Since $n \ge 5$ the group A_n is simple. Therefore ker $\pi \cap A_n = A_n$ or ker $\pi \cap A_n = (e)$.

Suppose that ker $\pi \cap A_n = A_n$. Then $A_n \subseteq \text{Ker } \pi \subseteq H$. Since $|G:H| \leq |G:A_n| = 2$ it follows that |G:H| = 1, in which case H = G, or |G:H| = 2, in which case $H = A_n$. (We use the fact that |G| = |G:H||H| for a finite group G and subgroup H.)

We will show that ker $\pi \cap A_n = (e)$ is not possible which will complete the proof. Suppose the equations holds. Then $|\ker \pi||A_n| = |(\ker \pi)A_n| \le |G| = 2|A_n|$ which means that $|\ker \pi| \le 2$. By the first isomorphism theorem

$$|G|/|\operatorname{Ker} \pi| = |G/\operatorname{Ker} \pi| = |\operatorname{Im} \pi| \le |S_A| \le (n-1)!.$$

Therefore $n! = |G| \le 2(n-1)!$, or $n \le 2$, a contradiction. Thus ker $\pi \cap A_n \ne (e)$.

5. (20 points) This is basically a matter of patience.

(a) Let $P = G_1 \times G_2$ be the "product" of groups and $\pi_i : P \longrightarrow G_i$ for i = 1, 2 be defined by $\pi_i((g_1, g_2)) = g_i$ for all $(g_1, g_2) \in P$. For $(g_1, g_2), (g'_1, g'_2) \in P$ the calculation

$$\pi_i((g_1, g_2)(g_1', g_2')) = \pi_i((g_1g_1', g_2g_2')) = g_ig_i' = \pi_i((g_1, g_2))\pi_i((g_1', g_2'))$$

shows that π_i is a homomorphism.

Suppose that P is a group and $\pi'_i : P' \longrightarrow G_i$ are group homomorphisms. Suppose further that $F : P' \longrightarrow P$ is a group homomorphism such that $\pi_i \circ F = \pi'_i$ for i = 1, 2. For $a \in P'$ the calculation

$$\pi_i(F(a)) = (\pi_i \circ F)(a) = \pi'_i(a)$$

shows that $F(a) = (\pi'_1(a), \pi'_2(a))$. Therefore there is at most one group homomorphism $F : P' \longrightarrow P$ such that $\pi_i \circ F = \pi'_i$ for i = 1, 2.

Define a function $F: P' \longrightarrow P$ by $F(a) = (\pi'_1(a), \pi'_2(a))$ for all $a \in P'$. Thus $\pi'_i(a) = \pi_i(F(a)) = (\pi_i \circ F)(a)$ for all $a \in P'$ which means $\pi'_i = \pi_i \circ F$ for i = 1, 2. For $a, a' \in P'$ note that

$$F(aa') = (\pi'_1(aa'), \pi'_2(aa')) = (\pi'_1(a)\pi'_1(a'), \pi'_2(a)\pi'_2(a')) = (\pi'_1(a), \pi'_2(a))(\pi'_1(a'), \pi'_2(a')) = F(a)F(a')$$

and thus F is a group homomorphism.

(b) Suppose that (P, π_1, π_2) and (P', π'_1, π'_2) are products of G_1 and G_2 . Then there is a group homomorphism $F: P' \longrightarrow P$ which satisfies $\pi_i \circ F = \pi'_i$ for i = 1, 2. Since (P', π'_1, π'_2) and (P, π_1, π_2) are products of G_1 and G_2 , there is a group homomorphism $F': P \longrightarrow P'$ which satisfy $\pi'_i \circ F' = \pi_i$ for i = 1, 2. Note $F \circ F': P \longrightarrow P$ satisfies

$$\pi_i \circ (F \circ F') = (\pi_i \circ F) \circ F' = \pi'_i \circ F' = \pi_i.$$

As $\mathrm{Id}_P : P \longrightarrow P$ satisfies $\pi_i \circ \mathrm{Id}_P = \pi_i$ for i = 1, 2 also, by uniqueness $F \circ F' = \mathrm{Id}_P$. Therefore $F' \circ F = \mathrm{Id}_{P'}$. These last two equations establish that F and F' are inverses of each other.