Math 516 Fall 2008 Radford

Written Homework # 4 Solution

12/02/08

1. (20 points) For f € G = Fun(S,G) set Sy = {s € S| f(s) # 0}. This set is
sometimes called the support of f. Let g € G also. Observe that

Sp =5 (1)

and
Sitg & SfUSy. (2)

To see that latter observe that s ¢ SyUS, implies s € Syy, which is an equivalent
statement.

(a) (6 pts) Note the function 0 : S — G defined by 0(s) = 0 for all s € S belongs
to G since So = (). Thus A(S,G) # 0.

Let f,g € A(S,G). Then Sy, S, are finite. Since Sy_4 = Syi—g C SUS_, =
SrUS, by (1) and (2), it follows that S;_, is finite as the union of finite sets is finite.
Therefore f — g € A(S,G) and we have established A(S,G) < G.

(b) (14 pts) Suppose that f € A(S,Z), T C S is finite, and Sy C T. Then

0 : s¢T
(Z f(t)z(t)> (s)=>_ f(t)u(t)(s) = { “ 0 : se€T and s & Sy

teT teT s) : seT and se€ S

Therefore
f=>ftu) (3)
teT
Note that A(S,Z) is abelian since Z is. To show that (:, A(S,Z)) is a free abelian
group on S we need to establish the following: Suppose that (), G) ia a pair, where
7:58 — G is a set map and G is an abelian group, there is a group homomorphism
F :A(S,Z) — G determined by Foi = 3.



Suppose that that F' : A(S,Z) — G is any group homomorphism satisfying
Foir=j. Let f € A(S,Z). Then by (3)

F(f) = F(X f(s)s))

SESf

= > F(f(s)(s))

SGSf

= D f(5)F(u(s))

SESf

= 2 f(s)((Fo)(s))

SGSf

= D f(s)(a(s))-

SESf

We have established uniqueness.
Existence. Define I by F(f) = ¥,cg, f(s)s(s) for f € A(S,Z). Then

(Fo)(s) = F(u(s)) = > a(s)(s)(1(s) =1(s)(s)(5(s)) = 1(s3(s)) = s(s)

S’ESl(s)

which shows that Floiz = 3. Observe that if 7' C S is finite and Sy C 7" then

> fls)a(s) =D f(t)(t) (4)

SESf teT

since f(t) =0 for all ¢t € T\Sy. Thus for f,g € A(S,Z) we have by (4)

F(f+g) = Y (f+9)(s)(s)

5€5f 14

= Y (f+9)s)s)
s€SFUSy

= D> (f(s) +g(s))a(s)
s€SUSy

= Y fes)+ D g(s)is)
s€SFUS, s€ESFUS,

= F(f)+F(9)

which completes our proof.
2. (20 points) Here we pick up on a fundamental argument for cyclic groups.

(a) (8 pts) Since the set {1,a,a?, ...} is finite there are integers 0 < ¢ < n such that
a’ = a". We can assume that n is the smallest such integer.
Suppose that £ = 0. Then n—1 > 0 and aa" ! = a" 'a = a" = a® = 1. Therefore

a has a multiplicative inverse which is a” .



Suppose £ > 0. Thenm —1>/¢—1> 0 and

By the minimality of n we have b = "' — a*~! # 0. Now 0 = ab = ba.
(b) (5 pts) Follows immediately by part (a).

(c) (7 pts) Since R is a finite-dimensional vector space over F the set {1,a,a?, ...}
is dependent. Now {1} = {a°} is independent. Therefore there is an n > 1 so that
{1,...,a™ '} is independent and {1,...,a"} is independent. There is a dependency
relation

apl 4+ aya” =0

where o, # 0. Multiplying both sides of this equation by o' we may assume a,, = 1.
Observe that

alagl+ - +a" ) =(al+---+a" HNa=aa+--+a" = —apl.

Suppose that ag # 0. Then a has a multiplicative inverse which is a=! =

—ag (gl + - +a"h).
Suppose that oy = 0. Then ab = ba = 0, where b = a1 + --- + a"!. By the
minimality of n we see that b # 0.

3. (20 points) We are assuming the binomial theorem for commutative rings.

(a) (5 pts) Suppose that a € R is nilpotent. Then @™ = 0 for some positive in-
teger m. Let £ > m. Then £ —m > 0 and o’ = a™a™* = 0a™* = 0. Since
n a® :n even . m o
(—a)" = “a o moodd it follows that (—a)™ = 0 as well.
Suppose that b € R is also nilpotent. To show that a &b is nilpotent we need only
show that a + b is nilpotent by our comments above. Now 0" = 0 for some positive

integer n. Now m + n — 1 is a positive integer and

m+n—1
(a + b)m+n—1 — Z (m +g - 1) am-i—n—l—ﬂbé_
(=0

Let0</<m+n—1.1{m+n—-—1—¥¢<mand¥? <n then
m+n—1l=m+n—-1-0)+(<(m—-1)+(n—1)=m+n—-2<m+n-—1,

a contradiction. Therefore m +n — 1 — ¢ > m, in which case a™*" ' =0, or £ > n,
in which case b* = 0. Thus a™"" 174 = 0. We have shown that (a + b)™*"~1 = 0.
Therefore a + b is nilpotent.

(b) (5 pts) Since ar = ra, it follows that (ar)” = a"r™ for all positive integers n.
Thus a™ = 0 implies (ar)™ = 0r™ = 0.



(c) (5 pts) Note 0 € N as 0' = 0. Thus N is an additive subgroup of R by part (a)
and consequently N is an ideal of R by part (b).

01 0 0 01 .
(d) (5 pts) Let a = ( 0 0) and b= ( Lo ) Then a+b = < 10 ) Since
(a + b)? = I, it follows that (a + b)*® = I. Therefore a + b is not nilpotent as
(a+b)" = 0 implies (a + b)** = 0.
Now ab = (1) 8 satisfies (ab)? = ab # 0. Thus (ab)™ = ab for all n > 1, by

induction on n, which means that ab is not nilpotent.

4. (20 points) Let 0 # f(z) € F((z)). Then f(x) = Y02 v apa™ for some N € Z
where ayn # 0.

(a) (10 pts) We define a sequence b_y,b_ny1,b_n2,... by b_y = ay" and

n
-1
b—N+n = —ay (Z aN+€b—N+n—Z>

(=1

for n > 0. Then axyb_y =1 and

n
> aniib_Nin— =0
=0

for n > 0. Set g(x) =202y b2, As a;b; =0 unless ¢ > N and j > —N, we have

f@)g(x) =3 ( 5 aibj) =y (z awbmw> P 4 0r 02— 1.

n i+j=n n=0 \¢=0

Since F'((z)) is commutative f(x) and g(z) are inverses.

(b) (10 pts) Now suppose f(z) € F[[z]]. Then N > 0. Since b_y # 0, g(x) € F|[z]]
if and only if —N > 0 as well; thus if and only if N > 0 > N or equivalently N = 0.
The latter is the case if and only if ag # 0.

5. (20 points) Let n be a positive integer and suppose that R is commutative ring
with unity such that a™ = a for all a € R. First of all we show that if R is an integral
domain then R is a field.

Suppose R is an integral domain. Let 0 # a € R. Then n — 1 > 0 and a(a
a" = a = la. Thus a"! = 1 by cancellation. If n = 1 then a = 1; otherwise n—2 > 0
and aa” %2 = 1 = a" %a. In any case a has a multiplicative inverse. We have shown
that R is a field.

Now suppose P is a prime ideal of R. Then R/P is an integral domain and the
hypothesis for R holds for R/P. Therefore R/P is a field which means that P is a
maximal ideal of R.

n—l) —



