Fall 2008

Written Homework # 5

Due at the beginning of class 12/05/08

1. Let R be a non-zero Boolean ring with identity (a ring with identity such that $a^2 = a$ for all $a \in R$).

- (a) Show that R is commutative.
- (b) Suppose that $e \in R$. Show that Re and R(1-e) are ideals of R and $R = Re \oplus R(1-e)$.
- (c) Suppose that R is finite. Show that $R \simeq \mathbf{Z}_2 \times \cdots \times \mathbf{Z}_2$.
- 2. Suppose that R is any ring.
 - (a) Show that the direct product of abelian groups $\mathbf{R} = \mathbf{Z} \times R$ is a ring with identity, where the product is defined by $(m, a) \cdot (n, b) = (mn, n \cdot a + m \cdot b + ab)$ for all $(m, a), (n, b) \in \mathbf{R}$, and $i: R \longrightarrow \mathbf{R}$ defined by i(a) = (0, a) for all $a \in R$ is an injective ring homomorphism.
 - (b) Show that there is an abelian group A and an injective ring homomorphism $j: R \longrightarrow \text{End}(A)$.

Remark: Part (b) may be thought of as Cayley's Theorem for rings.

3. Find all irreducible polynomials in $\mathbb{Z}_2[x]$ of degrees 2, 3, or 4. [Hint: Which ones are reducible?]

4. Let R be a ring, let I be a non-empty set, let $\{M_i\}_{i \in I}$ be an indexed family of left R-modules, and let $\prod_{i \in I} M_i = \{f : I \longrightarrow \bigcup_{i \in I} M_i \mid f(i) \in M_i \ \forall i \in I\}.$

(a) Show that $\prod_{i \in I} M_i$ is a left *R*-module, where

$$(f + g)(i) = f(i) + g(i)$$
 and $(r \cdot f)(i) = r \cdot (f(i))$

for all $f, g \in \prod_{i \in I} M_i, r \in R$, and $i \in I$.

(b) For $j \in I$ define $\pi_j : \prod_{i \in I} M_i \longrightarrow M_j$ by $\pi_j(f) = f(j)$ for all $f \in \prod_{i \in I} M_i$. Show that $(\{\pi_i\}_{i \in I}, \prod_{i \in I} M_i)$ is a product of $\{M_i\}_{i \in I}$.

5. We continue with Exercise 4. For $i_0 \in I$ define $j_{i_0} : M_i \longrightarrow \prod_{i \in I} M_i$ by $j_{i_0}(m)(i) = \begin{cases} m : i = i_0 \\ 0 : i \neq i_0 \end{cases}$. Show that $(\{j_i\}_{i \in I}, M)$ is a direct sum of $\{M_i\}_{i \in I}$ for some submodule M of $\prod_{i \in I} M_i$.

Radford