Written Homework \# 4

Due at the beginning of class 11/14/08
Throughout R is a ring with unity $1 \neq 0$ and F is a field.

1. Let G be an additive group and S be a non-empty set. Then $\mathcal{G}=\operatorname{Fun}(S, G)$, the set of all functions $f: S \longrightarrow G$, is an additive group, where $(f+g)(s)=f(s)+g(s)$ for all $f, g \in \mathcal{G}$ and $s \in S$. Let $\mathrm{A}(S, G)$ be the subset of \mathcal{G} consisting of all $f \in \mathcal{G}$ which satisfy $f(s)=0$ for all but finitely many $s \in S$.
(a) Show that $\mathrm{A}(S, G) \leq \mathcal{G}$.
(b) Let $\imath: S \longrightarrow \mathrm{~A}(S, \mathbf{Z})$ be the function defined by $\imath(s)\left(s^{\prime}\right)=\left\{\begin{array}{lll}1 & : & s^{\prime}=s ; \\ 0 & : & s^{\prime} \neq s\end{array}\right.$. Show that $(\imath, \mathrm{A}(S, \mathbf{Z}))$ is a free abelian group on S.
2. Let R^{\times}be the group of units of R.
(a) Suppose that $a \in R$ and $\left\{1, a, a^{2}, a^{3}, \ldots\right\}$ is a finite set. Show that $a \in R^{\times}$or $a b=0=b a$ for some non-zero $b \in R$.
(b) Suppose that R is finite. Show that any element of R is a unit or is a zero divisor.
(c) Let $R=\mathrm{M}_{n}(F)$, where $n \geq 1$, and let $a \in R$. Show that Show that $a \in R^{\times}$or $a b=0=b a$ for some non-zero $b \in R$. [Hint: Is $\left\{1, a, a^{2}, a^{3}, \ldots\right\}$ linearly independent?]
3. You may assume that if $a, b \in R$ commute then the binomial theorem holds for them; that is $(a+b)^{n}=\sum_{\ell=0}^{n}\binom{n}{\ell} a^{n-\ell} b^{\ell}$ for all $n \geq 0$. Also, you may assume the exponent laws.
(a) Suppose $a, b \in R$ are nilpotent and $a b=b a$. Show that $a \pm b$ is nilpotent.
(b) Suppose $a, r \in R$, where a is nilpotent and $a r=r a$. Show that $a r$ is nilpotent.
(c) Suppose that R is commutative and N is the set of nilpotent elements of R. Show that N is an ideal of R.
(d) Suppose $R=\mathrm{M}_{2}(F)$. Find nilpotent $a, b \in R$ such that $a+b$ and $a b$ are not nilpotent. Justify your answer.
4. Let $F((x))=\left\{\sum_{n \geq N} a_{n} x^{n} \mid N \in \mathbf{Z}, a_{n} \in F \quad \forall n \geq N\right\}$ be the (commutative) ring of formal Laurent series with coefficients in F. Writing elements of $F((x))$ as $\sum a_{n} x^{n}$ we have

$$
\sum a_{n} x^{n}+\sum b_{n} x^{n}=\sum\left(a_{n}+b_{n}\right) x^{n} \text { and }\left(\sum a_{n} x^{n}\right)\left(\sum b_{n} x^{n}\right)=\sum c_{n} x^{n}
$$

where $c_{n}=\sum_{i+j=n} a_{i} b_{j}$ for all $n \in \mathbf{Z}$. Observe that $F[[x]]$ is a subring of $F((x))$.
(a) Show that a non-zero element of $F((x))$ has a multiplicative inverse.
(b) Let $0 \neq f(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \in F[[x]]$. Show that $f(x)^{-1} \in F[[x]]$ if and only if $a_{0} \neq 0$.
5. Suppose that R is commutative and for all $a \in R$ there is a positive integer $n>1$ such that $a^{n}=a$. Show that every prime ideal of R is maximal.

