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Chapter 1

Modules

Modules are abelian groups with an additional structure. The reader should
prove the assertions below, using what has already been established for (abelian)
groups. Throughout R is a ring with unity 1.

1.1 Definition of Module and Basic Results

Let R be a ring with unity 1. A left R-module is an abelian group M together
with a function R×M −→ M , described by (r,m) 7→ r·m = rm for all r ∈ R
and m ∈ M , such that

(M.1) r·(m + m′) = r·m + r·m′,

(M.2) (r + r′)·m = r·m + r′·m,

(M.3) (rr′)·m = r·(r′·m), and

(M.4) 1·m = m

for all r, r′ ∈ R and m,m′ ∈ M . If R does not have a unity then the module
axioms are (M.1)–(M.3). The function R×M −→ M is referred to as the module
action.

Suppose that M is a left R-module. Then the module action restricts to a
group action of R× on M . For r ∈ R we define σr : M −→ M by

σr(m) = r·m
for all m ∈ M . By (M.1) the function σr is an endomorphism of the (additive)
group M .

Let A be an (additive) abelian group and let End (A) be the set of all group
endomorphisms of A. Since the composition of group homomorphisms is a group
homomorphism, End (A) is a monoid under composition. Since A is an abelian
group, the sum of f, g ∈ End (A) defined by function addition

(f + g)(a) = f(a) + g(a)

3



4 CHAPTER 1. MODULES

for all a ∈ A is a group endomorphism of A. With function addition and
composition End (A) is a ring with unity IdA.

We have noted that σr ∈ End (M). By virtue of (M.2)–(M.4) the function

π : R −→ End (M)

defined by π(r) = σr for all r ∈ R, is a homomorphism of rings with unity; that
is

π(r + r′) = σr+r′ = σr + σr′ = π(r) + π(r′),

π(rr′) = σrr′ = σr◦σr′ = π(r)◦π(r′),

for all r, r′ ∈ R and
π(1) = σ1 = IdM .

Observe that r·m = σr(m) = π(r)(m) for all r ∈ R and m ∈ M .
Conversely, suppose that A is an abelian group and π : R −→ End (A) is

a homomorphism of rings with unity. Such a map is called a representation of
R. Note A is a left R-module where r·a = π(r)(a) for all r ∈ R and a ∈ A.
Compare with actions of groups.

Lemma 1.1.1 Let M be a left R-module. Then:

(1) 0·m = 0 for all m ∈ M .

(2) r·0 = 0 for all r ∈ R.

(3) −(r·m) = (−r)·m = r·(−m) for all r ∈ r and m ∈ M .

Proof: Mimic the proof of the analogous lemma for rings. ¤
Actually the analogous lemma for rings is a special case of Lemma 1.1.1.

Example 1.1.2 A ring R with unity is a left R-module by r·m = rm for all
r,m ∈ R, where rm is the product of r and m in R.

1.2 Submodules

Throughout M be a left R-module. A submodule of M is an (additive) subgroup
N of M such that r·n ∈ N for all r ∈ R and n ∈ N .

Lemma 1.2.1 Let M be a left R-module. Then:

(1) M and (0) are submodules of M .

(2) If N1, . . . , Nr are submodules of M then the sum of subgroups N1+· · ·+Nr

is a submodule of M .

(3) The intersection of a non-empty family of submodules of M is a submodule
of M .
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(4) Suppose that N is a submodule of M . Then the quotient group M/N is a
left R-module with r·(m + N) = r·m + N for all r ∈ R and m ∈ M .

Proof: The (additive) subgroup (0) of M is a submodule by virtue of part
(2) of Lemma 1.1.1. By virtue of results from group theory, a good part of
the proofs (2) and (3) are done. If A is an abelian group and B, C ≤ A then
B + C ≤ A since B + C = C + B. Thus by induction, if B1, · · · , Br ≤ A then
B1 + · · · + Br ≤ A. The intersection of a non-empty family of subgroups of a
group is a subgroup.

We show the function R×(M/N) −→ M/N of (4) is well-defined. Suppose
that r ∈ R and m + N = m′ + N , where m,m′ ∈ M . Then m−m′ ∈ N which
implies r·(m−m′) ∈ N . But

r·(m−m′) = r·(m + (−m′)) = r·(m) + r·(−m′) = r·m− r·m′

by part (3) of Lemma 1.1.1. Therefore r·m + N = r·m′ + N . The remaining
details of the proofs of parts (2)–(4) are left to the reader. ¤

By parts (1) and (3) of the preceding lemma every subset S of M is contained
in a smallest submodule of M denoted by (S). Let N be a submodule of M .
Then a subset S of N generates N , or N is generated by S, if N = (S). The
submodule N is finitely generated if N = (S) for some finite subset S of N and
N is cyclic if N is generated by a singleton set. Observe that

(∅) = (0),

({m}) = R·m = {r·m | r ∈ R}
for m ∈ M (we use m = 1·m ∈ R·m), and

({m1, . . . ,mr}) = R·m1 + · · ·+ R·mr

for m1, . . . ,mr ∈ M . Generally for a non-empty subset S of M

(S) = {r1·m1 + · · ·+ r`·m` | ` ≥ 1, r1, . . . , r` ∈ R, m1, . . . , m` ∈ S}.

There is a submodule test analogous the the “one-step” subgroup test in
(additive) groups.

Lemma 1.2.2 A subset N of M is a submodule if and only if

(1) N 6= ∅ and

(2) n− r·n′ ∈ N for all n, n′ ∈ N and r ∈ R.

¤
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1.3 Module Homomorphisms

Let M,M ′ be left R-modules. A module homomorphism f : M −→ M ′ is a
homomorphism of (additive) groups which also satisfies f(r·m) = r·f(m) for all
r ∈ R and m ∈ M . Since the following results hold for group homomorphisms
there is very little to add to prove them.

Proposition 1.3.1 Let f : M −→ M ′ be a module homomorphism. Then:

(1) If N is a submodule of M then f(N) is a submodule of M ′.

(2) If N ′ is a submodule of M ′ then f−1(N ′) is a submodule of M .

(3) Ker f is a submodule of M and Im f is a submodule of M ′.

¤

Since module homomorphisms are group homomorphisms:

Proposition 1.3.2 Let f : M −→ M ′ be a module homomorphism. Then f is
injective if and only if Ker f = (0). ¤

There is an “algebra” of module homomorphisms.

Proposition 1.3.3 Let M, M ′, and M ′′ be left R-modules. Then:

(1) The identity map IdM : M −→ M is a module homomorphism.

(2) The composition of module homomorphisms f : M −→ M ′ and f ′ :
M ′ −→ M ′′ is a module homomorphism f ′◦f : M −→ M ′′.

(3) Suppose that f : M −→ M ′ is a module isomorphism. Then f−1 : M ′ −→
M is a module isomorphism.

¤

At this point the reader should be able to reformulate the isomorphism
theorems for groups to apply to modules and supply the few additional details
for their proofs.

Example 1.3.4 Regard R as a left R-module according to Example 1.1.2 and
let m ∈ M . Then fm : R −→ M defined by

fm(r) = r·m (1.1)

for all r ∈ R is an R-module homomorphism.

For a non-empty subset S of M the subset of R defined by

annR(S) = {r ∈ R | r·m = 0 ∀ m ∈ S}
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is the annihilator of S. When S = {m} is a singleton set we set annR(m) =
annR({m}). Observe that

Ker fm = annR(m)

and is thus a submodule (left ideal) of R. Since Im fm = R·m and Ker fm =
annR(m), by the First Isomorphism Theorem for modules there is an isomor-
phism of left R-modules

R/annR(m) ' R·m.

Example 1.3.5 Let N be a submodule of M . Then the projection π : M −→
M/N is a module homomorphism and Ker π = N .

We know that π is a group homomorphism. The calculation

π(r·m) = r·m + N = r·(m + N) = r·π(m)

for all r ∈ R and m ∈ M completes the proof that π is a module homomorphism.
Just as normal subgroups are the kernels of group homomorphisms, submod-

ules are the kernels of module homomorphisms. The assertion follows by part
(3) of Proposition 1.3.1 and Example 1.3.5.

1.4 Finite Direct Sums and Finitely Generated
Free Modules

Let M1, . . . ,Ms be left R-modules. Then the Cartesian product of abelian
groups M1×· · ·×Ms is a left R-module with

r·(m1, . . . , ms) = (r·m1, . . . , r·ms)

for all r ∈ R and (m1, . . . , ms) ∈ M1×· · ·×Ms. The R-module M1×· · ·×Ms is
referred to as a direct sum (external) of M1, . . . , Ms. Note for a permutation σ
of {1, . . . , s} that the bijection

M1×· · ·×Ms −→ Mσ(1)×· · ·×Mσ(s)

given by
(m1, . . . , ms) 7→ (mσ(1), . . . , mσ(s))

is an isomorphism of left R-modules.
Suppose that M1, . . . , Ms are submodules of a left R-module M . Then the

abelian subgroup

M1 + · · ·+ Ms = {m1 + · · ·+ ms |mi ∈ Mi ∀ 1 ≤ i ≤ s}
is a submodule of M . By definition M is the direct sum (internal) of M1, . . . , Ms

if

(DS.1) M = M1 + · · ·+ Ms and
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(DS.2) whenever m1 ∈ M1, . . . ,ms ∈ Ms and m1 + · · ·+ ms = 0 then necessarily
m1 = · · · = ms = 0.

Thus M is the direct sum of M1, . . . , Ms if and only if the homomorphism of
left R-modules

M1× · · ·×Ms −→ M (m1, . . . , ms) 7→ m1 + · · ·+ ms (1.2)

is an isomorphism. For this map is surjective if and only if (DS.1) holds and it
is injective, or equivalently its kernel is (0), if and only if (DS.2) holds.

Suppose that M is the direct sum of M1, . . . , Ms. Then we write M =
M1⊕ · · ·⊕Ms and m⊕ · · ·⊕ms for m1 + · · ·+ ms. Since the function of (1.2) is
bijective, every element m ∈ M can be written uniquely as m = m1⊕ · · ·⊕ms,
where mi ∈ Mi for all 1 ≤ i ≤ s.

Lemma 1.4.1 Let M1, . . . , Ms be submodules of a left R-module M . Then the
following are equivalent:

(1) M = M1⊕ · · ·⊕Ms.

(2) M = M1 + · · ·+Ms and if s ≥ 2 then (M1 + · · ·+M̂i + · · ·+Ms)∩Mi = (0)
for all 1 ≤ i ≤ s, where ̂ means summand omitted.

Now regard R as a left R-module under multiplication and for s ≥ 1 set
Rs = R× · · ·×R (s R’s). A left R-module M is finitely generated and free if
Rs ' M as left R-modules for some s ≥ 1.

Suppose that M is finitely generated and free and let f : Rs −→ M be an
isomorphism of left R-modules. For 1 ≤ i ≤ s let ei = (0, . . . , 1, . . . , 0) be the
s-tuple with all entries 0 except for the ith one which is 1 and set mi = f(ei).
Let (r1, . . . , rs) ∈ Rs. Since

(r1, . . . , rs) = r1·e1 + · · ·+ rs·es

it follows that
f(r1, . . . , rs) = r1·m1 + · · ·+ rs·ms. (1.3)

Thus

(F.1) every m ∈ M can be written m = r1·m1 + · · ·+rs·ms for some r1, . . . , rs ∈
R and

(F.2) for r1, . . . , rs ∈ R the equation r1·m1 + · · ·+ rs·ms = 0 implies r1 = · · · =
rs = 0.

Since the map f of (1.3) is bijective, for m ∈ M the expression of (F.1) is unique;
that is if r1·m1 + · · · + rs·ms = r′1·m1 + · · · + r′s·ms, where ri, r

′
i ∈ R for all

1 ≤ i ≤ s, then r1 = r′1, . . . , rs = r′s.
Let M be a left R-module. A subset B = {m1, . . . ,ms} of M is a finite

basis for M if (F.1) and (F.2) hold. Suppose that m1, . . . , ms ∈ M are any
elements. Then the function f : Rs −→ M defined by (1.3) is a homomorphism
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of R-modules. Therefore M is a finitely generated and free if and only if it has
a finite basis.

Warning: Bases are written as sets, but they are really indexed sets. For
example, M = R has basis {m1}, where m1 = 1. Although {m1} = {m1,m2}
as sets, where m2 = m1, the latter is not a basis for M since 1m1 +(−1)m2 = 0.
This important point is usually not emphasized in Linear Algebra texts.

1.5 Products and Direct Sums of Modules, Free
Modules

We define the structures of this section in terms of those of the preceding section.
Suppose that M1, . . . , Ms are left R-modules and regard them as the indexed
family {Mi}i∈I , where I = {1, . . . , s}. Note that (m1, . . . ,ms) ∈ M× · · ·×Ms

can be regarded as the function f : I −→ ∪i∈IMi given by f(i) = mi for all
i ∈ I. Observe that f(i) ∈ Mi for all i ∈ I.

Let
P = {f : I −→ ∪i∈IMi | f(i) ∈ Mi for all i ∈ I} (1.4)

Then P is a left R-module where

(f + g)(i) = f(i) + g(i) and (r·f)(i) = r·(f(i)) (1.5)

for all f, g ∈ P , i ∈ I, and r ∈ R. The function F : P −→ M1× · · ·×Ms defined
by

F (f) = (f(1), . . . , f(s))

for all f ∈ P is an isomorphism of left R-modules. Thus we can think of the
Cartesian product M1× · · ·×Ms as a set of certain functions on an index set.
This point of view leads to a generalization of Cartesian products of R-modules
(and other structures as well).

Let I be any non-empty set and {Mi}i∈I be a family of left R-modules
indexed by I. Then P defined by (1.4) is a left R-module with structures
defined by (1.5) and is referred to as a product of the family {Mi}i∈I .

A direct sum (external) of {Mi}i∈I is realized as a certain submodule of P .
For f ∈ P we set

supp f = {i ∈ I | f(i) 6= 0}.
Let S be the set of all functions f ∈ P which have finite support, that is supp f
is a finite set. Then 0 ∈ S. For f, g ∈ P and r ∈ R note that

supp (f − r·g) ⊆ (supp f)∪(supp g).

Therefore f, g ∈ S and r ∈ R implies f − r·g ∈ S. Thus S is a submodule of P
by Lemma 1.2.2. The module S is referred to as a direct sum (external) of the
family {Mi}i∈I .

Now suppose {Mi}i∈I is an indexed family of submodules of a left R-module
M . Then M is the direct sum (internal) of the indexed family {Mi}i∈I if
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(DS.3) for m ∈ M there are i1, . . . , is ∈ I such that m ∈ Mi1 + · · ·+ Mis
and

(DS.4) Mi1 + · · ·+ Mis
= Mi1⊕ · · ·⊕Mis

whenever i1, . . . , is ∈ I are distinct.

Suppose M is the direct sum (internal) of the indexed family {Mi}i∈I . We
write M =

⊕
i∈IMi. Let S be the direct sum (external) of {Mi}i∈I constructed

above. For each i ∈ I observe that the function

ϕi : Mi −→ S

defined for all m ∈ Mi by

ϕi(m)(j) =
{

m : j = i;
0 : j 6= i

is an injective homomorphism of left R-modules. Observe that

S =
⊕

i∈I
ϕi(Mi)

is a direct sum (internal) and there is an isomorphism of R-modules

S =
⊕

i∈I
ϕi(Mi) '

⊕
i∈I

Mi = M

determined by ϕi(m) 7→ m for all i ∈ I and m ∈ Mi. Thus up to isomorphism
there is no distinction between external and internal direct sums.

We now generalize the notion of finitely generated free module. A left R-
module M is called free if there is an indexed set {mi}i∈I of elements of M such
that

(F.3) for every m ∈ M there are i1, . . . , is ∈ I and r1, . . . , rs ∈ R such that
m = r1·m1 + · · ·+ rs·ms and

(F.4) for all finite lists of distinct elements i1, . . . , is ∈ I the (indexed) set
{mi1 , . . .mis} is a basis for R·mi1 + · · ·+ R·mis .

An indexed subset of elements {mi}i∈I which satisfies (F.3) and (F.4) is called
a basis for M .

Lemma 1.5.1 Suppose that M is any left R-module and {mi}i∈I is an indexed
subset of elements of M . Then the following are equivalent:

(1) {mi}i∈I is a basis for M .

(2) M =
⊕

i∈IR·mi and for each i ∈ I the R-module homomorphism fmi :
R −→ R·mi defined by (1.1) is an isomorphism.

The notions of product, direct sum (external), and free module will need to
be refined so that they can be described abstractly, that is without having to
resort to specific constructions.



Chapter 2

Tensor Products

Throughout R,S are rings with unity. The notations RM and NR signify that
M is a left R-module and N is a right R-module.

2.1 Definition of a Tensor Product and Basic
Properties

Let A, B, and L be abelian groups. A function ϕ : A×B −→ L is bi-additive
if ϕ( , b) : A −→ L and ϕ(a, ) : B −→ L are group homomorphisms for all
b ∈ B and a ∈ A. Suppose MR and RN . Then a function ϕ : M×N −→ L is
R-balanced if it is bi-additive and ϕ(m·r, n) = ϕ(m, r·n) for all m ∈ M , r ∈ R,
and n ∈ N .

A pair (ı, A) is called a tensor product of MR and RN if:

(TP.1) A is an abelian group and ı : M×N −→ A is R-balanced, and

(TP.2) if L is an abelian group and ϕ : M×N −→ L is R-balanced then there is
a unique group homomorphism Φ : A −→ L which satisfies Φ◦ı = ϕ.

Theorem 2.1.1 Suppose MR and RN . Then:

(1) There is a tensor product of MR and RN .

(2) Suppose that (ı, A) and (ı′, A′) are tensor products of MR and RN . Then
there is a unique group homomorphism Φ : A −→ A′ which satisfies Φ◦ı =
ı′.

(3) A is generated by Im ı.

Suppose that MR and RN . By the preceding theorem there is a unique (up
to isomorphism) tensor product (ı, A) of MR and RN . Usually A is denoted by
M⊗RN and ı is given implicitly by ı(m,n) = m⊗n for all m ∈ M and n ∈ N .
The abelian group M⊗RN is informally referred to as the tensor product of MR

and RN . The fact that ı is balanced translates to

11
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(1) (m + m′)⊗n = m⊗n + m′⊗n,

(2) m⊗(n + n′) = m⊗n + m⊗n′, and

(3) m·r⊗n = m⊗r·n
for all m,m′ ∈ M , n, n′ ∈ N , and r ∈ R.

Thinking of the tensor product operation as a multiplication, the ring R can
be thought of as an identity element.

Proposition 2.1.2 Suppose MR. Then the function M −→ M⊗RR defined by
m 7→ m⊗1 for all m ∈ M is an isomorphism of abelian groups.

The “left” version the preceding proposition is left to the reader to prove: If
RM then the function M −→ R⊗RM given by m 7→ 1⊗m for all m ∈ M is an
isomorphism of abelian groups.

Thinking of direct sum as addition, the right distributive law holds for tensor
product and addition.

Proposition 2.1.3 Let LR, MR, and RN . There is an isomorphism of abelian
groups (L⊕M)⊗RN −→ (L⊗RN)⊕(M⊗RN) determined by (`⊕m)⊗n 7→ (`⊗n)⊕(m⊗n)
for all ` ∈ L. m ∈ M , and n ∈ N .

The “left distributive law” is formulated: For LR, RM , and RN there is an
isomorphism of abelian groups L⊗R(M⊕N) −→ (L⊗RM)⊕(L⊗RN) given by
`⊗(m⊕n) 7→ (`⊗m)⊕(`⊗n) for all ` ∈ L, m ∈ M , and n ∈ N .

One can establish the following corollary to Proposition 2.1.3 by induction
on s:

Corollary 2.1.4 Let M1 R, . . . , Ms R and RN . Then there is an isomorphism
of abelian groups (M1⊕· · ·⊕Ms)⊗RN −→ (M1⊗RN)⊕ · · ·⊕(Ms⊗RN) given by
(m1⊕· · ·⊕ms)⊗n 7→ (m1⊗n)⊕· · ·⊕(ms⊗n).

Proposition 2.1.5 Suppose f : MR −→ M ′
R and g : RN −→ RN ′ are module

homomorphisms. Then there is a map of abelian groups f⊗g : M⊗RN −→
M ′⊗RN ′ defined by (f⊗g)(m⊗n) = f(m)⊗g(n) for all m ∈ M and n ∈ N .

The function f⊗g is referred to as a tensor product of maps.
To proceed we need the notion of bimodule. An (R, S)-bimodule is an abelian

group M with with a left R-module and a right S-module structure such that
the associative law

r·(m·s) = r·(m·s)
holds for all r ∈ R, m ∈ M , and s ∈ S. We use the notation RMS to denote
that M is an (R,S)-bimodule.

Lemma 2.1.6 Suppose SMR and RN . Then S(M⊗RN), where s·(m⊗n) =
(s·m)⊗n for all s ∈ S, m ∈ M , and n ∈ N .
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Likewise if MR and RNS then (M⊗RN)S , where (m⊗n)·s = m⊗(n·s) for all
m ∈ M , n ∈ N , and s ∈ S.

Suppose that R is a subring of S. Then SSR by left and right multiplication
in S.

Corollary 2.1.7 Suppose that R is a subring of S and RM . Then S(S⊗RM)
where s·(s′⊗m) = ss′⊗m for all s, s′ ∈ S and m ∈ M .

Proposition 2.1.8 Suppose that R is a subring of S and RM is a finitely
generated free left R-module with basis {m1, . . . , ms}. Then S⊗RM is a finitely
generated free left S-module with basis {1⊗m1, . . . , 1⊗ms}.

The tensor product is associative in the following sense:

Proposition 2.1.9 Let LR, RMS, and SN . Then there is an isomorphism of
abelian groups (L⊗RM)⊗SN −→ L⊗R(M⊗SN) where (`⊗m)⊗n 7→ `⊗(m⊗n)
for all ` ∈ L. m ∈ M , and n ∈ N .

2.2 When R is Commutative

Throughout this section R is commutative. If RM then MR where m·r = r·m
for all m ∈ M and r ∈ R. With these structures RMR. Likewise if MR then
RM , where r·m = m·r for all r ∈ R and m ∈ M , and with these structures
RMR.

Let RL, RM , and RN . A function ϕ : L×M −→ M is R-bilinear (or just
bilinear) if it is bi-additive and

ϕ(r·m,n) = ϕ(m, r·n) = r·ϕ(m,n)

for all r ∈ R, m ∈ M , and n ∈ N ; that is ϕ is an R-module homomorphism in
each variable. Using the (R,R)-bimodule structure on L we have R(L⊗RM) by
Lemma 2.1.6. The tensor product, when R is commutative, satisfies a slightly
different universal mapping property.

Theorem 2.2.1 Let RM and RN and (ı, A) be a tensor product of RM and
RN . Then:

(1) A has a left R-module structure such that ı : M×N −→ A is bilinear, and

(2) if (ı′, A′) is a pair which satisfies (1) then there is a unique homomorphism
of R-modules Φ : A −→ A′ such that Φ◦ı = ı′.

If RM and RN are finitely generated and free then so is M⊗RN .

Proposition 2.2.2 Suppose that RM and RN are finitely generated free mod-
ules with bases {mi}1≤i≤s and {nj}1≤j≤t respectively. Then M⊗RN is a finitely
generated free left R-module with basis {mi⊗nj}1≤i≤s,1≤j≤t.

Since R is commutative the tensor product operation is commutative in the
following sense:
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Proposition 2.2.3 Suppose that RM and RN . Then there is an isomorphism
of left R-modules M⊗RN −→ N⊗RM given m⊗n 7→ n⊗m for all m ∈ M and
n ∈ N .

2.3 N-fold Tensor Products; Multilinear Forms

Throughout this section R is commutative. Suppose that n ≥ 1, RM1, . . . , RMn

and RN . Then a function ϕ : M1×· · ·×Mn −→ N is n-linear if it is a homomor-
phism of R-modules in each variable. We define M1⊗R· · ·⊗RMn inductively
by

M1⊗R· · ·⊗RMn =
{

M1 : n = 1;
(M1⊗R· · ·⊗RMn−1)⊗RMn : n > 1 .

and we define ı : M1×· · ·×Mn −→ M1⊗R· · ·⊗RMn inductively by

ı(m1⊗· · ·⊗mn) =
{

m1 : n = 1;
(m1⊗· · ·⊗mn−1)⊗mn : n > 1 .

Let M = M1⊗R· · ·⊗RMs.

Theorem 2.3.1 Suppose that n ≥ 1 and RM1, . . . , RMn. Then the pair (ı,M)
defined above satisfies the following:

(1) M is a left R-module and ı : M1×· · ·×Mn −→ M is n-linear, and

(2) if (ı′,M ′) is a pair which satisfies (1) then there is a unique homomorphism
of left R-modules Φ : M −→ M ′ which satisfies Φ◦ı = ı′.



Chapter 3

Projective and Injective
Modules

Throughout R is a ring and all rings have a unity. Also A, . . . , F and X are
left R-modules. Recall that abelian groups are left Z-modules.

3.1 Exact Sequences and the Short Five Lemma

Consider a sequence of R-module homomorphisms

A
α−→ B

β−→ C. (3.1)

The sequence is exact at B if Im α = Ker β. Observe that Im α ⊆ Kerβ if and
only if β◦α = 0. Thus if the sequence (3.1) is exact then β◦α = 0. Generally a
sequence of R-module homomorphisms is exact if every subsequence of the type
(3.1) is exact.

Lemma 3.1.1 Suppose that A
α−→ B and B

β−→ C are R-module homomor-
phisms. Then:

(1) 0 −→ A
α−→ B is exact if and only if α is injective.

(2) B
β−→ C −→ 0 is exact if and only if β is surjective.

(3) 0 −→ A
α−→ B

β−→ C −→ 0 is exact if and only if α is injective, β is
surjective, and Im α = Ker β.

A exact sequence of the form 0 −→ A −→ B −→ C −→ 0 is called a short
exact sequence.

Example 3.1.2 If A
α−→ B is a R-module homomorphism then

0 −→ Kerα
ı−→ A

α−→ Im α −→ 0

is a short exact sequence, where ı is the inclusion.

15
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Example 3.1.3 The direct sum A⊕B gives rise to a short exact sequence

0 −→ A
ı−→ A⊕B

π−→ B −→ 0,

where ı(a) = (a, 0) for all a ∈ A and π(a, b) = b for all (a, b) ∈ A⊕B.

Lemma 3.1.4 (The Short Five Lema) Let

0 - D - E - F - 0

0 - A - B - C - 0

?

α

?

β

?

γ

be a diagram of R-module homomorphisms whose rows are short exact sequences
and whose squares commute. Then:

(1) If α, γ are injective then β is injective.

(2) If α, γ are surjective then β is surjective.

(3) If α, γ are isomorphisms then β is an isomorphism.

3.2 Split Exact Sequences

Proposition 3.2.1 Let A
−→ B and B

π−→ A be R-module homomorphisms.

(1) Suppose that π◦ = IdA. Then π is surjective,  is injective, and B =
Ker π⊕Im .

(2) Suppose that π is surjective and B = Kerπ⊕B′′ for some submodule B′′

of B. Then there is an R-module homomorphism ′ : A −→ B such that
π◦′ = IdA and Im ′ = B′′.

(3) Suppose that  is injective and B = B′⊕Im  for some submodule B′ of
B. Then there is an R-module homomorphism π′ : B −→ A such that
π′◦ = IdA and Ker π′ = B′.

Theorem 3.2.2 Let 0 −→ A
α−→ B

β−→ C −→ 0 be a short exact sequence.
Then the following are equivalent:

(1) B = Ker β⊕B′′ for some submodule B′′ of B.

(2) B = B′⊕Im α for some submodule B′ of B.

(3) There exists an R-module homomorphism C
−→ B such that β◦ = IdC .

(4) There exists an R-module homomorphism B
π−→ A such that π◦α = IdA.

A short exact sequence such that any of the equivalent conditions of the
preceding theorem are satisfied is called a split short exact sequence.
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3.3 HomR(A, ) and Projective Modules

Observe that HomR(X, A) is an abelian group, where

(f + g)(x) = f(x) + g(x)

for all f, g ∈ HomR(X, A) and x ∈ X. Suppose that A
α−→ B is a R-module

homomorphism. If f ∈ HomR(X,A) then α∗(f) = α◦f ∈ HomR(X, B) and
HomR(X, A) α∗−→ HomR(X,B) is a group homomorphism. A sequence of R-
module homomorphisms

A
α−→ B

β−→ C

gives rise to the sequence of group homomorphisms

HomR(X,A) α∗−→ HomR(X, B)
β∗−→ HomR(X, C)

and
β∗◦α∗ = (β◦α)∗. (3.2)

Proposition 3.3.1 If 0 −→ A
α−→ B

β−→ C is exact then

0 −→ HomR(X,A) α∗−→ HomR(X, B)
β∗−→ HomR(X, C)

is exact for all left R-modules X.

Sketch of proof. Since α is injective it follows that α∗ is also. Since A
α−→

B
β−→ C is exact, β◦α = 0 which means β∗◦α∗ = 0∗ = 0 by (3.2). Thus

Im α∗ ⊆ Kerβ∗. It remains to show that Ker β∗ ⊆ Im α∗.
Let P be a left R-module and suppose that

B
β−→ C −→ 0

is exact. Then
HomR(P,B)

β∗−→ HomR(P, C) −→ 0

is exact if and only if for all R-module homomorphisms P
g−→ C there is an

R-module homomorphism P
f−→ B such that β∗(f) = β◦f = g. The module

P is projective if whenever B
β−→ C is a surjective R-module homomorphism

and P
g−→ C is any R-module homomorphism, then there is an R-module

homomorphism P
f−→ B such that β◦f = g.

Theorem 3.3.2 Let P be a left R-module. Then the following are equivalent:

(1) P is projective.

(2) If 0 −→ A
α−→ B

β−→ C −→ 0 is a short exact sequence of left R-modules
then

0 −→ HomR(P,A) α∗−→ HomR(P,B)
β∗−→ HomR(P,C) −→ 0

is a short exact sequence of abelian groups.
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(3) Every short exact sequence of the form 0 −→ A −→ B −→ P −→ 0 splits.

(4) If B −→ P is a surjective homomorphism of R-modules, then B = B′⊕B′′

is the direct sum of submodules, where P ' B′′.

The proof of (4) implies (1) uses the fact that free R-modules are projective.
This is a consequence of perhaps the most basic characterization of projective
modules:

Proposition 3.3.3 Let P be a left R-module. Then P is projective if and only
if P is isomorphic to a direct summand of a free R-module.

3.4 HomR( , A) and Injective Modules

Suppose that A
α−→ B is a R-module homomorphism. If f ∈ HomR(B, X) then

α∗(f) = f◦α ∈ HomR(A,X) and HomR(B, X) α∗−→ HomR(A,X) is a group
homomorphism. A sequence of R-module homomorphisms

A
α−→ B

β−→ C

gives rise to the sequence of group homomorphisms

HomR(C,X)
β∗−→ HomR(B,X) α∗−→ HomR(A,X)

and
α∗◦β∗ = (β◦α)∗. (3.3)

Proposition 3.4.1 If A
α−→ B

β−→ C −→ 0 is exact then

0 −→ HomR(C,X)
β∗−→ HomR(B,X) α∗−→ HomR(A,X)

is exact for all left R-modules X.

Sketch of proof. Since β is surjective it follows that β∗ is injective. Since
A

α−→ B
β−→ C is exact, β◦α = 0 which means α∗◦β∗ = 0∗ = 0 by (3.3). Thus

Im β∗ ⊆ Kerα∗. It remains to show that Kerα∗ ⊆ Im β∗.
Let I be a left R-module and suppose that

0 −→ A
α−→ B

is exact. Then
HomR(B, I) α∗−→ HomR(A, I) −→ 0

is exact if and only if for all R-module homomorphisms A
f−→ I there is an

R-module homomorphism B
g−→ I such that α∗(g) = g◦α = f . The module I

is injective if whenever A
α−→ B is an injective R-module homomorphism and

A
f−→ I is any R-module homomorphism, then there is an R-module homomor-

phism B
g−→ I such that g◦α = f .
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Theorem 3.4.2 Let I be a left R-module. Then the following are equivalent:

(1) I is injective.

(2) If 0 −→ A
α−→ B

β−→ C −→ 0 is a short exact sequence of left R-modules
then

0 −→ HomR(C, I)
β∗−→ HomR(B, I) α∗−→ HomR(A, I) −→ 0

is a short exact sequence of abelian groups.

(3) Every short exact sequence of the form 0 −→ I −→ B −→ C −→ 0 splits.

(4) If I −→ A is an injective homomorphism of R-modules, then A = A′⊕A′′

is the direct sum of submodules, where I ' A′′.

The proof of (4) implies (1) uses Theorem 3.5.3.

3.5 Baer’s Criterion and Consequences

Proposition 3.5.1 (Baer’s Criterion) Let I be a left R-module. Then the
following are equivalent:

(1) I is injective.

(2) If L is a left ideal of R every R-module homomorphism L −→ I can be
extended to a module homomorphism R −→ I.

A left R-module A is divisible if for all b ∈ A and non-zero r ∈ R there is an
a ∈ D such that r·a = b.

Corollary 3.5.2 Let R be a PID. Then:

(1) A left R-module is injective if and only if it is divisible.

(2) Quotients of injective R-modules are injective.

(3) Every left R-module is isomorphic to a submodule of an injective R-module.

Theorem 3.5.3 Every left R-module is isomorphic to a submodule of an injec-
tive R-module.
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Chapter 4

The Tensor, Symmetric,
and Exterior Algebras

Throughout R is a commutative ring, all rings have a unity, and M is a left
R-module. We will construct several R-algebras generated by M and consider
them in detail when M is finitely generated and free.

4.1 R-algebras and Graded R-algebras

An R-algebra is a ring with unity A which is also a left R-module such that

r·(ab) = (r·a)b = a(r·b) (4.1)

for all r ∈ R and a, b ∈ A. A homomorphism of R-algebras f : A −→ B is a
homomorphism of rings with unity and left R-modules.

Example 4.1.1 The ring of n×n matrices A = Mn(R) with coefficients in R
is an R-algebra with the usual matrix “scalar product”.

Example 4.1.2 Suppose that R is a subring of S which lies in the center of S.
Then S is an R-algebra under multiplication; that is r·s = rs for all r ∈ R and
s ∈ S.

Special cases of this example include:

Example 4.1.3 Suppose R is commutative. The ring of polynomials R[x1, . . . , xn]
is an R-algebra under multiplication.

Example 4.1.4 Suppose that R is commutative. Then R is an R-algebra under
multiplication.

Let A be an R-algebra and denote the multiplication map by m′ : A×A −→
A. We continue with the convention of writing products m′(a, b) = ab for all

21
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a, b ∈ A. By (4.1) it follows that m′ is R-bilinear. Thus by Theorem 2.2.1 there
is a unique R-module map m : A⊗RA −→ A such that m(a⊗b) = m′(a, b) = ab
for all a, b ∈ A. Since the ring A is an R-algebra,

we can describe the multiplication in A by the R-linear map m : A⊗RA −→ A.

Suppose that A is an R-algebra. Then a left ideal L of A is a submodule
of A as r·a = r·(1a) = (r·1)a for all r ∈ R and a ∈ L. Thus if I is an ideal
of A then with the quotient structures A/I is an R-algebra. An R-algebra A is
called graded if A =

⊕∞
n=0An is the direct sum (internal) of submodules such

that

(GR.1) 1 ∈ A0, and

(GR.2) AmAn ⊆ Am+n for all m,n ≥ 0.

Suppose that A =
⊕∞

n=0An is a graded R-algebra. Then an ideal of A is
graded if I =

⊕∞
n=0I∩An. In this case:

Lemma 4.1.5 Suppose that A =
⊕∞

n=0An is a graded R-algebra and I is a
graded ideal of A. Then A/I is a graded R-algebra with (A/I)n = An + I for
all n ≥ 0.

The algebras in following will be graded.

4.2 The Tensor Algebra of M

For a non-negative integer n we define

⊗n
RM =

{
R : n = 0;
M⊗R· · ·⊗RM : n > 0 (n M ′s).

Set Tn(M) = ⊗n
RM and T (M) =

⊕∞
n=0T

n(M). Then the left R-module T (M)
is an algebra with unity 1 ∈ R where

(m1⊗· · ·⊗mr)(n1⊗· · ·⊗ns) = m1⊗· · ·⊗mr⊗n1⊗· · ·⊗ns

for all r, s ≥ 1 and m1, . . . ,mr, n1, . . . , ns ∈ M . Let ı : M −→ T (M) be the
inclusion.

Theorem 4.2.1 The pair (ı, T (M)) satisfies the following:

(1) T (M) is an R-algebra and ı : M −→ T (M) is a homomorphism of left
R-modules, and

(2) If (ϕ, A) is a pair which satisfies (1) then there is a unique homomorphism
of R-algebras Φ : T (M) −→ A which satisfies Φ◦ı = ϕ.
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Any pair (ı, A) which satisfies the conditions of the theorem is called a tensor
algebra of M .

By virtue of Theorem 4.2.1 any two tensor algebras (ı, A) and (ı′, A′) on M
are isomorphic; there exists a unique R-algebra homomorphism Φ : A −→ A′

such that Φ◦ı = ı′. See Theorems 2.1.1 and 2.2.1. Usually a tensor product
of M is denoted (ı, T (M)) and is informally represented by the algebra T (M).
Observe that the algebra T (M) is a graded R-algebra with T (M)n = Tn(M)
for all n ≥ 0.

Let (ı, T (M)) be the tensor algebra which we constructed at the beginning of
this section. Using it we can construct polynomial algebras in non-commuting
indeterminates. Let X = {x1, . . . , xn} be a finite non-empty set with n elements
and let M be a free left R-module with basis X. Using Proposition 2.2.2 and
induction the left R-module T (M)m = ⊗m

R M is free with basis

{xi1⊗· · ·⊗xim}1≤i1,...,im≤n,

or equivalently
{xi1 · · ·xim

}1≤i1,...,im≤n, (4.2)

as xi1⊗· · ·⊗xim = xi1 · · ·xim . Write R{x, . . . , xn} = T (M) and let  : X −→
R{x1, . . . , xn} be the restriction  = ı|X .

Corollary 4.2.2 The pair (, R{x1, . . . , xn}) satisfies the following:

(1) R{x1, . . . , xn} is an R-algebra and  : X −→ R{x1, . . . , xn} is a set map,
and

(2) if (ϕ, A) is a pair which satisfies (1) then there is a unique R-algebra
homomorphism Φ : R{x1, . . . , xn} −→ A which satisfies Φ◦ = ϕ.

Observe that R{x1, . . . , xn} is a graded R-algebra where R{x1, . . . , xn}0 = R
and R{x1, . . . , xn}m is the free submodule with basis described in (4.2).

Any pair which satisfies the conditions of the Corollary is called a a polyno-
mial algebra in non-commuting indeterminates x1, . . . , xn.

4.3 The Symmetric Algebra of M

Let (, T (M)) be the tensor algebra of M constructed above. Let I be the ideal
of T (M) generated by the differences

m⊗n− n⊗n = mn− nm

for all m, n ∈ M . Then I is a graded ideal of T (M) and thus the quotient
S(M) = T (M)/I is a graded R-algebra, where S(M)m = T (M)m + I for all
m ≥ 0. Observe that S(M) is commutative. Let

ı : M −→ S(M)

be the composite
M

−→ T (M) −→ T (M)/I = S(M)

where the second function is the projection.
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Theorem 4.3.1 The pair (ı, S(M)) satisfies the following:

(1) S(M) is a commutative R-algebra and ı : M −→ S(M) is a homomor-
phism of left R-modules, and

(2) If (ϕ, A) is a pair which satisfies (1) then there is a unique homomorphism
of R-algebras Φ : T (M) −→ A which satisfies Φ◦ı = ϕ.

Any pair (ı, A) which satisfies the conditions of the theorem is called a symmetric
algebra of M .

By virtue of Theorem 4.2.1 any two symmetric algebras (ı, A) and (ı′, A′) on
M are isomorphic; there exists a unique R-algebra homomorphism Φ : A −→ A′

such that Φ◦ı = ı′. See Theorems 2.1.1 and 2.2.1. Usually a symmetric algebra
on M is denoted (ı, S(M)) and is informally represented by the algebra S(M).

Let X = {x1, . . . , xn} as above and let (, R{x1, . . . , xn}) be the pair of
Corollary 4.2.2. Let I be the ideal of R{x1, . . . , xn} generated by the differences

xixj − xjxi,

where 1 ≤ i, j ≤ n, and set R[x1, . . . , xn] = R{x1, . . . , xn}/I. Let ı : X −→
R[x1, . . . , xn] be the composite

X
−→ R{x1, . . . , xn} −→ R{x1, . . . , xn}/I = R[x1, . . . , xn]

where the second function is the projection. Since ı is injective we will iden-
tify xi with ı(xi) and think of x1, . . . , xn as elements of R[x1, . . . , xn]. Indeed
R[x1, . . . , xn] is the ring of polynomials in commuting indeterminates with co-
efficients in R.

Corollary 4.3.2 The pair (ı, R[x1, . . . , xn]) satisfies the following:

(1) R[x1, . . . , xn] is a commutative R-algebra and ı : X −→ R[x1, . . . , xn] is a
set map, and

(2) if (ϕ,A) is a pair which satisfies (1) then there is a unique R-algebra
homomorphism Φ : R[x1, . . . , xn] which satisfies Φ◦ı = ϕ.

Observe that the algebra R[x1, . . . , xn] is graded with R[x1, . . . , xn]0 = R
and R[x1, . . . , xn]m is the free submodule with basis

{x`1
1 x`2

2 · · ·x`n
n | 0 ≤ `1, `2, . . . , `n, and `1 + `2 + · · ·+ `n = m}

for m > 0.

4.4 The Exterior Algebra of M

Let (, T (M)) be the tensor algebra constructed in Section 4.2 and let J be the
ideal of T (M) generated by

m⊗m
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for all m ∈ M . Then J is a graded ideal of T (M) and thus the quotient
∧(M) = T (M)/J is a graded R-algebra. For m1, . . . , mr ∈ M set

m1∧· · ·∧mr = m1⊗· · ·⊗mr + J

Since
m∧m = 0

for all m ∈ M it follows that m∧n = −(n∧m) for all m,n ∈ M . Let

ı : M −→ ∧(M)

be the composite
M

−→ T (M) −→ T (M)/J = ∧(M)

where the second function is the projection.

Theorem 4.4.1 The pair (ı,∧(M)) satisfies the following:

(1) ∧(M) is an R-algebra and ı : M −→ ∧(M) is a homomorphism of left
R-modules which satisfies ı(m)2 = 0 for all m ∈ M , and

(2) If (ϕ,A) is a pair which satisfies (1) then there is a unique homomorphism
of R-algebras Φ : ∧(M) −→ A which satisfies Φ◦ı = ϕ.

Any pair (ı, A) which satisfies the conditions of the theorem is called an exterior
algebra of M .

By virtue of Theorem 4.2.1 any two exterior algebras (ı, A) and (ı′, A′) of M
are isomorphic; there exists a unique R-algebra homomorphism Φ : A −→ A′

such that Φ◦ı = ı′. See Theorems 2.1.1 and 2.2.1. Usually an exterior algebra
on M is denoted (ı,∧(M)) and is informally represented by the algebra ∧(M).

Observe that ı is injective. We will identify m ∈ M with ı(m). We have notes
that ∧(M) is graded with ∧r(M) = (∧(M)r = T (M)r + J for all r ≥ 0. Note
that ∧r(M) consists of all sums of the form m1∧ · · · ∧mr, where m1, . . . , mr ∈
M .

The left R-module ∧r(M) together with the map ır : M× · · ·×M −→ ∧r(M)
from the R-fold Cartesian product given by ır(m1, . . . ,mr) = m1∧ · · · ∧mr sat-
isfies a universal mapping property. Let N be a left R-module. An R-linear
map ϕ : M× · · ·×M −→ N from the r-fold Cartesian product is alternating if
ϕ(. . . , m, m, . . .) = 0 for all m ∈ M .

Theorem 4.4.2 The pair (ır,∧r(M)) satisfies the following:

(1) ∧r(M) is a left R-module and ır is an alternating R-linear map and

(2) if (ı′,M ′) is a pair which satisfies the conditions of (1) then there is a
unique homomorphism of left R-modules Φ : ∧r(M) −→ M ′ such that
Φ◦ı = ı′.

When M is finitely generated and free then ∧(M) is as well.
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Proposition 4.4.3 Suppose that M is finitely generated and free with basis
{m1, . . . ,mn}. Then:

(1) ∧r(M) = (0) for r > n and

(2) ∧r(M) is a free left R-module with basis

{mi1∧ · · · ∧mir
| 1 ≤ i1 < i2 < · · · < ir ≤ n}

for 1 ≤ r ≤ n; this basis has
(

n
r

)
elements.

The existence and uniqueness of the determinant function follows by There-
orem 4.4.2 and Proposition 4.4.3. Let R be a field and think of the elements
of M = Rn as column vectors. Then the determinant of n×n matrices can be
thought of a function det : M× · · ·×M −→ R which is linear each column (that
is n-linear) and is alternating. Let {e1, . . . , en} be the standard basis for Rn.
Then the element e1∧ · · · ∧en forms a basis for ∧n(M). Therefore there exists
a unique linear map Det : ∧n(M) −→ R which satisfies Det(e1∧ · · · ∧en) = 1.
Observe that

det = Det◦ır
is n-linear and alternating. Thus a determinant function exists.

Suppose that det′ : M× · · ·×M −→ R is any determinant function. Then
is a unique linear map Det′ : ∧n(M) −→ R such that det′ = Det′◦ır. But
1 = det′(e1, . . . , en) = Det′(e1∧ · · · ∧en) means that Det′ = Det. Therefore
det′ = det.



Chapter 5

Finitely Generated Modules
over A PID

Throughout this chapter R is a commutative ring with unity and RM , RM ′.

5.1 Generalities

A torsion element of M is an m ∈ M such that r·m = 0 for some non-zero
r ∈ R. The set of torsion elements of M is denoted by Tor(M). Observe that
0 ∈ Tor(M); in particular Tor(M) 6= ∅. If f : M −→ M ′ is a homomorphism
of left R-modules then f(Tor(M)) ⊆ Tor(M ′). The module M is torsion free if
Tor(M) = {0}.
Lemma 5.1.1 Suppose that R is an integral domain. Then:

(1) Tor(M) is a submodule of M .

(2) If M is free then M is torsion free.

(3) If f : M −→ M ′ is a homomorphism (respectively isomorphism) of left
R-modules then the restriction f |Tor(M) : Tor(M) −→ Tor(M ′) is a homo-
morphism (respectively isomorphism) of left R-modules.

Proof: To show part (1) we have noted that Tor(M) 6= ∅. Let m,m′ ∈ Tor(M)
and r′′ ∈ R. By definition there are non-zero r, r′ ∈ R such that r·m = 0 =
r′·m′. Since R is an integral domain rr′ 6= 0. The calculation

rr′·(m− r′′·m′) = r′·(r·m)− (rr′′)·(r′·m′) = r′·0− (rr′′)·0 = 0

shows that m − r′′·m′ ∈ Tor(M). Therefore Tor(M) as submodule of M by
Lemma 1.2.2.

To show part (2) assume that M is a free left R-module and let {mi}i∈I be
a basis for M . Suppose that m ∈ Tor(M). Then r·m = 0 for some non-zero

27
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r ∈ R. Now m = r1·mi1 + · · · + rs·mis
where r1, . . . , rs ∈ R and i1, . . . , is ∈ I

are distinct. Since

0 = r·m = rr1·mi1 + · · ·+ rrs·mis

it follows that rr1 = · · · = rrs = 0. Since R is an integral domain and r 6= 0
necessarily r1 = · · · = rs = 0 from which m = 0 follows. Therefore Tor(M) =
{0}. Part (3) is left to the reader. ¤

The commutative ring R is a free left R-module under multiplication. Sup-
pose that Tor(M) = {0}. Then if r, a ∈ R and r 6= 0, the equation ra = 0
implies a = 0. Thus R is an integral domain. In light of part (2) of Lemma
5.1.1 we have a characterization of those commutative rings with unity which
are integral domains in terms of modules.

Corollary 5.1.2 The following are equivalent:

(1) R is an integral domain.

(2) All free left R-modules are torsion free.

Suppose that M is a finitely generated free left R-module and let {m1, . . . , ms}
be a basis for M . LetM be a maximal ideal of R. Then F = R/M is a field and
is also a left R-module by r·(r′ +M) = rr′ +M for all r ∈ R and r′ +M∈ F .

Let f : M −→ Rs be the isomorphism of left R-modules given by the rule
r1·m1 + · · · + rs·ms 7→ (r1, . . . , rs). Then the composition of isomorphisms of
abelian groups

F⊗RM
IdF⊗f−→ F⊗R(R⊕ · · ·⊕R) −→ (F⊗RR)⊕ · · ·⊕(F⊗RR) −→ F⊕ · · ·⊕F

is easily seen to be composition of isomorphisms of left F -modules; thus the com-
posite is an isomorphism of vector spaces F⊗RM ' F s over F . See Propositions
2.1.5, 2.1.3, and 2.1.2. We have shown that DimF (F⊗RM) = s. Therefore any
two (finite) bases for M have the same number of elements. Let rank(M) denote
their common cardinality.

Now suppose that M is any left R-module. A subset {m1, . . . ,ms} of M is R-
independent if whenever r1, . . . , rs ∈ R and r1·m1 + · · ·+ rs·ms = 0 necessarily
r1 = · · · = rs = 0. Note that finite non-empty subsets of bases of free left
R-modules are R-independent.

If M has no R-independent subsets we set rank(M) = 0. Suppose M has
an R-independent set of finite cardinality n and no other independent subset of
M has larger cardinality. In this case we define ind(M) = n. Otherwise we set
ind(M) = ∞.

Lemma 5.1.3 Suppose that R is an integral domain and let M be a finitely
generated free left R-module of rank n. Then any R-independent subset of M
has at most n elements. Thus ind(M) ≤ rank(M).
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Proof: Let F be the field of quotients of R. We may assume that R is a
subring of F and we regard F as a left R-module by multiplication in F .

Let {m1, . . . , mn} be a basis for M and let  : M −→ Fn be the composition
of injective R-module homomorphisms

M = R·m1⊕ · · ·⊕R·mn −→ R⊕ · · ·⊕R −→ F⊕ · · ·⊕F = Fn,

where the first map is the isomorphism given by r1·m1+· · ·+rn·mn 7→ (r1, . . . , rn)
and the second is the inclusion.

Suppose that {x1, . . . , xs} is an R-independent subset of M . We may as-
sume s > 1. Since  is an injective R-module homomorphism it follows that
{(x1), . . . , (xs)} is an R-independent subset of Fn. To conclude the proof we
need only show that this R-independent subset of Fn is in fact linearly inde-
pendent subset of the vector space Fn over F .

Suppose that
a1

b1
, . . . ,

as

bs
∈ F and

(
a1

b1

)
(x1) + · · ·+

(
as

bs

)
(xs) = 0.

Multiplying both sides of this equation by b1· · ·bs we obtain

b̂1b2 · · · bsa1(x1) + · · ·+ b1 · · · bs−1b̂sas(xs) = 0,

or equivalently

(b̂1b2 · · · bsa1·x1 + · · ·+ b1 · · · bs−1b̂sas·xs) = 0,

where ̂ means factor omitted. Since  is injective

b̂1b2 · · · bsa1·x1 + · · ·+ b1 · · · bs−1b̂sas·xs = 0.

Since {x1, . . . , xs} is R-independent it follows that b1· · ·b̂i· · ·bsai = 0 for all 1 ≤
i ≤ s. Since R is an integral domain a1 = · · · = as = 0; hence

a1

b1
= · · · = as

bs
= 0.

¤
Corollary 5.1.4 Suppose that R is an integral domain and M is a finitely
generated free left R-module. Let N be a finitely generated free submodule of M .
Then rank(N) ≤ rank(M).

Proof: By Lemma 5.1.3 we have rank(N) = ind(N) ≤ ind(M) = rank(M). ¤
Apropos of the preceding corollary, when R is a field then rank(N) =

rank(M), that is DimRN = DimRM , implies that N = M . When R is not
a field this is not always the case.

Suppose that R is an integral domain which is not a field and let a ∈ R be a
non-zero non-unit. Let M be a finitely generated free left R-module with basis
{m1, . . . , mn}. Then

a·M = {a·m |m ∈ M}
is a free submodule with basis {a·m1, . . . , a·mn}; thus rank(a·M) = n = rank(M).
Since a is not a unit a·M 6= M .
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5.2 The Structure of Finitely Generated Mod-
ules over a PID, Existence

Throughout this section R is a Principal Ideal Domain (a PID). Let M be a
free left R-module with basis {m1, . . . ,mn}. We will be interested in certain
R-module homomorphisms ϕ : M −→ R. A basic example: let 1 ≤ i ≤ n and
let ϕi be the “projection” map defined by ϕi(r1·m1 + · · ·+ rn·mn) = ri for all
r1·m1 + · · ·+ rn·mn ∈ M .

The following lemma is the heart of the proof of the main result of this
section.

Lemma 5.2.1 Let M be a finitely generated free left R-module and suppose
that N is a non-zero submodule of M . Then there exists a ϕ ∈ HomR(M, R)
and a non-zero m ∈ M such that:

(1) If ϕ′ ∈ HomR(M, R) and ϕ(N) ⊆ ϕ′(N) then ϕ(N) = ϕ′(N),

(2) ϕ(m) = 1 and M = Kerϕ⊕R·m, and

(3) ϕ(N) = Ra for some non-zero a ∈ R and N = (N∩Kerϕ)⊕R·(a·m).

Proof: For ϕ′ ∈ HomR(M,R) the image ϕ′(N) of the submodule N under ϕ′

is a submodule, and thus an ideal, of R. Consider the collection of ideals

S = {ϕ′(N) |ϕ′ ∈ HomR(M,R)}

of R. Now (0) ∈ S; therefore S 6= ∅. Since R is a PID it is a Noetherian ring.
Thus there is a maximal element ϕ(N) ∈ S. We have shown part (1).

Since N 6= (0) it follows that ϕ(N) 6= (0). To see this let {m1, . . . ,mn} be a
basis for M . By assumption there is a non-zero m′ = r1·m1 + · · ·+ rs·ms ∈ N .
Thus 0 6= ϕi(m′) ∈ ϕi(N) for some projection map ϕi described above.

Since R is a PID we may write ϕ(N) = Ra for some a ∈ R. Then a 6= 0
since ϕ(N) 6= (0). Now suppose that m′ ∈ N satisfies ϕ(m′) = a. Let ϕ′ ∈
HomR(M, R) and let d be a greatest common divisor of ϕ(m′) and ϕ′(m′). Then
d = xϕ(m′) + yϕ′(m′) = (x·ϕ + y·ϕ′)(m′) = ϕ′′(m′) for some x, y ∈ R, where
ϕ′′ = x·ϕ + y·ϕ′. Now ϕ′′ ∈ HomR(M, R). Since d divides ϕ(m′) we have

ϕ(N) = Ra = (ϕ(m′)) ⊆ (d) = (ϕ′′(m′)) ⊆ ϕ′′(N) (5.1)

which means that all of terms of (5.1) are equal since ϕ(N) is maximal. In
particular ϕ(m′) and d are associates. Therefore

ϕ(m′)|ϕ′(m′) (5.2)

as d|ϕ′(m′) also.
Using the basis for M described above, write m′ = r1·m1 + · · · + rn·mn

where r1, . . . , rn ∈ R. Considering the projections described above we conclude
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by (5.2) that ϕ(m′)|ri for all 1 ≤ i ≤ s. Therefore m′ = ϕ(m′)·m, that is
m′ = a·m, for some m ∈ M . Since ϕ(m′) 6= 0, the calculation

ϕ(m′) = ϕ(ϕ(m′)·m) = ϕ(m′)ϕ(m)

shows that ϕ(m) = 1.
Let  : R −→ M be the R-module homomorphism determined by (1) = m.

Then ϕ◦ = IdR. Thus M = Kerϕ⊕R·m by part (1) of Lemma 3.2.1. We have
completed the proof of part (2). Since Imϕ|N = ϕ(N) = Ra and

(Ra) = ((Ra)1) = Ra·(1) = Ra·m = R·(a·m) = R·m′ ⊆ N,

Im|Ra ⊆ N and the equation ν|N◦|Ra = IdRa holds. By part (1) of Lemma
3.2.1 again we conclude N = (N∩Kerϕ)⊕R·(a·m) . Part (3) is established. ¤

Proposition 5.2.2 Let M be a finitely generated free left R-module and suppose
that N is a non-zero submodule of M . Then there is a basis {m1, . . . , mn} for M
and for some 1 ≤ s ≤ n non-zero a1, . . . , as ∈ R such that {a1·m1, . . . , as·ms}
is a basis for N and a1|a2 · · · |as. In particular N is a finitely generated free
submodule of M .

Proof: We continue with the notation of Lemma 5.2.1. Since M is torsion
free by part (2) of Lemma 5.1.1, non-zero submodules of M have non-empty
R-independent subsets. Using Lemma 5.1.3 we see that rank(M) ≥ ind(N) ≥
ind(N∩Kerϕ)+1; thus N is finitely generated and free by induction on ind(N).

Suppose that Kerϕ = (0). Then {m} is a basis for M and {a·m} is
a basis for N . Thus we may assume Kerϕ = (0). We have shown that
all non-zero submodules of M are finitely generated and free, in particular
Kerϕ. Since rank(Kerϕ) = rank(M) − 1, by induction on rank(M) there is
a basis {m2, . . . , mn} for Kerϕ and non-zero a2, . . . , as for some 2 ≤ s ≤ n,
if N∩Kerϕ 6= (0), such that {a2·m2, . . . , as·ms} is a basis for N∩Kerϕ and
a2|a3 · · · |as. In either case {m1, . . . ,mn} is a basis for M , where m1 = m.

Set a1 = a. Suppose that N∩Kerϕ = (0). Then {a1·m1} is a basis for N .
We are done with s = 1.

Suppose that N∩Kerϕ 6= (0). Then {a1·m1, . . . , as·ms} is a basis for

N = (N∩Kerϕ)⊕R·(a1·m1) = R·(a1·m1)⊕(N∩Kerϕ).

Let ϕ′ = ϕ1 + ϕ2, where ϕ1, . . . , ϕn are the “projections” defined for our basis
for M . Then ϕ′ ∈ HomR(M,R). Since ϕ′(a1·m1) = a it follows that a ∈ ϕ′(N).
Thus ϕ(N) = Ra ⊆ ϕ′(N) which means Ra = ϕ′(N) by part (1) of Lemma
5.2.1. Thus a2 = ϕ′(a2·m2) ∈ ϕ′(N) = Ra means a1 = a divides a2. This
concludes our proof. ¤

For a homomorphism of left R-modules f : M −→ M ′ let f : M/Kerf −→
M ′ be the induced homomorphism of R-modules defined by f(m+Kerf) = f(m)
for all m + Kerf ∈ M/Kerf .

Theorem 5.2.3 Let M be a finitely generated left R-module. Then M = F⊕T ,
where:
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(1) F = (0) or is a finitely generated free submodule of M , and

(2) T = (0) or for some s ≥ 1 there are n1, . . . , ns ∈ M such that

T = R·n1⊕ · · ·⊕R·ns and R 6= ann(n1) ⊇ · · · ⊇ ann(ns) 6= (0).

Proof: Since M is finitely generated there is a finitely generated left R-module
F and a surjective homomorphism of left R-modules f : F −→ M . Let N =
Kerf .

If N = (0) then f is an isomorphism and thus M is free. Take F = M and
T = (0) in this case. Suppose that N 6= (0). By Proposition 5.2.2 there is a basis
{m1, . . . ,mn} for M and for some 1 ≤ s ≤ n there are non-zero a1, . . . , as ∈ R
such that {a1·m1, . . . , as·ms} is a basis for N and a1|a2 · · · |as. If s < n set
as+1 = · · · = an = 0 for convenience. Then

N = R·(a1·m1)⊕ · · ·⊕R·(as·ms) = R·(a1·m1)⊕ · · ·⊕R·(an·mn)

as R·(as+1·ms+1) = · · · = R·(an·mn) = (0).
Let

F = R·m1⊕ · · ·⊕R·mn
g−→ R·m1/Ra1·m1⊕ · · ·⊕R·mn/Ran·mn

be the homomorphism of left R-modules given by

r1·m1⊕ · · ·⊕rn·mn 7→ (r1·m1 + Ra1·m1)⊕ · · ·⊕(rn·mn + Ra1·m1).

Using the composite of isomorphisms

M
f
−1

−→ F/N
g−→ R·m1/Ra1·m1⊕ · · ·⊕R·mn/Ran·mn

=





R·m1/Ra1·m1⊕ · · ·⊕R·ms/Ras·ms⊕R/(0)⊕ · · ·⊕R/(0) : s < n;

R·m1/Ra1·m1⊕ · · ·⊕R·ms/Ras·ms : s = n

'




R·m1⊕ · · ·⊕R·ms⊕R⊕ · · ·⊕R : s < n;

R·m1⊕ · · ·⊕R·ms : s = n

where mi = mi + Ra1·mi for all 1 ≤ i ≤ s, a direct sum decomposition M =
T⊕F = F⊕T can be constructed as required. Two comments. Note that
ann(mi) = Rai for all 1 ≤ i ≤ s. If ai is a unit then R·mi = Rai·mi =
R·(a·imi) = (0) and thus this summand can be omitted. ¤

5.3 The Structure of Finitely Generated Mod-
ules over a PID, Uniqueness

We continue with the conventions of the preceding section. First a convenient
working principle.
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Lemma 5.3.1 Let M be a left R-module and suppose that I is an ideal of R
such that I ⊆ annR(M). Then M is a left R/I-module where (r + I)·m = r·m
for all r + I ∈ R/I and m ∈ M .

Theorem 5.3.2 Let M = F⊕T = F ′⊕T ′ be direct sum decompositions as
described in Theorem 5.2.3. Then:

(1) F ' F ′.

(2) T = T ′ = Tor(M).

(3) Suppose that Tor(M) = R·n1⊕ · · ·⊕R·ns = R·n′1⊕ · · ·⊕R·n′s′ where R 6=
ann(n1) ⊇ · · · ⊇ ann(ns) 6= (0) and R 6= ann(n′1) ⊇ · · · ⊇ ann(n′s′) 6= (0).
Then s = s′ and ann(n1) = ann(n′1), . . . , ann(ns) = ann(n′s).

Proof: Since R is an integral domain there is a non-zero a ∈ R such that
a·ni = 0 for all 1 ≤ i ≤ s Thus a·T = (0), which means that T ⊆ Tor(M), and

a·M = a·F⊕a·T = a·F.

Using part (2) of Lemma 5.1.1 we calculate

Tor(M) = Tor(F )⊕Tor(T ) = (0)⊕Tor(T ) ⊆ T

from which we deduce that Tor(M) = T . Therefore T ′ = Tor(M) also and
F ' a·F = a·M = a·F ′ ' F ′. We have established parts (1) and (2). Part (3)
will take some care.

Let Tor(M) = R·n1⊕ · · ·⊕R·ns be as in part (3). Choose a1, . . . , as ∈ R
such that ann(ni) = (ai) for all 1 ≤ i ≤ s. Then the ai’s are non-zero non-units
and a1|a2 · · · |as. Observe that

annRTor(M) = (as). (5.3)

We will eventually prove (3) by induction on the number of factors in a fac-
torization of as into irreducibles. This number, of course, depends only on the
ideal annRTor(M).

Let p ∈ R be irreducible and consider the quotientMp = Tor(M)/p·Tor(M).
Observe that

Mp = R·n1⊕ · · ·⊕R·ns,

where ni = ni + p·Tor(M) for all 1 ≤ i ≤ s, since

p·Tor(M) = Rp·n1⊕ · · ·⊕Rp·ns. (5.4)

Also note that Rp·M = (0). Therefore Mp has the left R/Rp-module structure
of Lemma 5.3.1. Since R/Rp is a field M is a vector space over R/Rp.

We next observe that R·ni = (0) if and only if p and ai are relatively prime.
For R·ni = (0) if and only if R·ni ⊆ Rp·ni if and only if 1·ni = xp·ni for some
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x ∈ R. This equation holds if and only if 1− xp ∈ ann(ni) = Rai which is the
case if and only if 1 = xp + yai for some y ∈ R. Thus:

DimR/RpMp is the number of ai’s such that p|ai. (5.5)

Now let Tor(M) = R·n′1⊕ · · ·⊕R·n′s′ be as in part (3) also and let a′1, . . . , a
′
s′ ∈ R

be non-zero non-units such that ann(n′i) = (a′i) for all 1 ≤ i ≤ s′. We make
the interesting observation that (as) = (a′s′) by (5.3), or equivalently ann(ns) =
ann(n′s′). Note that

p·Tor(M) = Rp·n′1⊕ · · ·⊕Rp·n′s′ . (5.6)

Without loss of generality we may assume s′ ≤ s. Let p ∈ R be an irreducible
such that p|a1. Then

s = DimR/RpMp ≤ s′

by (5.5). Therefore s′ = s and p|a′1 also.
Suppose that p·Tor(M) = (0). Since the ai’s nd a′i’s are not units it follows

that ann(n1) = · · · = ann(ns) = (p) = ann(n′1) = · · · = ann(n′s).
Suppose that p·Tor(M) 6= (0). There are non-zero b1, . . . , bs, b

′
1, . . . , b

′
s ∈ R

such that ai = bip and a′i = b′ip for all 1 ≤ i ≤ s. Observe that ann(p·ni) = (bi)
and ann(p·n′i) = (b′i) for all 1 ≤ i ≤ s. Note that (bs) = ann(p·Tor(M)) and
bs has one fewer factors in an irreducible factorization than does as. Note that
bi is a unit if and only if Rp·ni = (0) and likewise b′i is a unit if and only if
Rp·n′i = (0). Therefore by induction on the number of irreducible factors of as,
we conclude that the number of zero terms in (5.4) and (5.6) are the same and
(bi) = (b′i) for all 1 ≤ i ≤ s. Thus (ai) = (a′i) for all 1 ≤ i ≤ s as required. ¤



Chapter 6

Basic Field Theory

Field theory is about pairs of fields, a field K and a subfield F . Usually K is
called an extension of F , or an extension field of F and F is referred to as the
base field. The field of rational numbers Q and the finite fields Fp = Z/pZ,
where p is a positive prime integer, play an important role in field theory.

6.1 Basics

Note that K is a left F -module under multiplication. With this structure K is
an algebra over F . In particular K is a vector space over F . The degree of K
over F is DimF K and is denoted by [K : F ]. If [K : F ] = DimF K < ∞ then K
is a finite extension of F ; otherwise K is an infinite extension of F .

Suppose that E is a subfield of K and F ⊆ E. Then E is an extension of
F and K is an extension of E. The importance of the following can hardly be
overstated.

Lemma 6.1.1 Suppose that E is a subfield of K and F ⊆ E. If E is a finite
extension of F and K is a finite extension of E then K is a finite extension of
F and

[K : F ] = [K : E][E : F ].

Proof: Let m = DimF E and n = DimEK. Let {a1, . . . , am} be a basis for
E as a vector space over F and let {b1, . . . , bn} be a basis for K as a vector
space over E. Then {aibj}1≤i≤m,1≤j≤n is a basis for K as a vector space over
F which has mn elements. ¤

Let a ∈ K. For f(x) ∈ F [x] let f(a) ∈ K be obtained by replacing x by a
in f(x). The substitution map πa : F [x] −→ K defined by πa(f(x)) = f(a) for
all f(x) ∈ F [x] is a homomorphism of F -algebras.

Since K is an abelian group it is a left Z-module. Let f : Z −→ K be the
homomorphism of abelian groups defined by f(m) = m·1 for all m ∈ Z. since

(m·a)(n·b) = mn·ab and m·(ab) = (m·a)b = a(m·b)

35
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for all m,n ∈ Z and a, b ∈ R it follows that K is a Z-algebras as well. In
particular f is a ring homomorphism.

Now Ker f = nZ for a unique non-negative integer n, called the characteristic
of K. Observe that Im f belongs to any subfield E of K since E is an additive
subgroup of K and 1 ∈ E. Thus the characteristic of K is the characteristic of
any subfield of K.

Lemma 6.1.2 The intersection of any non-empty family of subfields of K is a
subfield of K.

Proof: Let E be any non-empty family of subfields of K and let L =
⋂

E∈EE.
Thus L\0 =

⋂
E∈EE\0. Since the intersection of a non-empty family of sub-

groups is a subgroup, L is an additive subgroup of K and L\0 is a multiplicative
subgroup of K\0 = K×. As a0 = 0 = 0a for all a ∈ K we conclude that L is
closed under multiplication. ¤

Let S be a subset of K. By virtue of the preceding lemma there is a unique
smallest subfield of K which contains S, called the subfield of K generated by
S. In particular the subfield K0 of K generated by {1}, called the prime field
of K, is contained in all subfields of K. Thus K0 is the smallest subfield of K
and is contained in F .

Lemma 6.1.3 Let K0 be the prime field of K. Then:

(1) If the characteristic of K is n = 0 then K0 ' Q as fields.

(2) If the characteristic of K is n > 0 then n is prime and K0 ' Fn as fields;
in particular K0 is finite.

Proof: First of all Im f ⊆ K0 since K0 is a subfield of K. Suppose that the
characteristic of K is n = 0. Then f is injective. Since K is a field, there is ring
homomorphism f : Q −→ K from the field of fractions of Z to K. Since f is a
homomorphism of rings with unity Ker f = (0). Therefore f is injective. Since
Im f is a subfield of K it follows that Im f = K0.

Suppose that the characteristic of K is n > 0. Let f : Z/nZ −→ K be the
induced injective ring homomorphism. Since the domain of f is finite, Im f is
a finite subring of a field. Thus Im f is a finite integral domain which means
Im f is a subfield of K. Therefore Im f = K0 and Z/nZ ' K0 is a finite field.
Necessarily n is prime. ¤

By virtue of the preceding lemma the characteristic of a finite field is a
positive prime integer.

Suppose that R is a subring of K and F ⊆ R. Since FR ⊆ RR ⊆ R it
follows that R is an F -subspace of K.

Lemma 6.1.4 Suppose that F ⊆ R ⊆ K, where R is a subring of K. If
DimF R < ∞ then R is a extension field of F .
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Proof: We need only show that any non-zero a ∈ R has a multiplicative
inverse in R. Observe that the function f : R −→ R defined by f(r) = ra for
all r ∈ R is an injective endomorphism of the vector space R over F . Since R
is finite-dimensional necessarily f is bijective. Therefore there is an x ∈ R such
that xa = f(x) = 1. ¤

Let S be a subset of K. Then F [S] denotes the subring of K generated by
F∪S and F (S) denotes the subfield of K generated by the same. When S = {a}
is a singleton we set

F [a] = F [{a}] and F (a) = F ({a}).
Since subfields are subrings F [a] ⊆ F (a).

Proposition 6.1.5 Let a ∈ K.

(1) Suppose that the set of powers {1, a, a2, . . .} is linearly independent over F .
Then there are F -algebra isomorphisms F [x] −→ F [a] and F (x) −→ F (a)
determined by x 7→ a, where F (x) is the field of quotients of the polynomial
algebra F [x]. In particular DimF F [a] = ∞ and F [a] is a proper subset of
F (a).

(2) Suppose that the set of powers {1, a, a2, . . .} is linearly dependent over F .
Then DimF F [a] < ∞ and F [a] = F (a).

Proof: We give the basic outline. Consider the substitution map πa : F [x] −→
K. Observe that πa is injective if and only if the set of powers {1, a, a2, . . .}
is linearly independent over F . The proof of (1) follows in short order at this
point.

Suppose that the set of powers is linearly dependent and consider a depen-
dency relation

a0 + a1a + · · ·+ anan = 0,

where a0, . . . , an ∈ F and an 6= 0. Then n ≥ 1 and f(a) = 0 where f(x) =
a0 + a1x + · · · + anxn ∈ F [x]. Now all elements in F [a] have the form g(a)
for some g(x) ∈ F [x]. For g(x) ∈ F [x], by the Division Algorithm there are
q(x), r(x) ∈ F [x] such that g(x) = q(x)f(x)+r(x), where r(x) = 0 or Degr(x) <
Degf(x) = n. The calculation

g(a) = πa(g(x))
= πa(q(x)f(x) + r(x))
= πa(q(x))πa(f(x)) + πa(r(x))
= q(a)f(a) + r(a)
= q(a)0 + r(a)
= r(a)

shows that {1, a, . . . , an−1} spans F [a] as a vector space over F . Therefore F [a]
is a extension field of F by Lemma 6.1.4; in particular F [a] = F (a). ¤
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If {1, a, a2, . . .} is linearly independent over F then a is transcendental over
F . If the set of powers is linearly dependent over F then a is algebraic over F .
¤

There are various useful ways of expressing what algebraic over F means.

Corollary 6.1.6 For a ∈ F the following are equivalent:

(1) a is algebraic over F .

(2) F [a] is a field.

(3) F [a] is a finite extension field of F .

(4) F [a] is a finite-dimensional vector space over F .

(5) f(a) = 0 for some non-zero f(x) ∈ F [x].

When f(x) ∈ F [x]\0 satisfies f(a) = 0 then [F [a] : F ] ≤ Degf(x).

Corollary 6.1.7 Suppose that a ∈ K is algebraic over F and n = [F [a] : F ].
Then {1, a, . . . , an−1} is a basis for F [a] as a vector space over F .

Proof: We need only show that the set {1, a, . . . , an−1} is linearly independent
over F . Suppose that a01 + a1a + · · ·+ an−1a

n−1 = 0, where a0, . . . , an−1 ∈ F .
Then f(a) = 0, where f(x) = a0 + a1x + · · · + an−1x

n−1. Thus f(x) = 0 by
Corollary 6.1.6. Therefore a0 = · · · = an−1 = 0 which shows that the n-element
set {1, a, . . . , an−1} is linearly independent. ¤

6.2 Algebraic Elements and Algebraic Extensions

Suppose that a ∈ K is algebraic over F and let πa : F [x] −→ K be the sub-
stitution map. Then Im πa = F [a] and is a finite-dimensional vector space over
F by Corollary 6.1.6. Since F [x] is an infinite dimensional vector space over F
it follows that πa is not injective. Therefore Ker πa 6= (0). The unique monic
generator mF,a(x) ∈ F [x] of Ker πa is called the minimal polynomial of a over
F and the degree of a is DimF F [a] = [F [a] : F ].

Proposition 6.2.1 Let a ∈ K be algebraic over F . Then:

(1) mF,a(x) is a monic irreducible polynomial of F [x].

(2) Deg mF,a(x) = DimF F [a] and is the degree of a over F . In particular
Deg mF,a(x) has positive degree.

(3) If K is a finite extension of F then Deg mF,a(x) divides [K : F ].

Suppose that f(x) ∈ F [x]. Then:

(4) f(a) = 0 if and only if mF,a(x) divides f(x).
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(5) Suppose that f(x) is monic and either f(x) is irreducible or Deg f(x) =
DimF F [a]. Then f(x) = mF,a(x) if and only if f(a) = 0.

Proof: We continue with our discussion preceding the statement of the propo-
sition. The substitution map πa : F [x] −→ F [a] induced an isomorphism of
F -algebras πa : F [x]/Kerπa −→ F [a]. Since F [a] is a field Ker πa = (mF,a(x))
is a maximal ideal of F [x]. Therefore mF,a(x) is irreducible. We have shown
part (1). Part (2) is a result of the calculation

DimF F [a] = DimF (F [x]/Kerπa) = DimF (F [x]/(mF,a(x))) = Deg mF,a(x).

Part (3) follows by part (2) and Lemma 6.1.1. Let f(x) ∈ F [x]. Then
f(a) = 0 if and only if f(x) ∈ Ker πa = (mF,a(x)) if and only if mF,a(x) divides
f(x) which establishes (4).

Suppose that f(x) is monic and f(a) = 0. Then f(x) = g(x)mF,a(x) for
some g(x) ∈ F [x] by part (3). Now mF,a(x) is not a unit since it has positive
degree by part (2). If f(x) is irreducible or Degf(x) = DimF F [a], in which
case Degf(x) = Deg mF,a(x) by part (1), then g(x) is a constant. But then
g(x) = 1 as both f(x) and mF,a(x) are monic. Since mF,a(a) = 0, part (5) is
now established. ¤

The field K is an algebraic extension of F if all elements of K are algebraic
over F . Note that F is an algebraic extension of itself.

Theorem 6.2.2 Let E be a subfield of K and suppose that F ⊆ E.

(1) If [E : F ] < ∞ then E is an algebraic extension of F .

(2) Suppose that a1, . . . , an ∈ K are algebraic over F . Then a1, . . . , an ∈ L
for some finite (algebraic) extension field L of F .

(3) Suppose that E is an algebraic extension of F and K is an algebraic ex-
tension of E. Then K is an algebraic extension of F .

Proof: For a ∈ E note that F [a] ⊆ E and therefore dimF F [a] ≤ DimF E.
Thus if [E : F ] < ∞ then a is algebraic over F by Corollary 6.1.6.

We prove part (2) by induction on n. Assume the hypothesis of part (2). If
n = 1 the L = F [a1] suffices by Corollary 6.1.6. Suppose n > 1 and there is
a finite extension field L ⊆ K of F such that a1, . . . , an−1 ∈ L. By Corollary
6.1.6 there is a non-zero polynomial f(x) ∈ F [x] such that f(an) = 0. Since
F ⊆ L we have f(x) ∈ L[x]. Therefore L = L[an] is a finite extension field of
L by Corollary 6.1.6. Thus a1, . . . , an ∈ L and L is a finite extension field of F
by Lemma 6.1.1.

Assume the hypothesis of part (3) and let a ∈ K. Since a is algebraic over
E there is a non-zero polynomial f(x) ∈ E[x] such that f(a) = 0 by Corollary
6.1.6. Let a0, . . . , an ∈ E be the coefficients of f(x). By part (2) there is a finite
extension field L of F in E such that a0, . . . , an ∈ L. Therefore f(x) ∈ L[x]
which means that L[a] is a finite extension field of L by Corollary 6.1.6. Thus
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L[a] is a finite extension of F by Lemma 6.1.1. Since a ∈ L[a] it follows that a
is algebraic over F by part (1). Therefore K is an algebraic extension of F . ¤

The proof of part (2) of the preceding theorem yields:

Corollary 6.2.3 Suppose that a ∈ K is algebraic over F and E is a subfield of
K such that F ⊆ E. Then a is a algebraic over E.

Let Kalg be the set of all elements in K which are algebraic over F .

Theorem 6.2.4 Let E be a subfield of K and suppose that F ⊆ E. Then:

(1) Kalg is a subfield of F which is an algebraic extension of F .

(2) Suppose that E is an algebraic extension of F . Then E ⊆ Kalg.

(3) Suppose that E is an algebraic extension of Kalg. Then E = Kalg.

Proof: Since F is an algebraic extension of itself, it follows that F ⊆ Kalg.
Suppose that a, b ∈ Kalg. Then there is an algebraic extension L ⊆ K of F
which contains a, b by part (2) of Theorem 6.2.2. Thus L ⊆ Kalg. Since L is a
field a± b, ab, and a−1 when a 6= 0, all belong to L ⊆ Kalg. Therefore Kalg is a
subfield of K. We have established part (1). Part (2) follows by definition. As
for part (3), suppose E is an algebraic extension of Kalg. Then E is an algebraic
extension of F by part (3) of Theorem 6.2.2 which means E ⊆ Kalg by part (2).
Since Kalg ⊆ E by assumption, E = Kalg. ¤

6.3 Constructible Numbers

Let Q and R be the fields of rational and real numbers respectively. We will
show that that the impossibility of certain geometric constructions boils down
to the nature of a certain subfield C of R which is an algebraic extension of Q.
Observe that all subfields of R are extensions of Q as the latter is the prime
field of R.

Let E be a subfield of R. We say that E satisfies (*) if there are subfields
E0, . . . , Er of R such that

Q = E0 ⊆ · · · ⊆ Er = E and [Ei+1 : Ei] ≤ 2 for all 0 ≤ i < r.

For such an E note that [E : Q] = 2` for some ` ≥ 0 by Lemma 6.1.1. By part
(1) of Theorem 6.2.2 we see that E is an algebraic extension of Q.

Lemma 6.3.1 Let E1, . . . , En be subfields of R which satisfy (*). Then there
is a subfield E′ of R which satisfies (*) and E1, . . . , En ⊆ E′.

Proof: By induction on n it suffices to establish the lemma for n = 2. Suppose
that E, E′ are subfields of R which satisfy (*) with Q = E0, . . . , Er = E and
Q = E′

0, . . . , E
′
r′ = E′ respectively. We will construct, by induction on r′, a
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sequence of subfields Er+1, . . . , Er+r′ = E′′ of R such that E′′ satisfies (*) with
E0, . . . , Er+r′ and E′

i ⊆ Er+i for all 1 ≤ i ≤ r′. Note that E, E′ ⊆ E′′ in any
case; if r′ = 0 then E′

r′ = Q ⊆ Er = E′′.
Suppose r′ > 0. Now E′ = E′

r′−1 satisfies (*) with E′
0, . . . , E

′
r′−1. By induc-

tion on r′ there are subfields Er+1, . . . , Er+(r′−1) = E′′ such that E′′ satisfies
(*) with E0, . . . , Er+(r′−1) and E′

i ⊆ Er+i for all 1 ≤ i ≤ r′ − 1.
Since [E′

r′ : E′
r′−1] ≤ 2 we can write E′

r′ = E′
r′−1[a] for some a ∈ E′

r′ .
Now the minimal polynomial f(x) = mE′

r′−1
,a(x) has degree 1 or 2 by part (2)

of Proposition 6.2.1. Since f(x) ∈ E′
r′−1[x] ⊆ Er+r′−1[x] and f(a) = 0, by

Corollary 6.1.6 we conclude that Er+r′ = Er+r′−1[a] is an extension field of
Er+r′−1 of degree 1 or 2. Observe that E′

r′ = E′
r′−1[a] ⊆ Er+r′−1[a] = Er+r′ .

Let E′′ = Er+r′ . Then E′′ satisfies (*) with E0, . . . , Er+r′ and E′
i ⊆ Er+i

for all 1 ≤ i ≤ r′. Thus our proof follows by induction on r′. ¤

Theorem 6.3.2 Let C be the union of all subfields of R which satisfy (*).
Then:

(1) C is a subfield of R which is an algebraic extension of Q.

(2) If a1, . . . , an ∈ C then there a subfield E of C which satisfies (*) and
a1, . . . , an ∈ E.

(3) If E ⊆ C is a subfield which is a finite extension of Q then there is a
subfield E′ of C which satisfies (*) and E ⊆ E′.

(4) Suppose that E is a subfield of R which is an extension of C and [E :
C] ≤ 2. Then E = C.

(5) If a ∈ R satisfies a linear equation a1x + a0 = 0 or a quadratic equation
a2x

2+a1x+a3 = 0 with coefficients in C, with non-zero leading coefficient,
then a ∈ C.

Proof: By the commentary preceding the statement of Lemma 6.3.1 the el-
ements of C are algebraic over Q. Suppose that a, a′ ∈ C. Then there are
subfields E, E′ of R which satisfy (*) such that a ∈ E and a′ ∈ E′. By Lemma
6.3.1 there is a subfield E′′ of R which satisfies (*) and E, E′ ⊆ E′′. Thus
E′′ ⊆ C. Since a, a′ ∈ E′′ it follows that a ± a′, aa′, and a−1 when a 6= 0,
belong to E′′, and hence belong to C. Therefore C is a subfield of R. We have
established part (1).

Let a1, . . . , an ∈ C. Then there are subfields E1, . . . , En of R which satisfy
(*) where ai ∈ Ei for all 1 ≤ i ≤ n. By Lemma 6.3.1 there is a subfield E′ of
R which satisfies E1, . . . , En ⊆ E′ and which satisfies (*). The latter condition
implies E′ ⊆ C and the former a1, . . . , an ∈ E′. Part (2) is established. Part
(3) follows from part (2) where a1, . . . , an form a spanning set for E as a vector
space over Q.

To show part (4), suppose that E is a subfield of R which is an extension
field of C and satisfies [E : C] ≤ 2. Then E = C[a] for some a ∈ E. By part (2)
of Proposition 6.2.1 the minimal polynomial f(x) = mC,a(x) ∈ C[x] has degree
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1 or 2. The coefficients of f(x) are contained a subfield E′ of C which satisfies
(*) by part (2). In paricular f(x) ∈ E′[x]. Since f(a) = 0 it follows that E′[a]
is a field and DimE′E

′[a] ≤ 2 by Corollary 6.1.6. Since E′ satisfies (*) it follows
that E′[a] does also. Thus E′[a] ⊆ C which means that a ∈ C and therefore
E = C[a] ⊆ C. As C ⊆ E by assumption, E = C. Part (5) follows by Corollary
6.1.6 and part (4) with E = C[a]. ¤

By the comments preceding Lemma 6.3.1 and part (3) of Proposition 6.2.1
we have:

Corollary 6.3.3 For a ∈ C the degree of a over Q is a power of 2.

We now turn to points in the plane R2 constructed by straightedge (ruler
without marks) and compass. The concept of constructible from a subset of R2

indicates how to construct new points by straightedge and compass from given
points in the plane.

Suppose that S ⊆ R2. A point p ∈ R2 is constructible from S if p is:

(CPS.1) the intersection of two different lines determined by points in S; or

(CPS.2) an intersection point of a line as in (CPS.1) and a circle centered at a
point in S and whose radius is the distance between two points in S; or

(CPS.3) an intersection point of two different circles as described in (CPS.2).

A constructible point is a point p ∈ R2 such that:

(CP.1) p = (0, 0); or

(CP.2) p = (1, 0); or

(CP.3) for some r > 1 there is a sequence of points

p0 = (0, 0), p1 = (1, 0), p2, . . . , pr = p

such that pi+1 is constructible from {p0, p1, . . . , pi} for all 1 ≤ i < r.

Compare this definition with (*).
We claim that all constructible points belong to C×C. To do this we need

only show that a point p ∈ R2 constructible from S = C×C belongs to S.
Let (a, b), (a′, b′) ∈ S be distinct points. Then a, b, a′, b′ ∈ C. Suppose L is

a line which is determined by these two points. If a = a′ then L has equation

x = a. (6.1)

If a 6= a′ then L has equation

y = mx + b, (6.2)

where

m =
b′ − b

a′ − a
∈ C
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since C is a field.
Now suppose that C is the circle centered at (a, b) and passes through (a′, b′).

Then C has equation
(x− a)2 + (y − b)2 = r2, (6.3)

where
r2 = (a− a′)2 + (b− b′)2 ∈ C

since C is a field.
Consider two lines L,L′ as above which intersect in one point. The point of

intersection p = (x, y) satisfies the pair of equations

x = a
y = mx + b,

where a,m, b ∈ C, or
y = mx + b
y = m′x + b′,

where m, b, m′, b′ ∈ C and m 6= m′. In the second case

x = − b′ − b

m′ −m
, and thus y = −m

(
b′ − b

m′ −m

)
+ b.

Thus in either case x, y ∈ C since C is a field. Thus p ∈ S.
Consider the intersection of a circle and line as above. There will be one or

two intersection points. Let p = (x, y) be one of them. Then the coordinates of
p satisfy

(x− a)2 + (y − b)2 = r2

x = c,

where a, b, r2, c ∈ C, or

(x− a)2 + (y − b)2 = r2

y = mx + c,

where a, b, r2,m, c ∈ C. Our two cases come from (6.1) and (6.2) respectively.
In the first case

x = c and y2 − 2yb + (b2 + (c− a)2 − r2) = 0.

In the second

(1 + m2)x2 + 2(m(c− b)− a)x + (a2 + (c− b)2 − r2) = 0 (6.4)

and
y2 − 2by + (b2 + (x− a)2 − r2) = 0. (6.5)

In either case x, y ∈ C by part (5) of Theorem 6.3.2.
Suppose that C and C′ are two circles as above which intersect in one or two

points, and let p = (x, y) be one of the points of intersection. The reader is
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left with the exercise of showing that the details of establishing x, y ∈ C follow
those in the circle and line case. This concludes our proof that all constructible
points lie in S = C×C.

A number r ∈ R is constructible if |r| is the length of a line segment connect-
ing two constructible points. Suppose that (a, b), (a′, b′) are these two points.
Then a, b, a′, b′ ∈ C and

r2 = (a− a′)2 + (b− b′)2

which gives rise to a quadratic equation r2−c = 0, where c = (a−a′)2+(b−b′)2.
Thus r ∈ C by part (5) of Theorem 6.3.2 again. We have shown:

Lemma 6.3.4 Any constructible number belongs to C and is thus algebraic over
Q of degree 2` for some ` ≥ 0.

Now for some technical details regarding doubling the unit cube and trisect-
ing the 60o angle by straightedge and compass. These come down to whether
or not there is a constructible number which satisfies x3 = 2 and whether or
not cos 20o is constructible.

There is exactly one real solution to x3 = 2, denoted 21/3. Since x3 − 2 ∈
Q[x] is irreducible by the Eisenstein Criterion (with p = 2), we conclude that
x3− 2 = mQ,21/3(x). Therefore 21/3 has degree 3 over Q which means that it is
not constructible by Lemma 6.3.4.

We show that cos 20o is not constructible. First:

cos 3θ = 4 cos3 θ − 3 cos θ. (6.6)

Proof: Since
cos(a + b) = cos a cos b− sin a sin b

and
sin(a + b) = sin a cos b + cos a sin b

for all a, b ∈ R we calculate

cos 3θ = cos(2θ + θ)
= cos 2θ cos θ − sin 2θ sin θ

= (cos2 θ − sin2 θ) cos θ − (2 sin θ cos θ) sin θ

= cos3 θ − 3 sin2 θ cos θ

= cos3 θ − 3(1− cos2 θ) cos θ

= 4 cos3 θ − 3 cos θ.

¤

When θ = 20o note that cos 3θ = cos 60o = 1/2. Thus cos 20o is a root of
8x3 − 6x− 1.

8x3 − 6x− 1 ∈ Q[x] is irreducible (6.7)
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Proof: Since the degree of f(x) = 8x3 − 6x − 1 is 3 it follows that f(x) is
irreducible over Q if and only if f(x) has no root in Q.

Suppose that r ∈ Q is a root of f(x) and set

r = 2r − 1.

Then
r =

1
2
(r + 1)

and the calculation

0 = 8r3 − 6r − 1

= 8
(

1
8
(r + 1)3

)
− 6

(
1
2
(r + 1)

)
− 1

= (r + 1)3 − 3(r + 1)− 1
= (r + 1)((r + 1)2 − 3)− 1
= (r + 1)(r2 + 2r − 2)− 1
= r3 + 3r2 − 3

shows that
r3 + 3r2 − 3 = 0.

Thus x3 + 3x2 − 3 ∈ Q[x] is reducible. But by the Eisenstein Criterion (with
p = 3) the polynomial x3 + 3x2 − 3 is irreducible over Q. This contradiction
means that f(x) has no root in Q after all. Therefore f(x) = 8x3−6x−1 ∈ Q[x]
is irreducible. ¤

Therefore cos 20o is an algebraic over Q of degree 3. Thus cos 20o is not
constructible by Lemma 6.3.4.

We have not determined the constructible numbers. This is a slightly more
complicated exercise. It turns out the C is in fact the set of constructible
numbers.

6.4 Splitting Fields and Algebraic Closures

Throughout K is an extension field of F . Suppose that a ∈ K is algebraic over
F . Then p(a) = 0 for some non-zero p(x) ∈ F [x] which has positive degree by
Corollary 6.1.6. Conversely:

Lemma 6.4.1 Let p(x) ∈ F [x] have positive degree. Then there is an extension
field K of F such that p(a) = 0 for some a ∈ K.

Proof: The ideal I = (p(x)) is proper since p(x) is not a unit. Therefore
I is contained in a maximal ideal M of F [x] by Zorn’s Lemma. Since M is
maximal K = F [x]/M is a field. Since M is proper M∩F = (0). Hence
the ring homomorphism  : F −→ K given by (r) = r + M has kernel (0)
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and is therefore injective. Thus we may regard F as a subfield of K via the
identification of r ∈ F with (r) ∈ K.

Let a = x +M and write p(x) = a0 + · · ·+ anxn. The calculation

p(a) = (a0 +M) + · · ·+ (an +M)(x +M)n

= (a0 +M) + · · ·+ (anxn +M)
= (a0 + · · ·+ anxn) +M
= p(x) +M
= M

which shows that p(a) = 0. ¤
Minimal polynomials are monic irreducible. By the proposition all monic

irreducible polynomials p(x) ∈ F [x] are minimal polynomials. See part (5) of
Proposition 6.2.1.

A polynomial p(x) ∈ F [x] splits into linear factors over K if there are
c, a1, . . . , ar ∈ K, where r ≥ 1, such that p(x) = c(x − a1) · · · (x − ar). Ob-
serve that c ∈ F . This section is all about splitting into linear factors.

The field F is algebraically closed if it has no algebraic extensions other than
itself. There are several ways of expressing this property.

Theorem 6.4.2 The following are equivalent for the field F :

(1) F is algebraically closed.

(2) Every polynomial in F [x] of positive degree has a root in F .

(3) Every polynomial in F [x] of positive degree splits into linear factors over
F .

Proof: Part (1) implies part (2). Suppose that F is algebraically closed and
let p(x) ∈ F [x] have positive degree. By Lemma 6.4.1 there is a field extension
K of F which contains a root a of p(x). Thus F [a] is an algebraic extension
of F by Corollary 6.1.6 and part (1) of Theorem 6.2.2. Hence F [a] = F which
means that a ∈ F .

Suppose that part (2) holds and let p(x) ∈ F [x] have positive degree. Then
p(a1) = 0 for some a1 ∈ F . Thus p(x) = (x − a1)p1(x) for some non-zero
p1(x) ∈ F [x]. Either Deg p(x) = 0, in which case p1(x) = c ∈ F , or 0 <
Deg p1(x) = Deg p(x) − 1. Part (3) holds by induction on Deg p(x). We have
shown that part (2) implies part (3).

Part (3) implies part (1). Suppose that all polynomials in F [x] split into
linear factors over F . Let K be an algebraic extension of F and let a ∈ K.
Then p(a) = 0 for some p(x) ∈ F [x] of positive degree by Corollary 6.1.6.
By assumption there are c, a1, . . . , ar ∈ F for some r > 0 such that p(x) =
c(x − a1) · · · (x − ar). As p(a) = 0 necessarily a = ai ∈ F for some 1 ≤ i ≤ r.
Therefore K ⊆ F which means that K = F . ¤

An algebraic closure of F is an extension field K of F such that:
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(AC.1) every polynomial in F [x] of positive degree splits into linear factors over
K and

(AC.2) the roots in K of polynomials in F [x] of positive degree generate K as an
extension field of F .

Theorem 6.4.3 An extension field K of F is an algebraic closure of F if and
only if:

(1) K is an algebraic extension of F and

(2) K is an algebraically closed field.

Proof: Let K be an algebraic closure of F . Since Kalg is an algebraic extension
of F by part (1) of Theorem 6.2.4, and roots of polynomials of positive degree
in F [x] are contained in Kalg by Corollary 6.1.6, it follows that Kalg = K.
Therefore K is an algebraic extension of F .

Suppose that E is an algebraic extension of K. Then E is an algebraic
extension of F by part (3) of Theorem 6.2.2. Let a ∈ E. Then mF,a(x) =
c(x− a1)· · ·(x− ar), where c, a1, . . . , ar ∈ K, by definition of algebraic closure.
As mF,a(a) = 0 necessarily a = ai ∈ K for some 1 ≤ i ≤ r. Therefore E ⊆ K
which means E = K. We have shown that K is algebraically closed. Thus if K
is an algebraic closure of F then (1) and (2) hold.

Conversely, suppose that (1) and (2) hold. Then K consists of roots of poly-
nomials of positive degree by (1) and Corollary 6.1.6. By (2) every polynomial in
F [x] of positive degree splits into linear factors over K. Thus K is an algebraic
closure of F by definition. ¤

Suppose that σ : F −→ F ′ is an isomorphism of fields (which is to say
an isomorphism of rings with unity). For f(x) = anxn + · · · + a0 ∈ F [x] let
fσ(x) = σ(an)xn + · · · + σ(a0) ∈ F ′[x]. The function σ : F [x] −→ F ′[x] given
by f(x) 7→ fσ(x) for all f(x) ∈ F [x] is a ring isomorphism.

Generally a homomorphism σ : F −→ R of rings with unity is is injective.
For Ker σ 6= F as σ(1) = 1 6= 0 which means Kerσ = (0) as F is a simple ring.

Lemma 6.4.4 Suppose that σ : F −→ F ′ is an isomorphism of fields, K = F [a]
and K ′ = F ′[a′] are algebraic extensions of F and F ′ respectively, and fσ(x) =
mF ′,a′(x), where f(x) = mF,a(x). Then σ extends to a unique isomorphism of
fields τ : K −→ K ′ such that τ(a) = a′.

Proof: By assumption σ(mF,a(x)) = mF ′,a′(x); consequently σ((mF,a(x))) =
(mF ′,a′(x)). Now σ induces an isomorphism of rings τ : F [x]/(mF,a(x)) −→
F ′[x]/(mF ′,a′(x)) given by f(x)+(mF,a(x)) 7→ f(x)+(mF ′,a′(x)). Since Ker πa =
(mF,a(x)), the substitution map πa : F [x] −→ F [a] induces an isomorphism of
rings πa : F [x]/(mF,a(x)) −→ F [a] given by f(x) + (mF,a(x)) 7→ f(a). Let τ be
the composition of ring isomorphisms

F [a] πa
−1

−→ F [x]/(mF,a(x)) τ−→ F ′[x]/(mF ′,a′(x))
πa′−→ F ′[a′].
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Then τ extends σ and τ(a) = a′. Uniqueness follows since F∪{a} generates
F [a] as a ring. ¤

Every field is has a unique algebraic closure. One technical comment before
we launch into the proof.

Suppose that K ′ is also an extension field of F . An isomorphism of F -
algebras σ : K −→ K ′ is a ring isomorphism which is also F -linear. Linearity
means σ(a) = σ(a1) = aσ(1) = a1 = a for a ∈ F . Thus:

Remark 6.4.5 A function σ : K −→ K ′ of extension fields of F is an F -
algebra isomorphism if and only if it is a ring isomorphism such that σ(a) = a
for all a ∈ F .

We isolate the basic step in the proof part (1) of Theorem 6.4.8.

Lemma 6.4.6 For the field F there is an extension K such that every polyno-
mial in F [x] of positive degree has a root in K.

Proof: Let X be the set of polynomials in F [x] of positive degree and let
(ı, F [X]) be the free commutative algebra on X. (Corollary 4.3.2 can be gener-
alized to any non-empty set.) Write ı(f(x)) = xf for f(x) ∈ X.

Let I be the ideal of F [X] generated by the f(xf )’s, where f(x) ∈ X. We
claim that I is a proper ideal of F [X]. If not, there are α1, . . . , αr ∈ F [X] and
xf1 , . . . , xfr such that

1 = α1f1(xf1) + · · ·+ α1fr(xfr ). (6.8)

Using Lemma 6.4.1 it follows by induction on r there is an extension E of F
and a1, . . . , ar ∈ E such that f1(a1) = · · · = fr(ar) = 0. Let ϕ : X −→ E be
any function such that ϕ(fi(x)) = ai for all 1 ≤ i ≤ r and let Φ : F [X] −→ E
be the F -algebra homomorphism determined by Φ◦ı = ϕ. Note that

Φ(fi(xfi)) = fi(Φ(xfi)) = fi(Φ(ı(fi(x)))) = fi(ϕ(fi(x))) = f(ai) = 0

for all 1 ≤ i ≤ r. Applying Φ to both sides of (6.8) we have

1 = Φ(α1f1(xf1) + · · ·+ α1fr(xfr ))
= Φ(α1)Φ(f1(xf1)) + · · ·+ Φ(α1)Φ(fr(xfr ))
= Φ(α1)0 + · · ·+ Φ(α1)0
= 0,

a contradiction. Therefore I is a proper ideal of F [X].
Now we can pick up with second line of the proof of Proposition 6.4.1 which

shows that I is contained in a maximal ideal M of F [X], that K = F [X]/M
is a field, that via  : F −→ K defined by (r) = r +M we can regard F as a
subfield of K, and finally that xf +M∈ K is a root of f(x) ∈ X. ¤

Next we isolate the basic step in the proof of part (2) of Theorem 6.4.8
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Lemma 6.4.7 Suppose that K is an algebraic extension of F and K ′ is an
algebraically closed extension of F ′. If F 6= K then any ring isomorphism
σ : F −→ F ′ can be extended to a ring homomorphism τ : E −→ K ′, where E
is a subfield of K which properly contains F .

Proof: Let a ∈ K\F . Since a is algebraic over F it follows by Corollary 6.1.6
that E = F [a] is a finite extension field of F . Note that F is a proper subset of
F since a 6∈ F .

Let f(x) = mF,a(x). Then fσ(x) ∈ F ′[x] is irreducible. Since K ′ is alge-
braically closed fσ(x) has a root a′ ∈ F ′. Therefore E′ = F ′[a′] is a finite
extension of F ′ by Corollary 6.1.6 and fσ(x) = mF ′,a′(x) by part (5) of Propo-
sition 6.2.1. By Lemma 6.4.4 there is an ring isomorphism τ : E −→ E′ of σ
which extends σ. ¤

Theorem 6.4.8 The field F

(1) has an algebraic closure K, and

(2) if K ′ is also an algebraic closure of F then there is an F -algebra isomor-
phism σ : K −→ K ′.

Proof: We first show part (1). By Lemma 6.4.6 there is a chain of extension
fields F = F0 ⊆ F1 ⊆ F2 ⊆ · · · such that for all n ≥ 0 any polynomial in Fn[x]
of positive degree has a root in Fn+1. Note that K = ∪∞n=0Fn is an extension
field of F .

Let p(x) ∈ Fn[x] be of positive degree. Then p(a1) = 0 for some a1 ∈ Fn+1.
Thus p(x) = (x− a1)p1(x), where p1(x) ∈ Fn+1[x]. By induction on Deg p(x) it
follows that p(x) splits into linear factors over some Fn+m, hence over K. Thus
K contains an algebraic closure of F .

To show part (2), we first note that K and K ′ are both algebraic extensions
of F and are algebraically closed by Theorem 6.4.3. Consider the set S of all
pairs (σ,E), where E is a subfield of K and an extension of F and σ : E −→ K ′

is a homomorphism of F -algebras. Note that S 6= ∅ since (IdF , F ) ∈ S. We
partially order S by (σ,E) ≤ (σ′, E′) if E ⊆ E′ and σ′|E = σ.

By Zorn’s Lemma S has a maximal element (σ,E). By Lemma 6.4.7 we
deduce that E = F . Now By considering σ−1 : σ(E) −→ K we deduce that
σ(E) = K ′ by Lemma 6.4.7 again. ¤

Suppose that S is a non-empty subset of polynomials in F [x] which have
positive degree. Then a splitting field for S over F is an extension field K of F
such that

(SF.1) Every f(x) ∈ S splits into linear factors over K and

(SF.2) K is generated as an extension field of F by the roots of the f(x)’s in S
which lie in K.
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Thus an algebraic closure of F is a splitting field for the set of all polynomials
in F [x] of positive degree. Since algebraic closures exist and are unique splitting
fields in general exist and are unique.

Corollary 6.4.9 Let S be a non-empty set of polynomials in F [x] of positive
degree. Then:

(1) There is a splitting field K for S over F .

(2) Suppose that K ′ is also a splitting field for S over F . Then there is an
isomorphism of F -algebras τ : K −→ K ′.

Proof: As for existence, let E be an algebraic closure of F . Then the subfield
K of E generated by F and the set of all roots in E of polynomials in S evidently
is a splitting field of S over F .

As for uniqueness, let K, K ′ be splitting fields of S over F and let E, E′ be
algebraic closures of K, K ′ respectively. Since K is an algebraic extension of F
and E is an algebraic extension of K it follows that E is an algebraic extension
of F by part (3) of Theorem 6.2.2. Therefore E, and likewise E′, is an algebraic
closure of F by Theorem 6.4.3.

By part (2) of Theorem 6.4.8 there is an F -algebra isomorphism σ : E −→
E′. Since σ(S) = S it follows that σ(K) = K ′. Let τ be the restriction
σ|K : K −→ K ′. ¤

When S = {f(x)} is a singleton set then we call a splitting field for S over
F a splitting field for f(x) over F . The existence and uniqueness the splitting
field in this case can be done by induction and does not depend on the existence
of an algebraic closure.

There is a degree estimate for the splitting field when S is a singleton set.

Lemma 6.4.10 Let f(x) ∈ F [x] have positive degree, let p1(x), · · · , pr(x) ∈
F [x] be the distinct irreducibles in a factorization of f(x), and suppose that K
is a splitting field for f(x) over F . Then

[K : F ] ≤ (Deg p1(x))! · · · (Deg pr(x))!.

Proof: Without loss of generality we may assume f(x) and p1(x), . . . , pr(x) are
monic. Thus f(x) = p1(x)n1 · · · pr(x)nr , where n1, . . . , nr are positive integers.
The roots of f(x) in K are the roots of f0(x) = p1(x) · · · pr(x). We may therefore
assume f(x) = f0(x).

To complete the proof, we show by induction on r that the degree estimate
of the lemma holds for f(x) = p1(x) · · · pr(x), where p1(x), . . . , pr(x) ∈ F [x] are
any polynomials of positive degree. This reduces to the case r = 1. For suppose
r > 1, let f ′(x) = p1(x) · · · pr−1(x). Since f(x) = f ′(x)pr(x) splits into linear
factors over K it follows that f ′(x) does as well. Let K ′ be the extension of F
in K generated by the roots of f ′(x). Then K ′ be a splitting field of f ′(x) over
F and K is a splitting field of pr(x) over K ′. As [K : F ] = [K : K ′][K ′ : F ] by
Lemma 6.1.1 the degree estimate holds by induction.
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We have reduced the proof to showing that [K : F ] ≤ Deg f(x)!. This we
do by induction on Deg f(x). Since K is a splitting field of f(x) over F then
f(a) = 0 for some a ∈ K.

Let K ′ = F [a]. Then K ′ is a field extension of F and [K ′ : F ] ≤ Deg f(x)
by Corollary 6.1.6. Now f(x) = (x − a)f ′(x), where f ′(x) ∈ K ′[x]. Suppose
Deg f(x) = 1. Then f ′(x) = 1 and a ∈ F . Therefore K = F and thus [K :
F ] = 1 = Deg f(x)!. Suppose Deg f(x) > 1. Then 0 < Deg f ′(x) < Deg f(x).
Since f(x) = (x− a)f ′(x) splits into linear factors over K it follows that f ′(x)
does as well. Thus K is a splitting field of f ′(x) over K ′. By Lemma 6.1.1 and
induction on Deg f(x) we have

[K : F ] = [K : K ′][K ′ : F ] ≤ (Deg f ′(x)!)(Deg f(x)) = ((Deg f(x)−1)!)(Deg f(x))

which means [K : F ] ≤ Deg f(x)!. This concludes the proof. ¤

6.5 Separability

Recall that F is a Z-module. We write na = n·a for n ∈ Z and a ∈ F . Since in
fact F is a Z-algebra

na = n·a = n·(1a) = (n·1)a (6.9)

is the product of n·1 in the prime field of F and a. If the characteristic of F is
0 then n·1 = 0 if and only if n = 0. In the characteristic 0 case we identify n
with n·1 and regard Z as a subring of F . Recall that the prime field of F is Q.

Suppose that the characteristic of F is p > 0. Then n·1 = 0 if and only if
p|n. In the characteristic p > 0 case the prime field of F is Z·1 = Fp which is
the field of p-elements. In any event, since F is an integral domain, by (6.9):

Lemma 6.5.1 Let 0 6= a ∈ F .

(1) If the characteristic of F is 0 then na = 0 if and only if n = 0.

(2) If the characteristic of F is p > 0 then na = 0 if and only if p|n.

¤

6.5.1 Formal Derivatives and Separability

Let f(x) = anxn + · · · + a1x + a0 ∈ F [x]. Then the formal derivative function
Dx : F [x] −→ F [x] is given by

Dx(f(x)) = nanxn−1 + · · ·+ a1.

Note that the usual rules of Calculus for the derivative of functions of a single
variable carry over: Dx is linear and the Leibnitz rule

Dx(f(x)g(x)) = Dx(f(x))g(x) + f(x)Dx(g(x))
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holds for all f(x), g(x) ∈ F [x].
Let f(x) ∈ F [x] be of positive degree and let K be a splitting field of f(x)

over F . Then f(x) = c(x−a1)n1 · · · (x−ar)nr , where c ∈ F , where a1, . . . , ar ∈
K are distinct, and n1, . . . , nr ≥ 1. The polynomial f(x) is separable if n1 =
· · · = nr = 1. Observe that the notion of separability does not depend on the
splitting field by part (2) of Corollary 6.4.9.

One further point. The notation Dx does not indicate a domain. We could
write Dx,F for Dx to do this. In practice there is no need. For if K is an
extension of F then Dx,K |F [x] = Dx,F .

Proposition 6.5.2 Let f(x) ∈ F [x] have positive degree. Then the following
are equivalent:

(1) f(x) is separable.

(2) f(x) and Dx(f(x)) are relatively prime.

Proof: Let K be a splitting field of f(x) over F . Part (1) implies part (2).
Suppose that f(x) is separable. Then f(x) = c(x−a1) · · · (x−ar), where c ∈ F
and a1, . . . , ar ∈ K are distinct. Since

Dx(f(x)) =
r∑

i=1

c(x− a1) · · · ̂(x− ai) · · · (x− ar),

where “̂” means factor omitted, we see that Dx(f(x))(ai) 6= 0 for all 1 ≤ i ≤ r.
Suppose that d(x) ∈ F [x] is monic and divides both f(x) and Dx(f(x)).

Since d(x) divides f(x) it follows that d(x) = (x − a1)m1 · · · (x − ar)mr where
mi = 0 or mi = 1 for all 1 ≤ i ≤ r. For all such i observe that d(ai) 6= 0 since
d(x) divides Dx(f(x)) and Dx(f(x))(ai) 6= 0. Therefore m1 = · · · = mr = 0
which means that d(x) = 1.

Part (2) implies part (1). Assume that f(x) and Dx(f(x)) are relatively
prime in F [x]. Then a(x)f(x) + b(x)Dx(g(x)) = 1 for some a(x), b(x) ∈ F [x].
Therefore f(x) and Dx(f(x)) are relatively prime in K[x].

Suppose that f(x) = (x − a)2g(x), where a ∈ K and g(x) ∈ K[x]. The
calculation Dx(f(x)) = 2(x− a)g(x) + (x− a)2Dx(g(x)) shows that a is a root
of Dx(f(x)) as well as of f(x). This means (x − a) divides both f(x) and
Dx(f(x)), a contradiction. Thus (x − a)2 does not divide f(x) for all a ∈ F .
Thus f(x) is separable. ¤

Corollary 6.5.3 Let p(x) ∈ F [x] be irreducible. Then:

(1) p(x) is separable if and only if Dx(f(x)) 6= 0.

(2) p(x) is separable if the characteristic of F is 0.

Proof: Part (2) follows from part (1). To show part (1) we note that Dx(p(x)) =
0 or Deg Dx(p(x)) < Deg p(x). Thus since p(x) is irreducible, p(x) and Dx(p(x))
are relatively prime if and only if Dx(f(x)) 6= 0. ¤
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Continuing with the corollary, what does it mean for Dx(f(x)) = 0?. Nec-
essarily the characteristic of F is p > 0. Write

p(x) = anxn + · · ·+ a1x + a0 ∈ F [x],

where an 6= 0. Then

0 = Dx(f(x)) = nanxn−1 + · · ·+ a1

means that whenever 1 ≤ ` ≤ n and a` 6= 0 then p|`. Let k be the largest
positive integer such whenever 1 ≤ ` ≤ n and a` 6= 0 then pk|`. Then n = pkm
for some m ≥ 1 and

p(x) = apkmnxpkm + apk(m−1)x
pk(m−1) + · · ·+ apkxpk

+ a0.

Let
psep(x) = apkmnxm + apk(m−1)x

m−1 + · · ·+ apkx + a0.

Then
p(x) = psep(xpk

).

Observe that psep(x) is irreducible; a non-trivial factorization of psep(x) gives
rise to a non-trivial factorization of p(x). Also Dx(psep(x)) 6= 0. Therefore
psep(x) is separable by the preceding corollary.

An element a ∈ K is separable if it is algebraic over F and its minimal
polynomial mF,a(x) is separable. The extension K of F is separable if it consists
of separable elements. Thus separable extensions are algebraic extensions.

Proposition 6.5.4 Let K be an algebraic extension of F . Then:

(1) K is a separable extension of F if the characteristic of F is 0.

(2) Suppose that the characteristic of F is p > 0 and let a ∈ K. Then apk

is
separable for some k ≥ 0.

¤

6.5.2 The Frobenius Map and Finite Fields

Throughout this section F has characteristic p > 0. All finite fields fall into this
category. Let Fp denote the prime field of F .

The Frobenius map F : F −→ F , defined by F(a) = ap of all a ∈ F , plays a
very important role in characteristic p.

Lemma 6.5.5 The Frobenius map in an injective ring endomorphism of F .

Proof: F(1) = 1p = 1. Let a, b ∈ F . Then (ab)n = anbn for all n ∈
Z; therefore F(ab) = (ab)p = apbp = F(a)F(b). By the binomial theorem

(a + b)p =
p∑

`=0

(
p
`

)
ap−`b`. Now p! =

(
p
`

)
(p− `)!`! for all 0 ≤ ` ≤ p. Note p
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divides the left hand side of this equation. When 1 ≤ ` < p neither factorial on

the right hand side is divisible by p; therefore p divides the integer
(

p
`

)
. By

part (2) of Lemma 6.5.1 we have (a + b)p = ap + bp, or equivalently F(a + b) =
F(a) +F(b). Since a ∈ KerF if and only if ap = 0 if and only if a = 0, the last
equivalence following since F is an integral domain, the ring endomorphism F
is injective. ¤

The field F is perfect if F is surjective; that is if the injection F : F −→ F
is a bijection. Thus F is perfect if it is finite or algebraically closed.

For m ≥ 1 observe that Fm(a) = apm

for all a ∈ F by induction on m.

Corollary 6.5.6 Let n ≥ 1. Then the set of roots R of f(x) = xpn − x in F is
a subfield of F . If f(x) splits into linear factors over F then |R| = pn.

Proof: R = {a ∈ F | Fn(a) = a}. Since Fn is a ring endomorphism of F by
virtue of Lemma 6.5.5, it is easy to see that R is a subring of F . Now Fp ⊆ R
since ap = a for all a ∈ Fp. Therefore R is a subfield of F by Lemma 6.1.4.

Suppose that f(x) splits into linear factors over F . To show that |R| = pn we
need only show that f(x) is separable. Since f(x) and Dx(f(x)) = pnxpn−1−1 =
−1 are relatively prime, by Proposition 6.5.2 it follows that f(x) is separable.
¤

There is a more elementary reason why the R of the preceding corollary is
a subfield of F .

Remark 6.5.7 Suppose that R is a finite subset of any field E such that 1 ∈ R
and R is closed under addition and multiplication. Since 1 ∈ R both R and
R\0 are not empty. Since non-empty finite subsets of a group which are closed
under the operation are subgroups, R is an additive subgroup of E and R\0 is
a multiplicative subgroup of E×. Therefore R is a subfield of E.

Now suppose that F is finite and K is a finite extension of F . Let n = [K : F ]
and suppose that {m1, . . . , mn} is a basis for K over F . Since there are |F |n
linear combinations of the form a1m1 + · · ·+ anmn, where a1, . . . , an ∈ F ,

|K| = |F |[K:F ]. (6.10)

With F = Fp the preceding specializes to

|K| = p[K:Fp]. (6.11)

Let n = [K : Fp]. Then K× is a (multiplicative) group of order pn−1. Therefore
apn−1 = 1, or equivalently apn −a = 0, for all a ∈ K×. Note that a = 0 satisfies
the preceding equation also. Therefore the pn elements of K are roots of xpn−x.
This means

xpn − x =
∏

a∈K

(x− a). (6.12)

Summarizing:
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Proposition 6.5.8 Let K be a finite field. Then the characteristic of K is
p > 0 and:

(1) |K| = pn for some n ≥ 1.

(2) K is the splitting field of xpn − x over Fp.

(3) Suppose that K ′ is also a field of cardinality pn. Then K and K ′ are
isomorphic as fields.

Proof: We need only establish part (3). By part (2) both K and K ′ are
splitting field of the same polynomial over Fp; therefore they are isomorphic as
fields by part (2) of Corollary 6.4.9. ¤

Theorem 6.5.9 Let F be a finite field and let n be a positive integer. Then
there exists an extension field K of F of degree n.

Proof: |F | = pm for some m ≥ 1 by (6.11). By (6.10) it suffices to construct an
extension of F which has pmn elements. Let K be a splitting field of xpmn − x
over F and let R be the set of roots of this polynomial in K. Then R is a
subfield of K with pmn elements by Corollary 6.5.6. It suffices to show that
F ⊆ R. (This will show that K = R, an observation not necessary for the
proof.)

Let a ∈ F×. Then apm

= a, or equivalently apm−1 = 1. Since xn − 1 =
(x− 1)q(x), where q(x) = 1 + x + · · ·+ xn−1 ∈ Z[x], we have on substitution of
pm for x the equation pmn − 1 = (pm − 1)q(pm). Therefore the integer pm − 1
divides pmn − 1. Since apm−1 = 1 it follows that apmn−1 = 1, or equivalently
apmn

= a. Thus a is a root of xpmn − x. We have shown a ∈ R. Since 0 is root
as well, F ⊆ R. ¤

With F = Fp the previous theorem gives:

Corollary 6.5.10 Let p, n be positive integers, where p is prime. Then there
exists an finite field with pn elements. ¤

Corollary 6.5.11 Let F be finite field and let n be a positive integer. Then
there is an irreducible polynomial p(x) ∈ F [x] of degree n.

Proof: Let K be an extension of F of degree n as guaranteed by Theorem
6.5.9. We use the fact that the finite group K× is cyclic. Let a be a generator
of K×. Then K = F [a] and therefore p(x) = mF,a(x) meets our requirements
by part (2) of Proposition 6.2.1. ¤

Corollary 6.5.12 An algebraically closed field is infinite. ¤
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6.6 Cyclotomic Extensions

In this section we study finite subgroups of the multiplicative group F×, partic-
ularly when F is an algebraically closed field of characteristic 0. We first show
that finite subgroups of F× are cyclic.

Suppose that G is any finite group. Then
∑

d | |G|
ndϕ(d) = |G|, (6.13)

where nd is the number of cyclic subgroups of G of order d and ϕ is the Euler
ϕ-function. For a cyclic group of order |G| observe that nd’s are equal to 1.
Therefore ∑

d | |G|
ϕ(d) = |G| (6.14)

as well.

Lemma 6.6.1 All finite subgroups of F× are cyclic.

Proof: Let G be a finite subgroup of F× and suppose that nd 6= 0. Then
G has a cyclic of order d. Let H be any such subgroup. Since ad = 1 for all
a ∈ H, it follows that H is the set of roots of xd−1 in F . Therefore nd = 1. We
have shown each nd in (6.13) is either 0 or 1. Since the values of ϕ are positive
integers, n|G| = 1 in light of (6.14). Therefore G contains an element of order
|G| which means that G is cyclic. ¤

For a positive integer n let µn be the set of all a ∈ F such that an = 1. Then
µn is a subgroup of F and consists of the roots of xn − 1 in F . An nth root of
unity in F is an element of µn; a primitive nth root of unity in F is an element
of µn of order n. By Lemma 6.6.1 the µn’s run over the finite subgroups of F×.
By the lemma

|µn| divides n. (6.15)

When |µn| = n is explained by the next result.

Proposition 6.6.2 Let n be a positive integer. Then:

(1) |µn| = n, or equivalently F has a primitive nth root of unity, if and only
if xn − 1 is separable and splits into linear factors over F .

(2) Suppose that F is algebraically closed. Then |µn| = n if and only if the
characteristic of F is does not divide n. (Thus µn is cyclic of order n in
characteristic 0.)

Proof: Since µn is the set of roots of xn − 1 in F , it follows that |µn| = n if
and only if xn − 1 =

∏
ω∈µn

(x− ω). This is the case if and only if xn − 1 splits
into n distinct linear factors over F . We have shown part (1).
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Assume that F is algebraically closed. Then xn − 1 splits into linear factors
over F . Since xn − 1 and Dx(xn − 1) = nxn−1 are relatively prime if and only
if nxn−1 6= 0, part (2) follows by Proposition 6.5.2 and Lemma 6.5.1. ¤

From this point on F is an algebraically closed field of characteristic 0. The
prime field of F is therefore Q. For a ∈ K× we use the customary notation |a|
for the order of a.

Let n be a positive integer. Then µn is a cyclic group of order n by Lemma
6.6.1 the previous proposition. Let

φn(x) =
∏

ζ∈µn,|ζ|=n

(x− ζ).

Thus the indexing set of the product is the set of primitive nth roots of unity
in F . The polynomial φn(x) is the nth cyclotomic polynomial. Since

xn − 1 =
∏

ω∈µn

(x− ω) =
∏

d |n
(

∏

ω∈µn , |ω|=d

(x− ω))

we have
xn − 1 =

∏

d |n
φd(x). (6.16)

Observe that
φ1(x) = x− 1. (6.17)

If p is a positive prime then

φp(x) = 1 + x + · · ·+ xp−1 (6.18)

since
(x− 1)(1 + x + · · ·+ xp−1) = xp − 1 = φ1(x)φp(x)

by (6.16).

Proposition 6.6.3 Let n be a positive integer. Then the monic polynomial
φn(x) ∈ Z[x] and has degree ϕ(n).

Proof: Since the number of generators of a cyclic group of order n is ϕ(n)
the degree assertion follows. To show φn(x) ∈ Z[x] we proceed by induction on
n. The proposition is true for n = 1 by (6.17). Suppose that n > 1 and the
proposition is true for positive integers m < n. We may assume n is not prime
by (6.18). Thus xn − 1 = f(x)φn(x), where f(x) ∈ Z[x], by (6.16). By the
following lemma φn(x) ∈ Z[x]. Thus the proposition holds by induction. ¤

Lemma 6.6.4 Let R be a subring of a commutative ring S, suppose f(x) ∈ R[x]
and is monic, g(x) ∈ S[x], and f(x)g(x) ∈ R[x] and is monic. Then g(x) ∈ R[x]
and is monic.
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Proof: We may write f(x) = a0 + · · ·+ xm, where m ≥ 0 and a0, . . . , am−1 ∈
R. By assumption g(x) 6= 0. Thus g(x) = b0 + · · · + bnxn, for some n ≥ 0
where b0, . . . , bn ∈ S and bn 6= 0. For 0 ≤ ` ≤ n the coefficient of xm+` in
f(x)g(x) = a0b0 + · · ·+ ambnxm+n is

b` + am−1b`+1 + · · · = amb` + am−1b`+1 + · · · ∈ R.

When ` = n we have bn = ambn = 1 ∈ R. If 0 ≤ ` < n and bn, bn−1, . . . , b`+1 ∈
R then b` ∈ R. ¤

By the preceding proposition φn(x) ∈ Q[x]. The last assertion of this section
is that φn(x) is an irreducible polynomial of Q[x].

One technical comment before the proof. Let p be a positive prime and
Z[x] −→ Fp[x] be the homomorphism (f(x) 7→ f(x)) which reduces coefficients
mod p. Then f(xp) = f(x)

p
for all f(x) ∈ Z[x] since the Frobenius map of

Fp(x) is a ring endomorphism and ap = a for all a ∈ Fp.

Theorem 6.6.5 The cyclotomic polynomial φn(x) is an irreducible polynomial
of Q[x].

Proof: Since φn(x) is a primitive polynomial in Z[x], by the Gauss Lemma to
show that φn(x) is an irreducible polynomial of Q[x] we need only show that it
is an irreducible polynomial of Z[x].

Write φn(x) = f(x)g(x) where f(x), g(x) ∈ Z[x] and f(x) is irreducible.
Since φn(x) is monic we may assume both are monic. Now f(ζ) = 0 for some
primitive nth root of unity ζ. Since f(x) is irreducible in Q[x] by the Gauss
Lemma, it follows that f(x) = mQ,ζ(x) by part (5) of Proposition 6.2.1.

Let p be a positive prime which does not divide n. Then ζp is a primitive
nth root of unity. Since φn(ζp) = 0 either f(ζp) = 0 or g(ζp) = 0. We will show
that f(ζp) = 0.

Suppose that g(ζp) = 0. Then f(x) divides g(xp) in Q[x] by part (4) of
Proposition 6.2.1 and thus f(x) divides g(xp) in Z[x] by Lemma 6.6.4. Therefore
f(x) divides g(xp) = g(x)

p
in Fp[x]. Since 0 < Deg f(x) = Deg f(x) it follows

that f(x) and g(x) have a common irreducible factor. Now φn(x) = f(x)g(x)
divides xn − 1 in Z[x] by Proposition 6.6.3 and (6.16). Therefore f(x) g(x)
divides xn − 1 = xn − 1 in Fp[x]. Now the latter is separable by Lemma 6.5.1
and Proposition 6.5.2. Thus f(x) and g(x) can have no common irreducible
factor. This contradiction shows that f(ζp) = 0.

Now the primitive nth roots of unity are the ζm’s, where 1 ≤ m < n and
is relatively prime to n. Considering the prime factorization of such an m > 1
we see that f(ζm) = 0 since f(ζp) = 0 for all positive primes p not dividing n.
Therefore φn(x) divides f(x) which means that φn(x) = f(x) = mQ,ζ(x). ¤

An extension of E of Q in F is cyclotomic if E = Q(ζ) for some root of
unity ζ ∈ F . Since such a ζ is algebraic over Q it follows that Q(ζ) = Q[ζ] by
Corollary 6.1.6.

Corollary 6.6.6 Let ζ ∈ F be a root of unity and n = |ζ|. Then [Q[ζ] : Q] =
ϕ(n) and mQ,ζ(x) = φn(x).



Chapter 7

Galois Theory

Let K be a field. In this chapter we study the relationship between subfields of K
and subgroup of the group Aut(K) of ring automorphisms of K under function
composition. For σ, τ ∈ Aut(K) we denote composition by juxtaposition. We
will refer to the elements of Aut(K) simply as automorphisms of K.

7.1 A Correspondence Between Certain Subfields
of K and Certain Subgroups of Aut(K)

An element a ∈ K is fixed by σ ∈ Aut(K) if σ(a) = a in which σ fixes a. Let
S be a non-empty subset of K. Then σ fixes S pointwise if σ fixes all of the
elements of S.

For a non-empty subset S of K let

S′ = {σ ∈ Aut(K) |σ(a) = a ∀ a ∈ S}

be the subset of Aut(K) consisting of all automorphisms which fix S pointwise.
For a non-empty subset S of Aut(K) let

S′ = {a ∈ K |σ(a) = a ∀ σ ∈ S}

be the subset of K consisting of the elements fixed by all of the automorphisms
of S.

Lemma 7.1.1 Let S, T be non-empty subsets of Aut(K) or non-empty subsets
of K. Then:

(1) S ⊆ S′′.

(2) If S ⊆ T then S′ ⊇ T ′.

(3) S′ = S′′′.

59
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Proof: Parts (1) and (2) follows directly from definitions. Observe that S′ 6= ∅.
Now S′ ⊆ S′′′ and S ⊆ S′′ by part (1). By part (2) the second inclusion implies
S′ ⊇ S′′′; thus S′ = S′′′. ¤

A non-empty set of Aut(K) or K is closed if it has the form S′ for some
non-empty subset of K or Aut(K) respectively. By part (3) of the preceding
lemma S is closed if and only if S = S′′. By part (2) the operation S 7→ S′ is
inclusion reversing; thus S 7→ S′′ is inclusion preserving. Using parts (1) and
(2) we observe that S′′ is the smallest closed subset containing S. Thus S 7→ S′′

can be thought of as a closure operation.

Corollary 7.1.2 The function

{closed subsets of Aut(K)} −→ {closed subsets of K}

given by
S 7→ S′

is an inclusion reversing bijection with inverse given by T 7→ T ′. ¤

The image of a closed subset of K under an automorphism is closed and the
conjugate of a closed subset of Aut(K) is closed.

Lemma 7.1.3 Let σ ∈ Aut(K). Then:

(1) If S is a non-empty subset of Aut(K) then σ(S′) = (σSσ−1)′.

(2) If S is a non-empty subset of K then σS′σ−1 = σ(S)′.

Proof: Let S be a non-empty subset of Aut(K). Since σ is a permutation of
K there is a unique subset T of K such that (σSσ−1)′ = σ(T ). Let e ∈ K.
Then e ∈ T if and only if (στσ−1)(σ(e)) = σ(e) for all τ ∈ S if and only if
σ(τ(e)) = σ(e) for all τ ∈ S if and only if τ(e) = e for all τ ∈ S if and only if
e ∈ S′. Thus T = S′. We have shown part (1).

Let S be a non-empty subset of K. Since conjugation by σ is a permutation
of Aut(K) there is a unique subset T of Aut(K) such that σTσ−1 = σ(S)′. Let
τ ∈ Aut(K). Then στσ−1 ∈ σ(S)′ if and only if στσ−1(σ(e)) = σ(e) for all
e ∈ S if and only if στ(e) = σ(e) for all e ∈ S if and only if τ(e) = e for all
e ∈ S if and only if τ ∈ S′. Therefore T = S′ and part (2) follows. ¤

Closed subsets are familiar algebraic objects.

Lemma 7.1.4 For the group Aut(K) and the field K:

(1) If S is a non-empty subset of Aut(K) then S′ is a subfield of K.

(2) If S is a non-empty subset of K then S′ is a subgroup of Aut(K).
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Proof: Let G = Aut(K) and σ ∈ G. Then Kσ = {a ∈ K |σ(a) = a} is
a subfield of K. If S is a non-empty subset of G then S′ = ∩σ∈SKσ and is
thus a subfield of K by Lemma 6.1.2. To show part (2) let a ∈ K. Then
Ga = {σ ∈ G |σ(a) = a} is a subgroup of G. If S is a non-empty subset of K
then S′ = ∩a∈SGa and is therefore a subgroup of G. ¤

Remark 7.1.5 K is a closed subfield of K as K = {IdK}′. Note that Aut(K) =
{0}′ and (IdK) = K ′ are closed subgroups of Aut(K).

For a subfield F of K let Aut(K/F ) = F ′ denote the subgroup of all auto-
morphisms of K which fix F pointwise. We make the important observation that
these automorphisms are F -linear. Thus Aut(K/F ) is the group of F -algebra
automorphisms of K.

Proposition 7.1.6 Let F be a subfield of K and f(x) = a0 + · · ·+anxn ∈ F [x]
have positive degree. Suppose that the set S of roots of f(x) in K is not empty.
Then S is finite and:

(1) σ(S) = S for all σ ∈ Aut(K/F ); thus all such σ permute the roots of f(x)
in K.

(2) Suppose that F is closed and f(x) is monic and irreducible in F [x]. Then
f(x) =

∏
s∈S(x− s) and S = {σ(s) |σ ∈ Aut(K/F )} for all s ∈ S.

Proof: Let a ∈ S and σ ∈ Aut(K/F ). From

0 = f(a) = a0 + · · ·+ anan

we calculate

0 = σ(f(a)) = σ(a0) + · · ·+ σ(an)σ(a)n = a0 + · · ·+ anσ(a)n = f(σ(a))

which shows that σ(a) ∈ S. Since S is finite and σ is injective σ(S) = S. We
have established part (1). As for part (2), let T be a non-empty subset of S
such that σ(T ) = T for all σ ∈ Aut(K/F ). S is such a subset by part (1). Set

g(x) =
∏

s∈T

(x− s).

Then g(x) divides f(x) in K[x] and for σ ∈ Aut(K/F ) we have

σ(g(x)) =
∏

s∈T

(x− σ(s)) =
∏

s∈T

(x− s) = g(x)

since σ(T ) = T . Thus g(x) ∈ F ′′[x]. Suppose further f(x) is monic. Then g(x)
divides f(x) in F ′′[x] by Lemma 6.6.4. If F is closed then g(x) divides f(x) in
F . If in addition f(x) is irreducible in F [x] then g(x) = f(x) and thus S = T .
We have established part (2). ¤

Algebraic extensions of closed subfields are rather special.
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Corollary 7.1.7 Let F be a closed subfield of K and suppose that K is an
algebraic extension of F . Then:

(1) mF,a(x) splits into distinct linear factors over K for all a ∈ K.

(2) K is a separable splitting field over F .

(3) Suppose that p(x) ∈ F [x] is irreducible and has a root a in K. Then p(x)
splits into linear factors over F .

Proof: Note that p(x) is a non-zero scalar multiple of mF,a(x) by part (5) of
Proposition 6.2.1. Parts (2) and (3) follow by part (1) which in turn follows by
part (2) of the preceding proposition. ¤

An algebraic extension K of F is a normal extension if every irreducible
p(x) ∈ F [x] which has a root in K splits into (not necessarily) distinct linear
factors over K. Thus the extension K of F of Corollary 7.1.7 is a normal
extension.

7.2 Degree Estimates

Let S, T be subgroups of Aut(K) or subfields of K. Suppose that S ⊆ T and
[T : S] < ∞. In this section we show that [T : S] ≥ [S′ : T ′]. As a consequence
T is closed if S is closed.

For a non-empty set X the set F(X,K) of all functions from X to K is a
vector space over K with

(f + g)(x) = f(x) + g(x) and (af)(x) = a(f(x))

for all f, g ∈ F(X,K), x ∈ X, and a ∈ K.

Proposition 7.2.1 Suppose that F,E are subfields of K such that F ⊆ E and
[E : F ] < ∞. Then [F ′ : E′] < ∞ and [E : F ] ≥ [F ′ : E′].

Proof: Observe that the set HomF (E,K) of F -linear maps from E to K is a
K-subspace of F(E, K).

Let n = [E : F ] and let {e1, . . . , en} be a basis for E over F . For 1 ≤ i ≤ n
let ei : E −→ K be the F -linear map determined by ei(ej) = δi,j . We first show
that that {e1, . . . , en} is a basis for HomF (E, K) over K.

Let a1, . . . , an ∈ K. Then
∑n

i=1 aie
i ∈ HomF (E, K) and

(
n∑

i=1

aie
i)(ej) = aj (7.1)

for all 1 ≤ j ≤ n from which we deduce

f =
n∑

i=1

f(ei)ei (7.2)
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for all f ∈ HomF (E, K) as the F -linear functions on both sides of (7.2) agree
on the basis {e1, . . . , en} for the vector space E over F . The set {e1, . . . , en} is
a basis for HomF (E,K) over K as it is independent by (7.1) and it spans by
(7.2). Therefore

DimKHomF (E, K) = [E : F ]. (7.3)

Now F ′ ⊇ E′ since F ⊆ E. Suppose that σ, τ ∈ F ′. Then σ|E = τ |E if and
only if σE′ = τE′. For σ|E = τ |E if and only if σ(e) = τ(e), or equivalently
τ−1σ(e) = e, for all e ∈ E, which is the case if and only if τ−1σ ∈ E′, or
equivalently σE′ = τE′.

Let σ1, . . . , σm ∈ F ′ and suppose σ1E
′, . . . , σmE′ are distinct left cosets of

E′ in F ′. By the conclusion in the preceding paragraph σ1|E , . . . , σm|E are
distinct elements of HomF (E, K). To complete the proof of the proposition we
need only show that {σ1|E , . . . , σm|E} is linearly independent. For suppose this
is the case. Then m ≤ [E : F ] by (7.3). Thus E′ has at most [E : F ] left cosets
in F ′ which means that [F ′ : E′] is finite and [F ′ : E′] ≤ [E : F ].

Now since σ1|E , . . . , σm|E are distinct, injective, and σ1(0) = · · · = σm(0) =
0, we see that σ1|E× , . . . , σm|E× : E× −→ K× are distinct homomorphisms of
multiplicative groups. That {σ1|E , . . . , σm|E} is linearly independent follows by
the next lemma. ¤

Lemma 7.2.2 Let G be a multiplicative group and χ1, . . . , χm : G −→ K× be
distinct group homomorphisms. Then {χ1, . . . , χm} is a linearly independent
subset of F(G, K).

Proof: Suppose that {χ1, . . . , χm} is linearly dependent. Since χ1 6= 0, nec-
essarily m > 1 and there is an 1 < r ≤ m such that {χ1, . . . , χr−1} is linearly
independent and {χ1, . . . , χr} is linearly dependent. Therefore

χr = a1χ1 + · · ·+ ar−1χr−1 (7.4)

for some a1, . . . , ar−1 ∈ K, not all of which are 0. Suppose ai0 6= 0.
Let g, h ∈ G. Applying both sides of (7.4) to g and hg yields

χr(g) = a1χ1(g) + · · ·+ ar−1χr−1(g) (7.5)

and
χr(h)χr(g) = a1χ1(h)χ1(g) + · · ·+ ar−1χr−1(h)χr−1(g) (7.6)

respectively. Multiplying both sides of the equation of (7.5) on the left by χr(h)
and subtracting the resulting equation for that of (7.6) yields

0 = a1(χ1(h)− χr(h))χ1(g) + · · ·+ ar−1(χr−1(h)− χr(h))χr−1(g).

As this equation holds for all g ∈ G we have

0 = a1(χ1(h)− χr(h))χ1 + · · ·+ ar−1(χr−1(h)− χr(h))χr−1
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from which

a1(χ1(h)− χr(h)) = · · · = ar−1(χr−1(h)− χr(h)) = 0

follows by independence. Thus χi0(h) = χr(h) since ai0 6= 0. Since this equation
holds for all h ∈ G we conclude that χi0 = χr, a contradiction. Therefore
{χ1, . . . , χm} is a linearly independent after all. ¤

A homomorphism χ : G −→ K× from a multiplicative group G to the group
of invertible elements of K is a character of G.

Proposition 7.2.3 Suppose that H,L are subgroups of Aut(K) such that H ⊆
L and [L : H] < ∞. Then [H ′ : L′] < ∞ and [L : H] ≥ [H ′ : L′].

Proof: Suppose σ, τ ∈ L. Then σH = τH implies σ(a) = τ(a) for all a ∈ H ′.
For the coset equation is equivalent to τ−1σ ∈ H which implies τ−1σ(a) = a,
or σ(a) = τ(a), for all a ∈ H ′.

Let m = [L : H] and σ1H, . . . , σmH list the distinct left cosets of H in L.
Suppose that n > m and `1, . . . , `n ∈ H ′. To prove the proposition we need
only show that {`1, . . . , `n} is linearly dependent over L′. To this end we may
assume that `1, . . . , `n 6= 0.

For 1 ≤ i ≤ n set xi =




σ1(`i)
...

σm(`i)


 ∈ Km. Since n > m the set {x1, . . . , xn}

is linearly dependent over K. Since x1 6= 0 there is an 1 < r ≤ n such that
{x1, . . . , xr−1} is linearly independent and {x1, . . . , xr} is linearly dependent
over K. Therefore

xr = a1x1 + · · ·+ ar−1xr−1 (7.7)

for some a1, . . . , ar−1 ∈ K.
Let σ ∈ L. Then σσ1H, . . . , σσmH runs over the set of left cosets of H in

L. Therefore there is a permutation ω ∈ Sm such that σσiH = σω(i)H for all
1 ≤ i ≤ m. Thus 


σ(σ1(`i))

...
σ(σm(`i))


 =




σω(1)(`i)
...

σω(m)(`i)




for all 1 ≤ i ≤ m by our first observation in the proof. Thus applying σ ∈ L to
both sides of the equations in the linear system which (7.7) represents results
in replacing the coefficients ai by σ(ai) and then permuting the rows. Thus

xr = σ(a1)x1 + · · ·+ σ(ar−1)xr−1. (7.8)

Subtracting the equation of (7.7) from that of (7.8) results in

0 = (σ(a1)− a1)x1 + · · ·+ (σ(ar−1)− ar−1)xr−1
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and thus σ(a1) − a1 = · · · = σ(ar−1) − ar−1 = 0 by independence. Since
these last equations are true for all σ ∈ L we have shown that ai ∈ L′ for all
1 ≤ i ≤ r − 1. Since σ1, . . . , σr are L′-linear, revisiting (7.7) we conclude that

σi(`r) = σi(a1`1 + · · ·+ ar−1`r−1)

for all 1 ≤ i ≤ m. Thus `r = a1`1 + · · · + ar−1`r−1 which translates to the
dependency relation

a1`1 + · · ·+ ar−1`r−1 + (−1)`r = 0

with coefficients in L′. Thus {`1, . . . , `n} is linearly dependent over L′. ¤
Now for the main result of the section.

Theorem 7.2.4 Let S, T be subfields of K or subgroups of Aut(K). Suppose
that S ⊆ T , [T : S] < ∞ and S is closed. Then T is closed, [S′ : T ′] < ∞, and
[T : S] = [S′ : T ′].

Proof: Combining Propositions 7.2.1 and 7.2.3, and using Lemmas 7.1.1 and
6.1.1, we have

[T : S] ≥ [S′ : T ′] ≥ [T ′′ : S′′] = [T ′′ : S] = [T ′′ : T ][T : S].

The equalities in the calculation are equalities and [T ′′ : T ] = 1. ¤
Corollary 7.2.5 A finite subgroup H of Aut(K) is closed and |H| = [K : H ′].

Proof: Since (IdK) = K ′ and is thus closed, by the previous theorem H is
closed and |H| = [H : (IdK)] = [(IdK)′ : H ′] = [K : H ′]. ¤

7.3 Galois Extensions and the Fundamental The-
orem of Galois Theory

We begin with a technical lemma in order to establish an important equivalence.

Lemma 7.3.1 Let K be a finite extension of F which is a splitting over F ,
suppose that p(x) ∈ F [x] is irreducible with roots a, a′ ∈ K. Then there is a
σ ∈ Aut(K/F ) such that σ(a) = a′.

Proof: We may assume that p(x) is monic. Thus p(x) = mF,a(x) = mF,a′(x)
by part (5) of Proposition 6.2.1. The identity map of F extends to a ring
isomorphism τ : F [a] −→ F [a′] such that τ(a) = a′ by Lemma 6.4.4. Let E be
an algebraic closure of K. Then τ extends to a ring homomorphism σ : K −→ E
by Lemma 6.4.7. By assumption K is the splitting field of a non-empty set S
of polynomials of F [x] of positive degree. Let R ⊆ K be the set of roots of
the polynomials in S. Since f(x) ∈ S splits into linear factors over K, σ(R) is
the set of roots in E of the polynomials in σ(S). Since σ(a) = a for all a ∈ F ,
σ(f(x)) = f(x) for all f(x) ∈ S. Thus σ(S) = S which means σ(R) = R and
thus σ(K) = K. ¤
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Theorem 7.3.2 Let K be a finite extension of F . Then the following are equiv-
alent:

(1) |Aut(K/F )| = [K : F ].

(2) F is a closed subfield of K.

(3) K is a separable splitting field over F .

(4) K is the splitting field of a separable polynomial over F .

Proof: Using Lemma 6.1.1 and Theorem 7.2.4 we compute

[K : F ] = [K : F ′′][F ′′ : F ] = [F ′′′ : K ′]|[F ′′ : F ] = [F ′ : K ′][F ′′ : F ]

and thus
[K : F ] = |Aut(K/F )|[F ′′ : F ]. (7.9)

In particular Aut(K/F ) is finite. The equivalence of parts (1) and (2) follows
from (7.9). Part (2) implies part (3) by part (3) of Corollary 7.1.7.

Assume the hypothesis of part(3). Since K is a splitting field over F there
is a non-empty family of polynomials S of positive degree in F [x] which factor
into linear factors over K and whose roots generate K as an extension of F .

Consider the extensions Ef(x) of F in K which are generated by the roots
of a product f(x) of polynomials in S. Note that f(x) splits into linear factors
over K. Since [K : F ] = DimF K is finite there is a maximal such extension
Ef(x). Let g(x) ∈ S. Then f(x)g(x) is the product of polynomials in S and
Ef(x)g(x) ⊇ Ff(x). Therefore Ef(x)g(x) = Ff(x) which means the roots of g(x)
are contained in Ef(x). We have shown Ef(x) = K.

We have shown that K is the splitting field of f(x) over F . Write f(x) =
p1(x)n1 · · · pr(x)nr , where p1(x), . . . , pr(x) are distinct irreducibles of F [x] and
n1, . . . , nr > 0. Then each pi(x) splits into linear factors over K and roots
of f(x) in K are the roots of f0(x) = p1(x) · · · pr(x) in K. Therefore K is a
splitting field of f0(x) over F . Now if pi(x), pj(x) have a common root a ∈ K,
then pi(x) = mF,a(x) = pj(x), a contradiction. Now each pi(x) has a root in K
and thus the linear factors of pi(x) are distinct since K is a separable extension
of F . Therefore f0(x) is a separable polynomial. We have shown part (3) implies
part (4).

To complete the proof we need only show part (4) implies part (1). Suppose
that K is a splitting field of a separable polynomial f(x) ∈ F [x]. We may
assume f(x) has a monic irreducible factor p(x) ∈ F [x] of degree greater than
1; else all of the roots of f(x) in K are in F and thus K = F .

Let p(x) ∈ F [x] be such a monic irreducible factor of f(x). Then p(x) splits
into distinct linear factors over K since f(x) does. Let S be the set of roots of
p(x) in K and fix a ∈ S. Observe that

|S| = Deg p(x) = [F [a] : F ] > 1. (7.10)
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Let E = F [a]. Regarding f(x) ∈ E[x] we see that K is the splitting field of a
separable polynomial with coefficients in E. Since [K : F ] = [K : E][E : F ] >
[K : E], by induction on [K : F ] it follows that |Aut(K/E)| = [K : E].

Consider the group action of G = Aut(K/F ) on S by evaluation

σ·s = σ(s)

for all σ ∈ G and s ∈ S. Then G·a = S by Lemma 7.3.1. Let Ga be the
stabilizer of a. Then Ga = Aut(K/E). From the formula [G : Ga] = |G·a| we
deduce |G| = |Ga||G·a| which translates to

|Aut(K/F )| = |Aut(K/E)||S| = [K : E][E : F ] = [K : F ].

This concludes our proof. ¤

A finite extension K of F which satisfies any of the equivalent conditions of
the preceding theorem is called a Galois extension of F . In this case the notation
G(K/F ) is used for the group Aut(K/F ) and is called the Galois group of K
over F .

Finite subgroups of Aut(K) are Galois groups.

Proposition 7.3.3 Let K be a field, suppose that H is a finite subgroup of
Aut(K), and let F = H ′. Then

(1) [K : F ] is finite.

(2) K is a Galois extension of F .

(3) H = G(K/F ).

Proof: By Corollary 7.2.5 we have that H is closed and |H| = [K : H ′] = [K :
F ]. Since H is closed H = H ′′ = Aut(K/H ′) = Aut(K/F ). ¤

Let E be a subfield of K and let S be a non-empty subset of Aut(K). Then
S is stable under S if σ(E) = E for all σ ∈ S. We are now in a position to state
a version of the Fundamental Theorem of Galois Theory.

Theorem 7.3.4 Let K be a finite Galois extension of F . Then:

(1) There is a inclusion reversing bijection

{ subfields of K which extend F } −→ { subgroups of Aut(K/F ) }

given by E 7→ Aut(K/E) whose inverse is given by H 7→ H ′. Under the
bijection stable subfields correspond to normal subgroups.

Let E be a subfield of K which extends F . Then:

(2) K is a Galois extension of E.
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(3) E is a Galois extension of F if and only if E is stable under G(K/F ). In
this case the restriction map π : G(K/F ) −→ G(E/F ), which his given by
π(σ) = σ|E, is surjective, has kernel G(K/E) and induces an isomorphism
G(K/F )/G(K/E) ' G(E/F ).

Proof: Proof: Parts (1) and (2) follow by Lemma 7.1.4, Lemma 7.1.3, Corol-

lary 7.1.2, and Theorem 7.2.4. To show part (3), first of all suppose that E is a
Galois extension of F . Let a ∈ E. Then mF,a(x) splits into linear factors over
E by part (1) of Corollary 7.1.7. Thus the set of roots S of mF,a(x) lies in E.
Let σ ∈ G(K/F ). Then σ(S) = S by part (1) of Proposition 7.1.6; therefore
σ(E) ⊆ E. Since σ is an injective F -linear map and E is finite-dimensional,
σ(E) = E. We have shown that if E is a Galois extension of F then E is stable
un G(K/F ).

Conversely, suppose that E is stable under G(K/F ) and consider the group
homomorphism π : G(K/F ) −→ Aut(E/F ) be defined by π(σ) = σ|E . Now
K is a Galois extension of F by part (2) and Kerπ = G(K/E). From the
calculation

|G(K/F )| = |Ker, π||Imπ| = |G(K/E)||Aut(E/F )|
we deduce, using (7.9) and Lemma 6.1.1, that

[K : F ] = [K : E]|Im π| ≤ [K : E]|Aut(E/F )| ≤ [K : E][E : F ] = [K : F ]

from which |Imπ| = |Aut(E/F )| = [E : F ] follows. Thus E is a Galois extension
of F by Theorem 7.3.2 and π is surjective. The remainder follows by the First
Isomorphism Theorem for groups. ¤

7.4 The Galois Group of a Finite Field

We use the results of Sections 6.5.2 and 7.3 without particular reference.
Let F be a finite field. Then the characteristic of F is a positive prime p

and Fp is a the prime field of F . Recall that |F | = pn, where n = [F : Fp], and

xpn − x =
∏

a∈F

(x− a).

Thus F is the splitting field of a separable polynomial in Fp[x] and consequently
is a finite Galois extension of Fp by Theorem 7.3.2. Observe that |G(F/Fp)| =
[F : Fp] = n.

The Frobenius map F : F −→ F fixes the elements of Fp pointwise since
ap = a for all a ∈ Fp. Therefore F ∈ G(F/Fp). Let m ≥ 0. Then Fm(a) = apm

for all a ∈ F . In particular Fn = IdF . Suppose 1 ≤ m < n. Then Fm 6= IdF ;
for the fixed points of Fm are the roots of xpm − x which do not exceed pm in
number. We have shown F has order n which means

G(F/Fp) = (F).
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Since G(F/Fp) is cyclic it is abelian.
Recall that there is a bijection

{positive divisors of n} −→ {subgroups of (F)}

given by
d 7→ (Fd),

and
d|d′ if and only if (Fd) ⊇ (Fd′)

for positive divisors d, d′ of n. Let

F(d) = (Fd)′ = {roots of xpd − x in F .}

Then |F(d)| = pd and there is a bijection

{positive divisors of n} −→ {subfields of F}

given by
d 7→ F(d).

Observe that
d|d′ if and only if F(d) ⊆ F(d′).

7.5 Galois Closures and Simple Extensions

Every finite separable extension is contained in a finite Galois extension.

Proposition 7.5.1 Let E be a finite separable extension of F and let S be the
set of minimal polynomials mF,a(x), where a ∈ E.

(1) An extension K of E which is a finite Galois extension of F contains a
splitting field of S over F .

(2) A splitting field K of S over F which is also an extension of E is a finite
Galois extension of F .

Proof: Suppose that K is an extension of E which is a finite Galois extension
of F . Then a ∈ E is a root of the irreducible mF,a(x) ∈ F [x]. Since F is a
closed subfield of K it follows that mF,a(x) splits into linear factors over K by
part (2) of Proposition 7.1.6. We have shown part (1).

Suppose that K is a splitting field of S over F which is also an extension of
E. Since E is a finite extension of F there are distinct mF,a1(x), . . . , mF,an(x) ∈
F [x], where a1, . . . , an ∈ F , some of whose roots generate E as an extension
of F . Now f(x) = mF,a1(x) · · ·mF,a1(x) ∈ F [x] is the product of separable
polynomials which split into linear factors over K. If a ∈ K is a common root
of mF,ai(x) and mF,aj (x) then mF,ai(x) = mF,a(x) = mF,aj (x) by part (5) of
Proposition 6.2.1 which means i = j. Therefore f(x) is separable.
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Let K ′ be the extension of F in K generated by the roots of f(x) in K.
Then E ⊆ K ′, K ′ is a splitting field of f(x) over F , and thus K ′ is a Galois
extension of F by Theorem 7.3.2. By part (1) it follows that K ′ = K. ¤

Let E be a finite separable extension of F . A Galois closure of E over F is
a splitting field K of {mF,a(x) | a ∈ E} over F which is also an extension of E.
Any two Galois closures of E over F are isomorphic as F -algebras by part (2)
of Corollary 6.4.9.

Suppose that K is an extension of E which is also a finite Galois extension
of F . Then K contains a unique Galois closure of E over F by the previous
proposition.

Let K be an extension field of F . Then K is a simple extension of F if
K = (a) for some a ∈ K. Finite separable extensions are simple.

Theorem 7.5.2 Suppose that K is a finite separable extension of F . Then:

(1) There are only finitely many subfields E of K with F ⊆ E ⊆ K.

(2) K is a simple extension of F .

Proof: Suppose first of all that K is finite. Then K has finitely many subfields
period. It is a simple extension of F since K× is cyclic by Lemma 6.6.1.

Suppose that K is infinite. Then F is infinite since DimHK = [K : F ] is
finite by assumption. Let K be a Galois closure of K over F . Then K has only
finitely many subfields S such that F ⊆ E ⊆ K by Theorem 7.3.4; thus the
same is true for K. It remains to show that K is a simple extension of F .

Among the simple extensions of F in K choose one F [a] of the largest di-
mension over F . Let b ∈ K. Since F is infinite, by part (1) there are distinct
t, t′ ∈ F such that F [a + tb] = F [a + t′b]. As

a =
t′(a + tb)− t(a + t′b)

t′ − t
∈ F [a + tb],

if follows that F [a] ⊆ F [a + tb]. Thus F [a] = F [a + tb] by maximality. The
calculation

b =
(a + t′b)− (a + tb)

t′ − t
∈ F [a + tb] = F [a].

shows that K = F [a]. ¤

7.6 The Galois Group of a Cyclotomic Exten-
sion

We use the results of Sections 6.6 and 7.3 without particular reference.
Let n ≥ 1 and K = Q(ζn) be a cyclotomic extension of Q generated a

primitive nth root of unity ζ = ζn. Recall that

mQ,ζ(x) =
∏

1≤m≤n, (m,n)=1

(x− ζm)



7.7. THE GALOIS GROUP OF A SEPARABLE POLYNOMIAL 71

as the ζm’s run over the elements of K× of order n. Thus K is the splitting field
of a separable polynomial over Q and consequently is a finite Galois extension
of Q by Theorem 7.3.4. Recall that [K : Q] = ϕ(n) = |G(K/Q)|. Since
σ ∈ G(K/Q) is determined by the value σ(ζ), and σ permutes the roots of
mQ,ζ(x) in K, there is a bijection

π : Z×n −→ G(K/Q)

determined by
π(`)(ζ) = ζ`.

We will show that π is a group homomorphism. This will mean G(K/Q) ' Z×n
and as a result is an abelian group.

Let `,m ∈ Z×n and let `·m denote their product which is determined as
follows. Write `m = qn + r, where q, r ∈ Z and 0 ≤ r < n. Necessarily r ∈ Z×.
Then `·m = r. Since ζn = 1 we have

π(`·m)(ζ) = ζ`·m = ζr = ζqn+r = (ζ`)m = π(`)(π(m)(ζ)) = (π(`)◦π(m))(ζ)

which shows that π(`·m) = π(`)◦π(m).
It can be shown that every finite abelian group is the quotient of Z×n for

some n ≥ 1. Thus by virtue of Theorem 7.3.4 every finite abelian group is the
Galois group of some finite Galois extension of Q.

7.7 The Galois Group of a Separable Polynomial

Suppose that f(x) ∈ F [x] is a separable polynomial and K is a splitting field
of f(x) over F . Then K is a finite Galois extension of F by Theorem 7.3.4. A
Galois Group of f(x) over F is G(K/F ). Since any two splitting fields of f(x)
over F are isomorphic as F -algebras their Galois groups are isomorphic. We
shall refer to a Galois group of f(x) over F as the Galois group of f(x) over F .

Let S be the set of roots of f(x) in K. Then σ(S) = S for all σ ∈ G(K/F )
by part (1) of Proposition 7.1.6. Since S generates K as an extension of F the
group homomorphism

π : G(K/F ) −→ Sym(S)

defined by π(σ) = σ|S is injective. Let n = Deg f(x). Since f(x) is separable
over K, and K is a splitting field of f(x) over F ,

n = Deg f(x) = |S|.

We will identify Sym(S) with Sn and think of Gal(K/F ) as a subgroup of Sn.
In particular

[K : F ] = |G(K/F )| divides n!. (7.11)

When f(x) is irreducible, by Lemma 7.3.1 the group G(K/F ) is transitive on
S, meaning that if a, a′ ∈ S then there is a σ ∈ G(K/F ) such that σ(a) = a′.
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Let a1, . . . , an list the roots of f(x), set

δ =
∏

1≤i<j≤n(aj − ai) and D = δ2.

Let σ ∈ G(K/F ). Since σ permutes S it permutes the collection of 2-element
subsets of S. Therefore σ(δ) = ±δ which means σ(D) = D. Since G(K/F )′ = F
we have shown

D ∈ F.

By definition D is the discriminant of f(x). Observe that if σ is a 2-cycle then
σ(δ) = −δ.

Suppose from this point on that f(x) ∈ F [x] is irreducible. We will examine
G(K/F ) for certain small values of n. Note that

n divides |G(K/F )| (7.12)

by Proposition 6.2.1.

Example 7.7.1 n = 1. Then K = F and G(K/F ) = (IdF ).

Example 7.7.2 n = 2. Then G(K/F ) = S2.

See (7.11) and (7.12).

Example 7.7.3 n = 3 and the characteristic of F is not 2. Then:

(1) G(K/F ) = S3, if δ 6∈ F ;

(2) G(K/F ) = A3, if δ ∈ F .

To see this, we first note by (7.11) and (7.12) that either G(K/F ) = A3 or
G(K/F ) = S3. Suppose δ ∈ F . Then σ(δ) = δ, and thus σ(δ) 6= −δ, for all
σ ∈ G(K/F ). Therefore G(K/F ) has no 2-cycles which means G(K/F ) = A3.

Suppose δ 6∈ F . Then σ(δ) 6= δ for some σ ∈ G(K/F ) which must be a
2-cycle. Thus G(K/F ) = S3.

Example 7.7.4 n = p > 3 is prime and F = Q, and f(x) has exactly p − 2
real roots. Then G(K/Q) = Sp.

By (7.11) and (7.12) it follows that G(K/Q) is a subgroup of Sp and contains
a p-cycle. Without loss of generality we may assume that K is a subfield of C.
Complex conjugation must permute the two non-real roots of f(x). (The fact
that C is algebraically closed is shown below.) Thus G(K/Q) has a 2-cycle. By
a nice exercise in group theory one can show that G(K/Q) contains all of the
2-cycles of Sp; therefore G(K/Q) = Sp.

When n = 5 the polynomial f(x) = x5 − 2px + p ∈ Q[x] satisfies these
requirements. By the Eisenstein Criterion f(x) is irreducible. The polynomial
f(x) has exactly three real roots by results of Calculus. For since f(−p) < 0,
f(0) > 0, f(1) < 0, and f(p) > 0, it follows that f(x) has at least three real
roots. On the other hand f(x) has 2 critical points which means that f(x) has at
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most three real roots. Thus f(x) has exactly three real roots. The significance
of this example will be seen in the following section.

We end with a proof of the Fundamental Theorem of Algebra; namely that
the field C of complex numbers of algebraically closed. The proof we give is a
beautiful application of Galois theory and is based on two facts about the field
of real numbers R:

(R.1) Every polynomial of odd degree with real coefficients has a real root;

(R.2) Every non-negative real number has a real square root.

As a consequence of (R.1) there are no finite extensions K of R of odd degree
except K = R. For let K be an extension of R of odd degree and let a ∈ K.
Then mR,a(x) has odd degree by part (3) of Proposition 6.2.1. By results of
Calculus mR,a(x) has a real root b. Thus mR,a(x) = mR,b(x) = x − b by part
(5) of the same which implies a = b ∈ R.

As a consequence of (R.2) the field C has no extensions K of degree 2. For
let K be such an extension. Then K = C[a] for some a ∈ K. By completing
squares we may choose a such that mC,a(x) = x2 − z for some z = r + si ∈ C,
where r, s ∈ R. But this polynomial is not irreducible as z has a square root in
C; namely c + di, where c and d are real square roots of the non-negative real
numbers

r +
√

r2 + s2

2
and

−r +
√

r2 + s2

2
respectively, chosen so that cd and s have the same sign. This contradiction
shows that C has no extensions of degree 2.

Suppose that E is a finite extension of C. Then E is a finite extension of R
which is separable since the characteristic of R is 0. Let K be a Galois closure
of E over R and let H by a Sylow 2-subgroup of G(K/R). Since [H ′ : R] =
[R′ : H ′′] = [G(K/R) : H] is odd it follows that [G(K/R) : H] = 1. Therefore
G(K/R) is a 2-group which means G(K/C) is as well since G(K/C) ≤ G(K/R).

Suppose |G(K/C)| > 1. Then G(K/C) has a subgroup H of index 2. But
then 2 = [G(K/C) : H] = [H ′ : G(K/C)′] = [H ′ : C] since K is a Galois
extension of C. This contradiction shows that |G(K/C)| = 1. Therefore K = C
which forces E = C. We have shown:

Theorem 7.7.5 The field C of complex numbers is algebraically closed. ¤

7.8 Cyclic and Radical Extensions

Let K be a finite field extension of F . Then K is a cyclic extension of F if K is
a Galois extension of F and G(K/F ) is a cyclic group. The field K is a simple
radical extension of F if for some α ∈ K and positive integer n the field K = F [α]
and αn ∈ F . If there is a chain of subfields F = K0 ⊆ K1 ⊆ · · · ⊆ Kr = K such
that Ki is a simple radical extension of Ki−1 for all 1 < i ≤ r the K is a radical
extension of F . Recall that µn denotes the multiplicative subgroup of K× of
nth roots of unity.
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7.8.1 Cyclic Extensions

Here we explore the connection between cyclic and simple radical extensions.
Let a ∈ F . We denote a root of Xn − a ∈ F [x] by n

√
a.

Proposition 7.8.1 Let K be a finite field extension of F .

(1) Suppose that K is a cyclic extension of F of degree n and F contains a
primitive nth root of unity ζ. Then K is a simple radical extension of F .

Suppose E is a subfield of K which is an extension of F , a ∈ E and n
√

a ∈ K is
a root of xn − a ∈ E[x], and µn ⊆ E. Then:

(2) E[n
√

a]′ E E′ and E′/E[n
√

a]′ is a cyclic group.

(3) If E is a closed subfield of K then E[n
√

a] is a cyclic extension of E.

Proof: Assume the hypothesis of part (1). Then K is a Galois extension of F
and G(K/F ) = (σ) is cyclic of order n. By Lemma 7.2.2 the set {IdK , σ, . . . , σn−1}
is linearly independent over K. Therefore

∑n−1
i=0 ζiσi 6= 0 which means

∑n−1
i=0 ζiσi(b) 6=

0 for some b ∈ K. Let α denote this sum. Since

σ(α) = ζ−1(
n−1∑

i=0

ζi+1σi+1(b)) = ζ−1(
n−1∑

i=0

ζiσi(b)) = ζ−1α

it follows that σi(α) = ζ−iα, and thus σi(αn) = ζ−inαn = αn, for all 0 ≤ i < n.
In particular αn ∈ F . As xn−αn =

∏n−1
i=0 (x− ζiα) and lies in F [x], by part (2)

of Proposition 7.1.6 and parts (5) and (2) of Proposition 6.1.6 it follows that
xn − αn = mF,α(x) and K = F [α]. We have shown part (1).

To show part (2), assume the hypothesis for E. Let σ ∈ E′. Let b ∈ K be a
root of xn − a in K. Then b = ζn

√
a, where ζ ∈ µn. Let σ ∈ E′. Then σ(n

√
a) is

a root of xn−a ∈ K by part (1) of Proposition 7.1.6. Therefore σ(n
√

a) = ζσ
n
√

a
for a unique ζσ ∈ µn. Since ζσ ∈ µn ⊆ E it is easy to see that

π : E′ −→ µn

defined by π(σ) = ζσ is a group homomorphism. Recall that µn is a finite cyclic
subgroup of K× by Lemma 6.1.1. Therefore Im π is cyclic. Since E[n

√
a] is

generated by n
√

a as a field extension of E, it follows that Ker π = E[n
√

a]′ and
part (2) now follows.

To show part (3), we first note that K is a Galois extension of E by part
(2) of Theorem 7.3.4. Our calculations above show that E[n

√
a] is stable under

E′ = G(K/E). Therefore E[n
√

a] is a Galois extension of E and G(E[n
√

a]/E) '
G(K/E)/G(K/E[n

√
a]) by part (3) of the same. At this point part (3) follows

by part (2). ¤
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7.8.2 Radical Extensions

Here we connect the concept of the roots of solvable by radicals with the concept
solvable group. Throughout this section all fields have characteristic zero.

Let F be a field and f(x) ∈ F [x] be a polynomial of positive degree. Then
f(x) is solvable by radicals if some splitting field of f(x) over F has a finite
radical extension.

Observe that if E, E′ are splitting fields of f(x) over F and E has a finite
radical extension K then E′ has a finite radical extension K ′. For let K and
K′ be algebraic closures of K and E′ respectively. Then K and K′ are alge-
braic closures of F and thus there is an F -algebra isomorphism τ : K −→ K′.
Evidently τ(K) is a radical extension of K ′. See part (3) of Theorem 6.2.2,
Theorem 6.4.3, and part (2) of Theorem 6.4.8.

Theorem 7.8.2 Let E be a finite radical extension of F . Then:

(1) E has an extension K which is a finite radical Galois extension of F .

(2) G(K/F ) is a solvable group.

(3) Suppose that L is a splitting field of a polynomial f(x) ∈ F [x] of positive
degree which is solvable by radicals. Then G(L/F ) is solvable.

Proof: By assumption there is a chain of subfields F = E0 ⊆ E1 ⊆ · · · ⊆
Er = E, elements a1, . . . , ar ∈ E, and positive integers n1, . . . , nr such that
Ei = Ei−1[ai] and ani

i ∈ Ei−1 for all 1 ≤ i ≤ r. We may assume ai 6= 0 for all
1 ≤ i ≤ r.

Let M be a Galois closure of E over F and set

f(x) =
r∏

ı=1

(
∏

σ∈G(M/F )

(xni − σ(ai)).

Then σ(f(x)) = f(x) for all σ ∈ G(M/F ). Therefore f(x) ∈ F [x] since F is a
closed subfield of M .

Choose a splitting field N of f(x) over M let K be the extension of F
generated by the roots of f(x) in N . Then K is an extension of E and is a
splitting field of f(x) over F . In particular K is a Galois extension of F by
Theorem 7.3.2.

Consider a factor xm− b of f(x). Since f(x) splits into linear factors over K
it follows that xm − b does also. By assumption b 6= 0. Since the characteristic
of K is zero Dx(xm − b) = mxm−1 6= 0. Therefore xm − b is separable over K
by Proposition 6.5.2. Let m

√
b be a root of xm− b in K. Then the multiplicative

subgroup µm of K× has order m and xm − b =
∏

ζ∈µm
(x− ζ m

√
b).

Let K0 = F and let K1 be the extension of F generated by µn1···nr . Then K1

is a stable subfield of K. Thus K ′
1 E K ′

0 and K ′
0/K ′

1 = G(K/K0)/G(K/K1) '
G(K1/K0) by part (3) of Theorem 7.3.4. But the latter is an abelian group as
noted in Section 7.6.
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It is easy to see that there is a chain of subfields K2 ⊆ · · · ⊆ Ks = K,
elements b1, . . . , bs ∈ K, and positive integers m1, . . . , ms which are among
n1, . . . , nr such that Ki = Ki−1[bi] and bmi

i ∈ Ki−1 for all 1 < i ≤ s. In
particular K1 ⊆ K2. Observe that µmi

⊆ Ki−1 for all 1 < i ≤ s since µmi
⊆

µn1···nr ⊆ K1. Therefore G(K/F ) is solvable by part (2) of Proposition 7.8.1.
We have shown parts (1) and (2).

To show part (3), let K be an extension of L which a finite radical Galois
extension of F as guaranteed by part (1). Since L is a splitting field of a
polynomial over F it follows that L is stable under G(K/F ) by part (1) of
Proposition 7.1.6. Therefore L is a Galois extension of F and G(L/F ) is a
quotient of G(K/F ) by part (3) of Theorem 7.3.4. Since homomorphic images
of solvable groups are solvable, G(L/F ) is solvable.

Example 7.8.3 Let p be a positive prime integer. Since the permutation group
S5 is not solvable, the polynomial f(x) = x5 − 2px + p ∈ Q[x] is not solvable by
radicals. See the discussion following Example 7.7.4.



Chapter 8

Introduction to
Representations of Algebras

Throughout R is a ring with unity and M, N are left R-modules.

8.1 Representations of Groups, Rings, and Al-
gebras

Let X be a non-empty set. Then the group Sym(X) of permutations of X under
composition is a basic example of a group. Note that this group arises from a
simpler structure, namely a non-empty set. Let G be a group. One may think
of a group homomorphism π : G −→ Sym(X) as a representation of G. Note
that representations of G in this sense are in bijective correspondence with left
actions by G.

Let A be an abelian group. Then the set of group endomorphisms End(A)
of A is a ring with unity under pointwise addition of functions and function
composition. Note that this ring arises from a simpler structure, namely an
abelian group. Let R be ring with unity. One may think of a ring homomorphism
π : R −→ End(A) as a representation of R. Note that representations of R in
this sense are in bijective correspondence with left module actions by R.

Now let V be a vector space over a field F ; thus V is an abelian group with
additional structure. Then the set of linear endomorphisms End(V ) of V is an
F -algebra under the usual vector space operations on functions and function
composition. Note that this algebra arises from a simpler structure, namely a
vector space over F . Let A be an algebra over F . One may think of an algebra
homomorphism π : A −→ End(V ) from an algebra A over F as a representation
of A. Note that representations of A in this sense are in bijective correspondence
with the left module actions by A which satisfy the additional property

α(a·v) = (αa)·v = a·(αv)

77
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for all α ∈ F , a ∈ A, and v ∈ V . When V is n-dimensional the identification
End(V ) = Mn(F ) with the algebra of n×n matrices over F is frequently made.

8.2 Completely Reducible Modules

A left R-module M is completely reducible if for all submodules N of M there
is a submodule N ′ of M such that M = N⊕N ′. Thus (0) and simple left
R-modules are completely reducible.

Lemma 8.2.1 Submodules and quotients of completely reducible modules are
completely reducible.

Proof: Suppose that M is a completely reducible left R-module and N is
a submodule of M . Then M = N⊕N ′ for some submodule N ′ of M . Since
M/N ' N ′ as left R-modules, and N ′ is a submodule of M , to prove the
lemma we need only show that submodules of completely reducible modules are
completely reducible. Thus we need only show that N is completely reducible.

Let N ′′ be a submodule of N . Then M = N ′′⊕N ′′′ for some submodule N ′′′

of M . We show that N = N ′′⊕(N∩N ′′′) to complete the proof. The calculation

N ′′∩(N∩N ′′′) ⊆ N ′′∩N ′′′ = (0)

Shows that N ′′∩(N∩N ′′′) = (0). Let n ∈ N . Then n = n′′⊕n′′′ for some
n′′ ∈ N ′′ and n′′′ ∈ N ′′′. Since n′′′ = n − n′′ ∈ N∩N ′′′ it follows that N =
N ′′ + (N∩N ′′′). Therefore N = N ′′⊕(N∩N ′′′). ¤

Lemma 8.2.2 Suppose that M is a non-zero completely reducible left R-module.
Then M contains a simple left R-module.

Proof: Since M 6= (0) there is a non-zero m ∈ M . By Lemma 8.2.1 the
submodule R·m is completely reducible. By Zorn’s Lemma R·m contains a
proper maximal left R-submodule L. Since R·m = L⊕N ′ for some submodule
N ′ of R·m and the quotient R·m/L ' N ′ is a simple left R-module, N ′ is a
simple submodule of R·m, hence of M . ¤

Non-zero completely reducible modules are explained in terms of simple
submodules.

Theorem 8.2.3 Let M be a non-zero left R-module. Then the following are
equivalent:

(1) M is completely reducible.

(2) M is the direct sum of simple submodules.

(3) M is the sum of simple submodules.
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Proof: Part (1) implies part (2). Suppose that M is completely reducible.
Since M 6= (0) it contains a simple submodule by Lemma 8.2.2. By Zorn’s
Lemma there is a non-empty family S of simple submodules of M maximal
with respect to the property that

∑
S∈S S is direct. Now (

∑
S∈S S)⊕N = M

for some submodule N of M . If N 6= (0) then N contains a simple submodule
S′ by Lemmas 8.2.1 and 8.2.2. This is not possible as S is a proper subset of
S∪{S′} and

∑
S∈S∪{S′} S is direct. Therefore N = (0); hence M =

∑
S∈S S

and is a direct sum. Part (2) implies part (3) as direct sums are sums.
Part (3) implies part (1). Suppose that M is the sum of simple submodules.

Let N be a submodule of M . By Zorn’s Lemma there is a submodule N ′ of M
maximal with respect the property that N∩N ′ = (0). Thus N + N ′ = N⊕N ′.
Let S be a simple submodule of M . Then (N + N ′)∩S = S, in which case
S ⊆ N + N ′, or (N + N ′)∩S = (0), in which case (N + N ′) + S = (N +
N ′)⊕S = (N⊕N ′)⊕S = N⊕(N ′⊕S). But the latter implies N∩(N ′⊕S) = (0),
a contradiction. Therefore S ⊆ N + N ′ for all simple submodules S of M . We
have shown that N + N ′ = N⊕N ′ contains the sum of all simple submodules
of M , hence N⊕N ′ = M . ¤

8.3 Maschke’s Theorem

Let G be a finite group, let F be a field, and let FG be the group algebra of
G over F . Observe that the linear map ε : FG −→ F determined by ε(g) = 1
for all g ∈ G is an algebra homomorphism. We regard FG as a left FG-module
under multiplication.

Theorem 8.3.1 Let G be a finite group and FG be the group algebra of G over
a field F . Then the following are equivalent:

(1) All left FG-modules are completely reducible.

(2) FG is a completely reducible left FG-module.

(3) The characteristic of F is zero or is p > 0 and p does not divide |G|.

Proof: Part (1) implies part (2). To show part (2) implies part (3), let

Λ =
∑

g∈G

g.

Then gΛ = Λg = Λ = ε(g)Λ for all g ∈ G which means

aΛ = ε(a)Λ = Λa

for all a ∈ FG. Observe that

ε(Λ) = |G|·1F ;

thus part (3) is equivalent to ε(Λ) 6= 0.
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Suppose that FG is a completely reducible left FG-module. Then FG =
L⊕Ker ε for some left ideal L of FG. Write 1 = `⊕`′, where ` ∈ L and `′ ∈ Ker ε.
Let a ∈ FG. Then a− ε(a)1 ∈ Ker ε and the latter is a two-sided ideal of FG.
Therefore (a− ε(a)1)` ∈ L∩Ker ε = (0) which means

a` = ε(a)`

for all a ∈ FG. Thus, as ε(`′) = 0,

Λ = Λ1 = Λ` + Λ`′ = ε(Λ)` + Λε(`′) = ε(Λ)`

which means ε(Λ) 6= 0.
Part (3) implies part (1). Assume the hypothesis of part (3). Let M be a

left FG-module and suppose that N is a submodule of M . Let p : M −→ N
be a linear projection onto N ; that is a linear map such that p(n) = n for
all n ∈ N . If ı : N −→ M is the inclusion, then p◦ı = IdN . Therefore
M = Ker p⊕Im ı = Ker p⊕N . To complete the proof we need only find a
projection which is a module map.

Define P0 : M −→ N by

P0(m) =
∑

g∈G

g−1·p(g·m)

for all m ∈ M . Then P0 is a map of left FG-modules since for all h ∈ G we
have

P0(h·m) = h·(
∑

g∈G

h−1g−1·p(g·(h·m))

= h·(
∑

g∈G

(gh)−1·p((gh)·m))

= h·(
∑

g∈G

g−1·p(g·m))

= h·P0(m).

For n ∈ n observe that

P0(n) =
∑

g∈G

g−1·p(g·n) =
∑

g∈G

g−1·(g·n) =
∑

g∈G

n = |G|n.

Therefore P = (|G|·1F )−1P0 is the desired projection. ¤

8.4 The Wedderburn Theorem

The ring structure of the group algebra FG of the previous section is given in:

Theorem 8.4.1 The following are equivalent for a ring R:

(1) All left R-modules are completely reducible.
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(2) All left R-modules are projective.

(3) All left R-modules are injective.

(4) R is the direct product of matrix rings over division rings.

Proof: We will establish the equivalence of part (1) with parts (2) and (3).
This will be an exercise in definitions basically.

Suppose that all left R-modules are completely reducible. Let P be a left
R-module, let π : B −→ C and f : P −→ C module maps, where π is surjective.
Since B is completely reducible B = Ker π⊕A for some submodule A of C. The
restriction π|A : A −→ C is an isomorphism. Thus g : P −→ B defined by
g = (π|A)−1◦f is an R-module map which satisfies π◦g = f . Therefore P is
projective.

Now let I be a left R-module, ı : A −→ B and f : A −→ I be module maps,
where ı is injective. Since B is completely reducible B = Im ı⊕N for some
submodule N of B. Since ı is injective  : A −→ Im ı defined by (a) = ı(a)
for all a ∈ A is an isomorphism. Thus g : B −→ I defined by g(ı(a)⊕n) =
f(−1(ı(a))) = f(a) for all ı(a)⊕n ∈ B satisfies g◦ı = f . Therefore I is injective.

Conversely, suppose that N is a submodule of M . Consider the projection
π : M −→ M/N which is surjective. If M/N is projective then there is an
R-module map  : M/N −→ M such that π◦ = IdM/N . Therefore M =
Kerπ⊕Im  = N⊕Im .

Consider the inclusion  : N −→ M , which is injective. If N is injective
then there is an R-module map : π : M −→ N such that π◦ = IdN . Therefore
M = Ker π⊕Im  = Ker π⊕N .


