
Math 516 Fall 2008 Radford

Written Homework # 4 Solution
12/02/08

1. (20 points) For f ∈ G = Fun(S, G) set Sf = {s ∈ S | f(s) 6= 0}. This set is
sometimes called the support of f . Let g ∈ G also. Observe that

Sf = S−f (1)

and
Sf+g ⊆ Sf∪Sg. (2)

To see that latter observe that s 6∈ Sf∪Sg implies s 6∈ Sf+g which is an equivalent
statement.

(a) (6 pts) Note the function 0 : S −→ G defined by 0(s) = 0 for all s ∈ S belongs
to G since S0 = ∅. Thus A(S, G) 6= ∅.

Let f, g ∈ A(S,G). Then Sf , Sg are finite. Since Sf−g = Sf+(−g) ⊆ Sf∪S−g =
Sf∪Sg by (1) and (2), it follows that Sf−g is finite as the union of finite sets is finite.
Therefore f − g ∈ A(S,G) and we have established A(S, G) ≤ G.

(b) (14 pts) Suppose that f ∈ A(S, Z), T ⊆ S is finite, and Sf ⊆ T . Then

(∑

t∈T

f(t)ı(t)

)
(s) =

∑

t∈T

f(t)ı(t)(s) =





0 : s 6∈ T
0 : s ∈ T and s 6∈ Sf

f(s) : s ∈ T and s ∈ Sf

Therefore
f =

∑

t∈T

f(t)ı(t) (3)

Note that A(S,Z) is abelian since Z is. To show that (ı, A(S,Z)) is a free abelian
group on S we need to establish the following: Suppose that (, G) ia a pair, where
 : S −→ G is a set map and G is an abelian group, there is a group homomorphism
F : A(S,Z) −→ G determined by F◦ı = .
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Suppose that that F : A(S,Z) −→ G is any group homomorphism satisfying
F◦ı = . Let f ∈ A(S,Z). Then by (3)

F (f) = F (
∑

s∈Sf

f(s)ı(s))

=
∑

s∈Sf

F (f(s)ı(s))

=
∑

s∈Sf

f(s)F (ı(s))

=
∑

s∈Sf

f(s)((F◦ı)(s))

=
∑

s∈Sf

f(s)((s)).

We have established uniqueness.
Existence. Define F by F (f) =

∑
s∈Sf

f(s)(s) for f ∈ A(S,Z). Then

(F◦ı)(s) = F (ı(s)) =
∑

s′∈Sı(s)

ı(s)(s′)((s′)) = ı(s)(s)((s)) = 1((s)) = (s)

which shows that F◦ı = . Observe that if T ⊆ S is finite and Sf ⊆ T then

∑

s∈Sf

f(s)(s) =
∑

t∈T

f(t)(t) (4)

since f(t) = 0 for all t ∈ T\Sf . Thus for f, g ∈ A(S,Z) we have by (4)

F (f + g) =
∑

s∈Sf+g

(f + g)(s)(s)

=
∑

s∈Sf∪Sg

(f + g)(s)(s)

=
∑

s∈Sf∪Sg

(f(s) + g(s))(s)

=
∑

s∈Sf∪Sg

f(s)(s) +
∑

s∈Sf∪Sg

g(s)(s)

= F (f) + F (g)

which completes our proof.

2. (20 points) Here we pick up on a fundamental argument for cyclic groups.

(a) (8 pts) Since the set {1, a, a2, . . .} is finite there are integers 0 ≤ ` < n such that
a` = an. We can assume that n is the smallest such integer.

Suppose that ` = 0. Then n−1 ≥ 0 and aan−1 = an−1a = an = a0 = 1. Therefore
a has a multiplicative inverse which is an−1.
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Suppose ` > 0. Then m− 1 > `− 1 ≥ 0 and

a(an−1 − a`−1) = (an−1 − a`−1)a = an − a` = 0.

By the minimality of n we have b = an−1 − a`−1 6= 0. Now 0 = ab = ba.

(b) (5 pts) Follows immediately by part (a).

(c) (7 pts) Since R is a finite-dimensional vector space over F the set {1, a, a2, . . .}
is dependent. Now {1} = {a0} is independent. Therefore there is an n ≥ 1 so that
{1, . . . , an−1} is independent and {1, . . . , an} is independent. There is a dependency
relation

α01 + · · ·+ αna
n = 0

where αn 6= 0. Multiplying both sides of this equation by α−1
0 we may assume αn = 1.

Observe that

a(α11 + · · ·+ an−1) = (α11 + · · ·+ an−1)a = α1a + · · ·+ an = −α01.

Suppose that α0 6= 0. Then a has a multiplicative inverse which is a−1 =
−α−1

0 (α11 + · · ·+ an−1).
Suppose that α0 = 0. Then ab = ba = 0, where b = α11 + · · · + an−1. By the

minimality of n we see that b 6= 0.

3. (20 points) We are assuming the binomial theorem for commutative rings.

(a) (5 pts) Suppose that a ∈ R is nilpotent. Then am = 0 for some positive in-
teger m. Let ` ≥ m. Then ` − m ≥ 0 and a` = amam−` = 0am−` = 0. Since

(−a)n =

{
an : n even

−an : n odd
it follows that (−a)m = 0 as well.

Suppose that b ∈ R is also nilpotent. To show that a± b is nilpotent we need only
show that a + b is nilpotent by our comments above. Now bn = 0 for some positive
integer n. Now m + n− 1 is a positive integer and

(a + b)m+n−1 =
m+n−1∑

`=0

(
m + n− 1

`

)
am+n−1−`b`.

Let 0 ≤ ` ≤ m + n− 1. If m + n− 1− ` < m and ` < n then

m + n− 1 = (m + n− 1− `) + ` ≤ (m− 1) + (n− 1) = m + n− 2 < m + n− 1,

a contradiction. Therefore m + n− 1− ` ≥ m, in which case am+n−1−` = 0, or ` ≥ n,
in which case b` = 0. Thus am+n−1−`b` = 0. We have shown that (a + b)m+n−1 = 0.
Therefore a + b is nilpotent.

(b) (5 pts) Since ar = ra, it follows that (ar)n = anrn for all positive integers n.
Thus am = 0 implies (ar)m = 0rm = 0.
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(c) (5 pts) Note 0 ∈ N as 01 = 0. Thus N is an additive subgroup of R by part (a)
and consequently N is an ideal of R by part (b).

(d) (5 pts) Let a =

(
0 1
0 0

)
and b =

(
0 0
1 0

)
. Then a + b =

(
0 1
1 0

)
. Since

(a + b)2 = I2 it follows that (a + b)2n = I2. Therefore a + b is not nilpotent as
(a + b)n = 0 implies (a + b)2n = 0.

Now ab =

(
1 0
0 0

)
satisfies (ab)2 = ab 6= 0. Thus (ab)n = ab for all n ≥ 1, by

induction on n, which means that ab is not nilpotent.

4. (20 points) Let 0 6= f(x) ∈ F ((x)). Then f(x) =
∑∞

n=N anx
n for some N ∈ Z

where aN 6= 0.

(a) (10 pts) We define a sequence b−N , b−N+1, b−N+2, . . . by b−N = a−1
N and

b−N+n = −a−1
N

(
n∑

`=1

aN+`b−N+n−`

)

for n > 0. Then aNb−N = 1 and

n∑

`=0

aN+`b−N+n−` = 0

for n > 0. Set g(x) =
∑∞

n=−N bnx
n. As aibj = 0 unless i ≥ N and j ≥ −N , we have

f(x)g(x) =
∑
n


 ∑

i+j=n

aibj


 xn =

∞∑

n=0

(
n∑

`=0

aN+`b−N+n−`

)
xn = 1 + 0x + 0x2 + · · · = 1.

Since F ((x)) is commutative f(x) and g(x) are inverses.

(b) (10 pts) Now suppose f(x) ∈ F [[x]]. Then N ≥ 0. Since b−N 6= 0, g(x) ∈ F [[x]]
if and only if −N ≥ 0 as well; thus if and only if N ≥ 0 ≥ N or equivalently N = 0.
The latter is the case if and only if a0 6= 0.

5. (20 points) Let n be a positive integer and suppose that R is commutative ring
with unity such that an = a for all a ∈ R. First of all we show that if R is an integral
domain then R is a field.

Suppose R is an integral domain. Let 0 6= a ∈ R. Then n− 1 ≥ 0 and a(an−1) =
an = a = 1a. Thus an−1 = 1 by cancellation. If n = 1 then a = 1; otherwise n−2 ≥ 0
and aan−2 = 1 = an−2a. In any case a has a multiplicative inverse. We have shown
that R is a field.

Now suppose P is a prime ideal of R. Then R/P is an integral domain and the
hypothesis for R holds for R/P . Therefore R/P is a field which means that P is a
maximal ideal of R.

4


