Math 517

Written Homework # 3 Solution

05/06/07

1. (25 points) (1) First of all we show that $\varphi : R/Ra \times R/Rb \longrightarrow R/Rc$ given by $(r + Ra, s + Rb) \mapsto rs + Rc$ is a well-defined function. Suppose that r + Ra = r' + Ra and s + Rb = s' + Rb, were $r, r', s, s' \in R$. As c divides a, b we have $Ra, Rb \subseteq Rc$. Since $r' - r \in Ra \subseteq Rc$ and $s' - s \in Rb \subseteq Rc$ for some $x, y \in R, r' - r = xc$ and s' - s = yc. Therefore $r's' - rs = (r+xc)(s+yc) - rs = ryc + xc(s+yc) \in Rc$ which means r's' + Rc = rs + Rc. We have shown that φ is a well-defined function. The reader is left with the direct calculation that φ is R-bilinear; that is

$$\varphi((r+Ra) + (r'+Ra), s+Rb) = \varphi(r+Ra, s+Rb) + \varphi(r'+Ra, s+Rb),$$

 $\varphi(r + Ra, (s + Rb) + (s' + Rb)) = \varphi(r + Ra, s + Rb) + \varphi(r + Ra, s' + Rb),$

and

$$\varphi(r' \cdot (r + Ra), s + Rb) = \varphi(r + Ra, r' \cdot (s + Rb))$$

for all $r, r', s, s' \in R$.

By the universal mapping property of the tensor product of R-modules over a commutative ring there is homomorphism of R-modules

 $f: R/Ra \otimes_R R/Rb \longrightarrow R/Rc$

such that $f \circ i = \varphi$, where $i : R/Ra \times R/Rb \longrightarrow R/Ra \otimes_R R/Rb$ is defined by $i(r + Ra, s + Rb) = (r + Ra) \otimes (s + Rb)$. Therefore $f((r + Ra) \otimes (s + Rb)) = rs + Rc.$ (10)

(2) We show that g is well defined first of all. Suppose that r + Rc = r' + Rc. Then r' - r = zc for some $z \in R$. As c = xa + yb we have

r' = r + zc = r + zxa + zyb and therefore

$$(r' + Ra) \otimes (1 + Rb)$$

$$= (r + zxa + zyb + Ra) \otimes (1 + Rb)$$

$$= (r + zyb + Ra) \otimes (1 + Rb)$$

$$= ((r + Ra) + (zyb + Ra)) \otimes (1 + Rb)$$

$$= (r + Ra) \otimes (1 + Rb) + (zyb + Ra) \otimes (1 + Rb)$$

$$= (r + Ra) \otimes (1 + Rb) + b \cdot (zy + Ra) \otimes (1 + Rb)$$

$$= (r + Ra) \otimes (1 + Rb) + (zy + Ra) \otimes b \cdot (1 + Rb)$$

$$= (r + Ra) \otimes (1 + Rb) + (zy + Ra) \otimes (b + Rb)$$

$$= (r + Ra) \otimes (1 + Rb) + (zy + Ra) \otimes (0 + Rb)$$

$$= (r + Ra) \otimes (1 + Rb) + (zy + Ra) \otimes (0 + Rb)$$

$$= (r + Ra) \otimes (1 + Rb) + (zy + Ra) \otimes (0 + Rb)$$

Thus g is well-defined. Since

$$g((r + Rc) + r' \cdot (r'' + Rc)) = g((r + r'r'') + Rc)$$

= $((r + r'r'') + Ra) \otimes (1 + Rb)$
= $((r + Ra) + (r'r'' + Ra)) \otimes (1 + Rb)$
= $(r + Ra) \otimes (1 + Rb) + (r'r'' + Ra) \otimes (1 + Rb)$
= $(r + Ra) \otimes (1 + Rb) + r' \cdot ((r'' + Ra) \otimes (1 + Rb))$
= $g(r + Rc) + r' \cdot g(r'' + Rc)$

it follows that g is a homomorphism of left R-modules.

We show that the module maps f and g are inverses. To this end we need only check that

$$(g \circ f)((r + Ra) \otimes (s + Rb)) = g(f((r + Ra) \otimes (s + Rb)))$$

$$= g(rs + Rc)$$

$$= (rs + Ra) \otimes (1 + Rb)$$

$$= (s \cdot (r + Ra)) \otimes (1 + Rb)$$

$$= (r + Ra) \otimes (s \cdot (1 + Rb))$$

$$= (r + Ra) \otimes (s + Rb)$$

and

$$(f \circ g)((r + Rc)) = f(g((r + Ra))) = f((r + Ra) \otimes (1 + Rb)) = r1 + Rc = r + Rc$$

for all $r, s \in R$. (10)

(3) The hypothesis of (2) is met in this case. (5)

2. (20 points) (1) We may assume that D is a subring of F. Suppose that F is a submodule of a free left D-module M and let $\{m_i\}_{i\in I}$ be a basis for M. Let $a, b \in D \setminus 0$ and write

$$\frac{1}{b} = a_1 \cdot m_{i_1} + \dots + a_s \cdot m_{i_s}$$

where $i_1, \ldots, i_s \in I$ are distinct and $a_1, \ldots, a_s \in D \setminus 0$. Then

$$\frac{a}{b} = aa_1 \cdot m_{i_1} + \dots + aa_s \cdot m_{i_s}$$

and

$$1 = ba_1 \cdot m_{i_1} + \dots + ba_s \cdot m_{i_s}$$

Since D is an integral domain none of the coefficients in the two preceding equations are zero. Therefore $\operatorname{supp}(1) = \{m_{i_1}, \ldots, m_{i_s}\} = \operatorname{supp}(r)$ for all $r \in F \setminus 0$. Writing

$$\frac{1}{ba_1} = c_1 \cdot m_{i_1} + \dots + c_s \cdot m_{i_s}$$

for some $c_1, \ldots, c_s \in D$ we have that

$$1 = ba_1c_1 \cdot m_{i_1} + \dots + ba_1c_s \cdot m_{i_s}$$

from which we deduce that $ba_1 = ba_1c_1$ and therefore $c_1 = 1$.

The composition of the projection $D \cdot m_{i_1} \oplus \cdots \oplus D \cdot m_{i_s} \longrightarrow D \cdot m_{i_1}$ to the first summand followed by the isomorphism $D \cdot m_{i_1} \simeq D$ $(d \cdot m_{i_1} \mapsto d)$ restricts to an injective homomorphism of left *R*-modules $f: F \longrightarrow D$. Since $f(\frac{1}{ba_1}) = 1$ it follows that f is surjective. Therefore f is an isomorphism of left *D*-modules which means that F is a free left *D*-module. By part (3) of WH2 it follows that F = D. (15)

(2) If F = D then it is a free, hence a projective, *D*-module. Conversely, suppose that *F* is projective. Then it is isomorphic to a submodule of a free *D*-module. Without loss of generality we may assume that *F* is a submodule of a free *D*-module. Therefore F = D by part (1). (5)

3. (35 points) (1) Let $m'_1, m'_2 \in M'$ and $m''_1, m''_2 \in M''$. First of all we show that $f' + f'' : M' + M'' \longrightarrow Q$ is well-defined. Suppose that $m'_1 + m''_1 = m'_2 + m''_2$. Then $m'_1 - m'_2 = m''_2 - m''_1 \in M' \cap M''$ which means

$$f'(m'_1) - f'(m'_2) = f'(m'_1 - m'_2) = f''(m''_2 - m''_1) = f''(m''_2) - f''(m''_1)$$

and therefore

$$f'(m'_1) + f''(m''_1) = f'(m'_2) + f''(m''_2)$$

That f' + f'' is a module map follows by

$$\begin{aligned} (f'+f'')((m_1'+m_1'')+(m_2'+m_2'')) \\ &= (f'+f'')((m_1'+m_2')+(m_1''+m_2'')) \\ &= f'((m_1'+m_2')+f''(m_1''+m_2'') \\ &= f'(m_1')+f'(m_2')+f''(m_1'')+f''(m_2'') \\ &= f'(m_1')+f''(m_1'')+f'(m_2')+f''(m_2'') \\ &= (f'+f'')(m_1'+m_1'')+(f'+f'')(m_2'+m_2'') \end{aligned}$$

and

$$(f' + f'')(r \cdot (m'_1 + m''_1)) = (f' + f'')(r \cdot m'_1 + r \cdot m''_1)$$

= $f'(r \cdot m'_1) + f''(r \cdot m''_1)$
= $r \cdot f'(m'_1) + r \cdot f''(m''_1)$
= $r \cdot (f'(m'_1) + f''(m''_1))$
= $r \cdot ((f' + f'')(m'_1 + m''_1))$

for all $r \in R$. (10)

To complete the proof that $(M' + M'', f' + f'') \in \mathcal{S}$ we need to show that $(M_0, f_0) \leq (M' + M'', f' + f'')$. Since $M_0 \subseteq M', M''$ and $f'|_{M_0} = f_0$, $f''|_{M_0} = f_0$, we see that $M_0 \subseteq M' + M''$ and for $m \in M_0 (\subseteq M')$ that

$$(f' + f'')(m) = (f' + f'')(m + 0) = f'(m) + f''(0) = f_0(m).$$

Thus $(f' + f'')|_{M_0} = f_0$ and hence $(M_0, f_0) \leq (M' + M'', f' + f'')$. Therefore $(M' + M'', f' + f'') \in \mathcal{S}$. Note: By the same argument $(M', f'), (M'', f'') \leq (M' + M'', f' + f'')$. (5)

(2) First of all \mathcal{S} is a partially ordered set; that is:

- (PO.1) $(f', M') \leq (f', M')$ for all $(f', M') \in \mathcal{S}$;
- (PO.2) If $(f', M'), (f'', M'') \in S$ satisfy $(f', M') \leq (f'', M'')$ and $(f'', M'') \leq (f', M')$ then (f', M') = (f'', M'');
- (PO.3) If $(f', M'), (f'', M''), (f''', M''') \in S$ satisfy $(f', M') \leq (f'', M'')$ and $(f'', M'') \leq (f''', M''')$ then $(f', M') \leq (f''', M''')$.

To see (PO.1) note that $M' \subseteq M'$ and $f'|_{M'} = f'$ for $(f', M') \in \mathcal{S}$. The hypothesis of (PO.2) implies that $M' \subseteq M'' \subseteq M''$, hence $M' \subseteq M''$ and thus $f'' = f''|_{M''} = f''|_{M'} = f'$. Therefore (M', f') = (M'', f''). As for (PO.3), $(f', M') \leq (f'', M'') \leq (f''', M''')$ implies $M' \subseteq M'' \subseteq M''$; thus $M' \subseteq M'''$ and $f'''|_{M'} = (f'''|_{M''})|_{M'} = f''|_{M'} = f'$. Therefore $(M', f') \leq (M''', f''')$. (5)

Let \mathcal{C} be a chain in \mathcal{S} ; that is a non-empty subset of \mathcal{S} such that for all $i, j \in I$ either $(M'_i, f'_i) \leq (M'_j, f'_j)$ or $(M'_j, f'_j) \leq (M'_i, f'_i)$. Then $N = \bigcup_{i \in I} M'_i$ is a submodule of M. To see this, first of all note that $N \neq \emptyset$ since $\mathcal{C} \neq \emptyset$. Let $n, n' \in N$ and $r \in R$. Then $n \in M_i$ and $n' \in M_{i'}$ for some $i, i' \in I$. Since \mathcal{C} is a chain either $(M'_i, f'_i) \leq (M'_{i'}, f'_{i'})$ or $(M'_{i'}, f_{i'}) \leq (M'_i, f'_i)$. Thus $M_i \subseteq M_{i'}$ or $M_{i'} \subseteq M_i$. Without loss of generality we may assume $M_i \subseteq M_{i'}$. Thus $n, n' \in M_{i'}$ which means $n + r \cdot n' \in M_{i'} \subseteq N$. Therefore N is a submodule of M.

Then there is a module map $f : N \longrightarrow Q$ described as follows. Let $n \in N$. Then $n \in M'_i$ for some $i \in I$. Set $f(n) = f'_i(n)$.

Suppose that there is a such a module map. Then $(N, f) \in \mathcal{S}$ and $(M'_i, f'_i) \leq (N, f)$ for all $i \in I$. We have noted that $(M_0, f_0) \in \mathcal{S}$. Let $(M'_i, f'_i) \in \mathcal{C}$. Then $(M_0, f_0) \leq (M'_i, f'_i)$ which implies $M_0 \subseteq M'_i \subseteq N$ and $f|_{M_0} = f|_0, f|_{M_i} = f_i$ by our construction of f. Therefore $(M_0, f_0) \leq (M'_i, f'_i) \leq (N, f)$ which shows that $(N, f) \in \mathcal{S}$ and that (N, f) is an upper bound for \mathcal{C} . It remains to show that f does in fact exist. (10)

First of all f is well-defined. Suppose that $n \in N$. Then $n \in M'_i$ for some $i \in I$, where $(M'_i, f'_i) \in C$. Suppose that $n \in M'_{i'}$, where $(M'_{i'}, f'_{i'}) \in C$ also. Since $(M_i, f'_i) \leq (M'_{i'}, f'_{i'})$ or vice versa, we may assume $(M_i, f'_i) \leq (M'_{i'}, f'_{i'})$. Therefore $M_i \subseteq M_{i'}$ which means that $f'_{i'}(n) = f'_{i'}|_{M'_i}(n) = f'_i(n)$. Thus f is well defined. To see that f is a module map, let $n, n' \in N$. We have seen that $n, n' \in M_i$ for some $i \in I$. Since $f|_{M_i} = f'_i$ is a module map necessarily f is a module map. (5)

4. (20 points) (1) $0 \in L$ since $0 \cdot m = 0 \in M'$. Suppose that $r, r'' \in L$ and

 $r' \in R$. Then $(r + r'r'') \cdot m = r \cdot m + r' \cdot (r'' \cdot m) \in M' + r' \cdot M' \subseteq M'$. Therefore L is a left ideal of R. (5)

(2) Let $r, r'' \in L$ and $r' \in R$. Then, using part (1), we see that $r \cdot m$, $r'r'' \cdot m \in M'$. Thus

$$F(r + r'r'') = f'((r + r'r'') \cdot m)$$

$$= f'(r \cdot m + r'r'' \cdot m)$$

$$= f'(r \cdot m) + f'(r'r'' \cdot m)$$

$$= r \cdot f'(m) + r'r'' \cdot f'(m)$$

$$= r \cdot f'(m) + r' \cdot (r'' \cdot f'(m))$$

$$= F(r) + r' \cdot F(r'')$$

which shows that F is a module homomorphism. (5)

(3) g is well-defined. Suppose that $r, r' \in R$ and $r \cdot m = r' \cdot m$. Then $(r - r') \cdot m = 0$ which means that $r - r' \in L$. Therefore

$$G(r - r') = F(r - r') = f'((r - r') \cdot m) = f'(0) = 0$$

which means that G(r) = G(r'). Therefore $g(r \cdot m) = g(r' \cdot m)$. Let $r, r'r'' \in R$. Then

which shows that g is a module homomorphism.

Let $x \in M' \cap R \cdot m$. Then $x = r \cdot m$ for some $r \in R$ since $x \in R \cdot m$. Since $x \in M', r \in L$. Therefore $g(x) = g(r \cdot m) = G(r) = F(r) = f'(r \cdot m) = f'(x)$. (5)

(4) Let $m \in M$. With $f' = f_e$ by parts (2) and (3) there is a homomorphism of left *R*-modules $g: R \cdot m \longrightarrow Q$ such that $g|_{M_e \cap R \cdot m} = f'|_{M_e \cap R \cdot m}$. By part (1) of Problem 3, $(M_e, f') \leq (f' + g, M_e + R \cdot m)$. By (PO.3) we conclude that $(f' + g, M_e + R \cdot m) \in S$. Therefore $(M_e, f') = (f' + g, M_e + R \cdot m)$ which means $M_e = M_e + R \cdot m$. We have shown $m \in M_e$ and thus $M = M_e$. (5)