Written Homework \# 4 Solution

$12 / 02 / 08$

1. (20 points) For $f \in \mathcal{G}=\operatorname{Fun}(S, G)$ set $S_{f}=\{s \in S \mid f(s) \neq 0\}$. This set is sometimes called the support of f. Let $g \in \mathcal{G}$ also. Observe that

$$
\begin{equation*}
S_{f}=S_{-f} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{f+g} \subseteq S_{f} \cup S_{g} \tag{2}
\end{equation*}
$$

To see that latter observe that $s \notin S_{f} \cup S_{g}$ implies $s \notin S_{f+g}$ which is an equivalent statement.
(a) ($\mathbf{6} \mathbf{p t s}$) Note the function $\mathbf{0}: S \longrightarrow G$ defined by $\mathbf{0}(s)=0$ for all $s \in S$ belongs to \mathcal{G} since $S_{\mathbf{0}}=\emptyset$. Thus A $(S, G) \neq \emptyset$.

Let $f, g \in \mathrm{~A}(S, G)$. Then S_{f}, S_{g} are finite. Since $S_{f-g}=S_{f+(-g)} \subseteq S_{f} \cup S_{-g}=$ $S_{f} \cup S_{g}$ by (1) and (2), it follows that S_{f-g} is finite as the union of finite sets is finite. Therefore $f-g \in \mathrm{~A}(S, G)$ and we have established $\mathrm{A}(S, G) \leq \mathcal{G}$.
(b) (14 pts) Suppose that $f \in \mathrm{~A}(S, \mathrm{Z}), T \subseteq S$ is finite, and $S_{f} \subseteq T$. Then

$$
\left(\sum_{t \in T} f(t) \imath(t)\right)(s)=\sum_{t \in T} f(t) \imath(t)(s)=\left\{\begin{aligned}
& 0: \\
& 0: s \notin T \\
& f(s): s \in T \text { and } s \notin S_{f} \\
& \text { and } s \in S_{f}
\end{aligned}\right.
$$

Therefore

$$
\begin{equation*}
f=\sum_{t \in T} f(t) \imath(t) \tag{3}
\end{equation*}
$$

Note that $\mathrm{A}(S, \mathbf{Z})$ is abelian since \mathbf{Z} is. To show that $(\imath, \mathrm{A}(S, \mathbf{Z}))$ is a free abelian group on S we need to establish the following: Suppose that (\jmath, G) ia a pair, where $\jmath: S \longrightarrow G$ is a set map and G is an abelian group, there is a group homomorphism $F: \mathrm{A}(S, \mathbf{Z}) \longrightarrow G$ determined by $F \circ \imath=\jmath$.

Suppose that that $F: \mathrm{A}(S, \mathbf{Z}) \longrightarrow G$ is any group homomorphism satisfying $F \circ \imath=\jmath$. Let $f \in \mathrm{~A}(S, \mathbf{Z})$. Then by (3)

$$
\begin{aligned}
F(f) & =F\left(\sum_{s \in S_{f}} f(s) \imath(s)\right) \\
& =\sum_{s \in S_{f}} F(f(s) \imath(s)) \\
& =\sum_{s \in S_{f}} f(s) F(\imath(s)) \\
& =\sum_{s \in S_{f}} f(s)((F \circ \imath)(s)) \\
& =\sum_{s \in S_{f}} f(s)(\jmath(s)) .
\end{aligned}
$$

We have established uniqueness.
Existence. Define F by $F(f)=\sum_{s \in S_{f}} f(s) \jmath(s)$ for $f \in \mathrm{~A}(S, \mathbf{Z})$. Then

$$
(F \circ \imath)(s)=F(\imath(s))=\sum_{s^{\prime} \in S_{\imath(s)}} \imath(s)\left(s^{\prime}\right)\left(\jmath\left(s^{\prime}\right)\right)=\imath(s)(s)(\jmath(s))=1(\jmath(s))=\jmath(s)
$$

which shows that $F \circ \imath=\jmath$. Observe that if $T \subseteq S$ is finite and $S_{f} \subseteq T$ then

$$
\begin{equation*}
\sum_{s \in S_{f}} f(s) \jmath(s)=\sum_{t \in T} f(t) \jmath(t) \tag{4}
\end{equation*}
$$

since $f(t)=0$ for all $t \in T \backslash S_{f}$. Thus for $f, g \in \mathrm{~A}(S, \mathbf{Z})$ we have by (4)

$$
\begin{aligned}
F(f+g) & =\sum_{s \in S_{f+g}}(f+g)(s) \jmath(s) \\
& =\sum_{s \in S_{f} \cup S_{g}}(f+g)(s) \jmath(s) \\
& =\sum_{s \in S_{f} \cup S_{g}}(f(s)+g(s)) \jmath(s) \\
& =\sum_{s \in S_{f} \cup S_{g}} f(s) \jmath(s)+\sum_{s \in S_{f} \cup S_{g}} g(s) \jmath(s) \\
& =F(f)+F(g)
\end{aligned}
$$

which completes our proof.
2. ($\mathbf{2 0}$ points) Here we pick up on a fundamental argument for cyclic groups.
(a) (8 pts) Since the set $\left\{1, a, a^{2}, \ldots\right\}$ is finite there are integers $0 \leq \ell<n$ such that $a^{\ell}=a^{n}$. We can assume that n is the smallest such integer.

Suppose that $\ell=0$. Then $n-1 \geq 0$ and $a a^{n-1}=a^{n-1} a=a^{n}=a^{0}=1$. Therefore a has a multiplicative inverse which is a^{n-1}.

Suppose $\ell>0$. Then $m-1>\ell-1 \geq 0$ and

$$
a\left(a^{n-1}-a^{\ell-1}\right)=\left(a^{n-1}-a^{\ell-1}\right) a=a^{n}-a^{\ell}=0 .
$$

By the minimality of n we have $b=a^{n-1}-a^{\ell-1} \neq 0$. Now $0=a b=b a$.
(b) (5 pts) Follows immediately by part (a).
(c) $(\mathbf{7} \mathbf{p t s})$ Since R is a finite-dimensional vector space over F the set $\left\{1, a, a^{2}, \ldots\right\}$ is dependent. Now $\{1\}=\left\{a^{0}\right\}$ is independent. Therefore there is an $n \geq 1$ so that $\left\{1, \ldots, a^{n-1}\right\}$ is independent and $\left\{1, \ldots, a^{n}\right\}$ is independent. There is a dependency relation

$$
\alpha_{0} 1+\cdots+\alpha_{n} a^{n}=0
$$

where $\alpha_{n} \neq 0$. Multiplying both sides of this equation by α_{0}^{-1} we may assume $\alpha_{n}=1$. Observe that

$$
a\left(\alpha_{1} 1+\cdots+a^{n-1}\right)=\left(\alpha_{1} 1+\cdots+a^{n-1}\right) a=\alpha_{1} a+\cdots+a^{n}=-\alpha_{0} 1 .
$$

Suppose that $\alpha_{0} \neq 0$. Then a has a multiplicative inverse which is $a^{-1}=$ $-\alpha_{0}^{-1}\left(\alpha_{1} 1+\cdots+a^{n-1}\right)$.

Suppose that $\alpha_{0}=0$. Then $a b=b a=0$, where $b=\alpha_{1} 1+\cdots+a^{n-1}$. By the minimality of n we see that $b \neq 0$.
3. (20 points) We are assuming the binomial theorem for commutative rings.
(a) (5 pts) Suppose that $a \in R$ is nilpotent. Then $a^{m}=0$ for some positive integer m. Let $\ell \geq m$. Then $\ell-m \geq 0$ and $a^{\ell}=a^{m} a^{m-\ell}=0 a^{m-\ell}=0$. Since $(-a)^{n}=\left\{\begin{aligned} a^{n} & : n \text { even } \\ -a^{n} & : n \text { odd follows that }(-a)^{m}=0 \text { as well. } \text { it } . ~ . ~\end{aligned}\right.$

Suppose that $b \in R$ is also nilpotent. To show that $a \pm b$ is nilpotent we need only show that $a+b$ is nilpotent by our comments above. Now $b^{n}=0$ for some positive integer n. Now $m+n-1$ is a positive integer and

$$
(a+b)^{m+n-1}=\sum_{\ell=0}^{m+n-1}\binom{m+n-1}{\ell} a^{m+n-1-\ell} b^{\ell}
$$

Let $0 \leq \ell \leq m+n-1$. If $m+n-1-\ell<m$ and $\ell<n$ then

$$
m+n-1=(m+n-1-\ell)+\ell \leq(m-1)+(n-1)=m+n-2<m+n-1,
$$

a contradiction. Therefore $m+n-1-\ell \geq m$, in which case $a^{m+n-1-\ell}=0$, or $\ell \geq n$, in which case $b^{\ell}=0$. Thus $a^{m+n-1-\ell} b^{\ell}=0$. We have shown that $(a+b)^{m+n-1}=0$. Therefore $a+b$ is nilpotent.
(b) (5 pts) Since $a r=r a$, it follows that $(a r)^{n}=a^{n} r^{n}$ for all positive integers n. Thus $a^{m}=0$ implies $(a r)^{m}=0 r^{m}=0$.
(c) ($\mathbf{5} \mathbf{~ p t s}$) Note $0 \in N$ as $0^{1}=0$. Thus N is an additive subgroup of R by part (a) and consequently N is an ideal of R by part (b).
(d) (5 pts) Let $a=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ and $b=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$. Then $a+b=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. Since $(a+b)^{2}=\mathrm{I}_{2}$ it follows that $(a+b)^{2 n}=\mathrm{I}_{2}$. Therefore $a+b$ is not nilpotent as $(a+b)^{n}=0$ implies $(a+b)^{2 n}=0$.

Now $a b=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ satisfies $(a b)^{2}=a b \neq 0$. Thus $(a b)^{n}=a b$ for all $n \geq 1$, by induction on n, which means that $a b$ is not nilpotent.
4. (20 points) Let $0 \neq f(x) \in F((x))$. Then $f(x)=\sum_{n=N}^{\infty} a_{n} x^{n}$ for some $N \in \mathbf{Z}$ where $a_{N} \neq 0$.
(a) ($\mathbf{1 0} \mathbf{p t s}$) We define a sequence $b_{-N}, b_{-N+1}, b_{-N+2}, \ldots$ by $b_{-N}=a_{N}^{-1}$ and

$$
b_{-N+n}=-a_{N}^{-1}\left(\sum_{\ell=1}^{n} a_{N+\ell} b_{-N+n-\ell}\right)
$$

for $n>0$. Then $a_{N} b_{-N}=1$ and

$$
\sum_{\ell=0}^{n} a_{N+\ell} b_{-N+n-\ell}=0
$$

for $n>0$. Set $g(x)=\sum_{n=-N}^{\infty} b_{n} x^{n}$. As $a_{i} b_{j}=0$ unless $i \geq N$ and $j \geq-N$, we have
$f(x) g(x)=\sum_{n}\left(\sum_{i+j=n} a_{i} b_{j}\right) x^{n}=\sum_{n=0}^{\infty}\left(\sum_{\ell=0}^{n} a_{N+\ell} b_{-N+n-\ell}\right) x^{n}=1+0 x+0 x^{2}+\cdots=1$.
Since $F((x))$ is commutative $f(x)$ and $g(x)$ are inverses.
(b) (10 pts) Now suppose $f(x) \in F[[x]]$. Then $N \geq 0$. Since $b_{-N} \neq 0, g(x) \in F[[x]]$ if and only if $-N \geq 0$ as well; thus if and only if $N \geq 0 \geq N$ or equivalently $N=0$. The latter is the case if and only if $a_{0} \neq 0$.
5. (20 points) Let n be a positive integer and suppose that R is commutative ring with unity such that $a^{n}=a$ for all $a \in R$. First of all we show that if R is an integral domain then R is a field.

Suppose R is an integral domain. Let $0 \neq a \in R$. Then $n-1 \geq 0$ and $a\left(a^{n-1}\right)=$ $a^{n}=a=1 a$. Thus $a^{n-1}=1$ by cancellation. If $n=1$ then $a=1$; otherwise $n-2 \geq 0$ and $a a^{n-2}=1=a^{n-2} a$. In any case a has a multiplicative inverse. We have shown that R is a field.

Now suppose P is a prime ideal of R. Then R / P is an integral domain and the hypothesis for R holds for R / P. Therefore R / P is a field which means that P is a maximal ideal of R.

