Written Homework \# 5

Due at the beginning of class $12 / 05 / 08$

1. Let R be a non-zero Boolean ring with identity (a ring with identity such that $a^{2}=a$ for all $a \in R)$.
(a) Show that R is commutative.
(b) Suppose that $e \in R$. Show that $R e$ and $R(1-e)$ are ideals of R and $R=\operatorname{Re} \oplus R(1-e)$.
(c) Suppose that R is finite. Show that $R \simeq \mathbf{Z}_{2} \times \cdots \times \mathbf{Z}_{2}$.
2. Suppose that R is any ring.
(a) Show that the direct product of abelian groups $\mathbf{R}=\mathbf{Z} \times R$ is a ring with identity, where the product is defined by $(m, a) \cdot(n, b)=(m n, n \cdot a+m \cdot b+a b)$ for all $(m, a),(n, b) \in \mathbf{R}$, and $\imath: R \longrightarrow \mathbf{R}$ defined by $\imath(a)=(0, a)$ for all $a \in R$ is an injective ring homomorphism.
(b) Show that there is an abelian group A and an injective ring homomorphism $\jmath: R \longrightarrow \operatorname{End}(A)$.

Remark: Part (b) may be thought of as Cayley's Theorem for rings.
3. Find all irreducible polynomials in $\mathbf{Z}_{2}[x]$ of degrees 2 , 3, or 4 . [Hint: Which ones are reducible?]
4. Let R be a ring, let I be a non-empty set, let $\left\{M_{i}\right\}_{i \in I}$ be an indexed family of left R-modules, and let $\prod_{i \in I} M_{i}=\left\{f: I \longrightarrow \cup_{i \in I} M_{i} \mid f(i) \in M_{i} \forall i \in I\right\}$.
(a) Show that $\prod_{i \in I} M_{i}$ is a left R-module, where

$$
(f+g)(i)=f(i)+g(i) \text { and }(r \cdot f)(i)=r \cdot(f(i))
$$

for all $f, g \in \prod_{i \in I} M_{i}, r \in R$, and $i \in I$.
(b) For $j \in I$ define $\pi_{j}: \prod_{i \in I} M_{i} \longrightarrow M_{j}$ by $\pi_{j}(f)=f(j)$ for all $f \in \prod_{i \in I} M_{i}$. Show that $\left(\left\{\pi_{i}\right\}_{i \in I}, \prod_{i \in I} M_{i}\right)$ is a product of $\left\{M_{i}\right\}_{i \in I}$.
5. We continue with Exercise 4. For $i_{0} \in I$ define $\jmath_{i_{0}}: M_{i} \longrightarrow \prod_{i \in I} M_{i}$ by $\jmath_{i_{0}}(m)(i)=\left\{\begin{array}{ll}m & : \quad i=i_{0} \\ 0 & : \\ i \neq i_{0}\end{array}\right.$. Show that $\left(\left\{\jmath_{i}\right\}_{i \in I}, M\right)$ is a direct sum of $\left\{M_{i}\right\}_{i \in I}$ for some submodule M of $\prod_{i \in I} M_{i}$.

