Math 516

Fall 2008

Radford

Written Homework # 4

Due at the beginning of class 11/14/08

Throughout R is a ring with unity $1 \neq 0$ and F is a field.

1. Let G be an additive group and S be a non-empty set. Then $\mathcal{G} = \operatorname{Fun}(S, G)$, the set of all functions $f: S \longrightarrow G$, is an additive group, where (f + g)(s) = f(s) + g(s) for all $f, g \in \mathcal{G}$ and $s \in S$. Let A(S, G) be the subset of \mathcal{G} consisting of all $f \in \mathcal{G}$ which satisfy f(s) = 0 for all but finitely many $s \in S$.

- (a) Show that $A(S,G) \leq \mathcal{G}$.
- (b) Let $i : S \longrightarrow A(S, \mathbb{Z})$ be the function defined by $i(s)(s') = \begin{cases} 1 : s' = s; \\ 0 : s' \neq s \end{cases}$. Show that $(i, A(S, \mathbb{Z}))$ is a free abelian group on S.
- 2. Let R^{\times} be the group of units of R.
 - (a) Suppose that $a \in R$ and $\{1, a, a^2, a^3, \ldots\}$ is a finite set. Show that $a \in R^{\times}$ or ab = 0 = ba for some non-zero $b \in R$.
 - (b) Suppose that R is finite. Show that any element of R is a unit or is a zero divisor.
 - (c) Let $R = M_n(F)$, where $n \ge 1$, and let $a \in R$. Show that Show that $a \in R^{\times}$ or ab = 0 = ba for some non-zero $b \in R$. [Hint: Is $\{1, a, a^2, a^3, \ldots\}$ linearly independent?]

3. You may assume that if $a, b \in R$ commute then the binomial theorem holds for them; that is $(a+b)^n = \sum_{\ell=0}^n \binom{n}{\ell} a^{n-\ell} b^\ell$ for all $n \ge 0$. Also, you may assume the exponent laws.

- (a) Suppose $a, b \in R$ are nilpotent and ab = ba. Show that $a \pm b$ is nilpotent.
- (b) Suppose $a, r \in R$, where a is nilpotent and ar = ra. Show that ar is nilpotent.
- (c) Suppose that R is commutative and N is the set of nilpotent elements of R. Show that N is an ideal of R.
- (d) Suppose $R = M_2(F)$. Find nilpotent $a, b \in R$ such that a + b and ab are not nilpotent. Justify your answer.

4. Let $F((x)) = \{\sum_{n \ge N} a_n x^n \mid N \in \mathbb{Z}, a_n \in F \ \forall n \ge N\}$ be the (commutative) ring of formal Laurent series with coefficients in F. Writing elements of F((x)) as $\sum a_n x^n$ we have

$$\sum a_n x^n + \sum b_n x^n = \sum (a_n + b_n) x^n \text{ and } \left(\sum a_n x^n\right) \left(\sum b_n x^n\right) = \sum c_n x^n,$$

where $c_n = \sum_{i+j=n} a_i b_j$ for all $n \in \mathbb{Z}$. Observe that F[[x]] is a subring of F((x)).

(a) Show that a non-zero element of F((x)) has a multiplicative inverse.

(b) Let
$$0 \neq f(x) = \sum_{n=0}^{\infty} a_n x^n \in F[[x]]$$
. Show that $f(x)^{-1} \in F[[x]]$ if and only if $a_0 \neq 0$.

5. Suppose that R is commutative and for all $a \in R$ there is a positive integer n > 1 such that $a^n = a$. Show that every prime ideal of R is maximal.