Math 517 Spring 2007 Radford

Written Homework # 3 Solution

05/06/07

1. (25 points) (1) First of all we show that ¢ : R/RaxR/Rb — R/Rc
given by (r + Ra, s + Rb) — rs+ Rc is a well-defined function. Suppose that
r+ Ra =1"+ Ra and s+ Rb = s’ + Rb, were r,1’, 5,5 € R. As ¢ divides a, b
we have Ra, Rb C Rec. Since v’ —r € Ra C Rc and s’ —s € Rb C Rc for some
x,y € R,r'—r = zcand s'—s = yc. Therefore r's'—rs = (r+zc)(s+yc)—rs =
ryc+ zc(s+yc) € Re which means r’'s’ 4+ Re = rs+ Re. We have shown that
@ is a well-defined function. The reader is left with the direct calculation
that ¢ is R-bilinear; that is

©((r + Ra) + (r' + Ra),s + Rb) = ¢(r + Ra, s + Rb) + ¢(r' + Ra, s + Rb),

p(r+ Ra, (s + Rb) + (s + Rb)) = o(r + Ra, s + Rb) + ¢(r + Ra,s' + Rb),
and
@(r'-(r + Ra), s + Rb) = ¢(r + Ra,r"-(s + Rb))

for all r,7",s,s’ € R.
By the universal mapping property of the tensor product of R-modules
over a commutative ring there is homomorphism of R-modules

f:R/Ra®@rR/Rb —s R/Rc

such that for = ¢, where ¢ : R/RaxR/Rb — R/Ra®prR/Rb is defined by
1(r + Ra,s + Rb) = (r + Ra)®(s + Rb). Therefore f((r + Ra)®(s + Rb)) =
rs+ Re. (10)

(2) We show that g is well defined first of all. Suppose that r + Re =
r" + Rc. Then " —r = zc for some z € R. As ¢ = xa + yb we have



v =r+ zc=r+ zra+ zyb and therefore

(r' + Ra)®(1 + Rb)

(r + zza+ zyb + Ra)®

(r+ Ra) +
r+ Ra)®(1 + Rb) +

(
(
(
(r+ Ra)®
(
(
(
(

(1+ Rb)

r+ zyb+ Ra)®(1 + Rb)

(2yb+ Ra))®(1 + RD)

(2yb + Ra)®(1 + Rb)
1+ Rb) + b-(zy + Ra)®(1 + Rb)

(
)( )
r+ Ra)®(1 + Rb) + (zy + Ra)®b-(1 + Rb)
= (r+ Ra)®(1+ Rb) + (2y + Ra)®(b+ Rb)
= (r+ Ra)®(1+ Rb) + (zy + Ra)®(0 + Rb)
= (r+ Ra)®(1+ RD).
Thus g is well-defined. Since
g((r + Re) +7"-(r" + Rc)) = g((r+rr")+ Re)
= ((r+7")+ Ra)®(1 + Rb)
= ((r+ Ra) + (r'r" + Ra))®(1 + Rb)
= (r+ Ra)®(1+ Rb) + (r'r" + Ra)®(1 + Rb)
= (r+ Ra)®(1+ Rb) +1"-((r" + Ra)®(1 + RD))
= g(r+ Rc)+1"-g(r" + Rc)

it follows that g is a homomorphism of left R-modules.
We show that the module maps f and g are inverses. To this end we need

only check that
(gof)((r + Ra)®(s + Rb))

and

(fog)((r+ Re)) = f(g((r+ Ra)) =

2

g(f((r + Ra)®(s + Rb))
g(rs + Rc)

)®(1+ Rb)

s-(r+ Ra))®(1 + Rb)

)®(s:(1 + Rb))

r+ Ra)®(s + Rb)

F((r+Ra)®(1+Rb)) = r1+Rc=r+Re



for all , s € R. (10)
(3) The hypothesis of (2) is met in this case. (5)

2. (20 points) (1) We may assume that D is a subring of F. Suppose that
F is a submodule of a free left D-module M and let {m;};c; be a basis for
M. Let a,b € D\0 and write

= eyt asm,

where iq,...i5 € I are distinct and ay,...,as € D\0O. Then

a
b = aa;m;, + -+ aasm;,
and

1 =bay-m;, + -+ bas-m,,.

Since D is an integral domain none of the coefficients in the two preceding
equations are zero. Therefore supp(1) = {m;,,...,m;,} = supp(r) for all
r € F\0. Writing

— Cl'mi _|_ “ e +Cs'mi
ba]_ 1 s

for some ¢y, ...,cs € D we have that
1 =bajc;my, + -+ + baycs-my,

from which we deduce that ba; = bajc; and therefore ¢; = 1.

The composition of the projection D-m; & ---®D-m;, — D-m;, to the
first summand followed by the isomorphism D-m; ~ D (d-m;, +— d) re-
stricts to an injective homomorphism of left R-modules f : ¥ —D. Since

f (b—) = 1 it follows that f is surjective. Therefore f is an isomorphism of
a1

left D-modules which means that F is a free left D-module. By part (3) of
WH2 it follows that F' = D. (15)

(2) If F = D then it is a free, hence a projective, D-module. Conversely,
suppose that F' is projective. Then it is isomorphic to a submodule of a free
D-module. Without loss of generality we may assume that F' is a submodule
of a free D-module. Therefore F' = D by part (1). (5)



3. (35 points) (1) Let m},m, € M" and m,m3 € M". First of all we show
that f"+ f" : M'+ M" — @ is well-defined. Suppose that m| + m/| =
mby + my. Then m) —m, =mi —m] € M'NM" which means

(o) — ) = s~ ) = £ — ) = () — (o)
and therefore

fimy) + f7(m}) = f'(mg) + f"(m3).
That f'+ f” is a module map follows by

(f + (M) +mY) + (my + m3))

= (f'+ ") ((m} +m3) + (m'{+m'2'))

= f'((my +my) + f"(m] +m3)

= fi(m}) + '(m2)+f"( 1)+ f(m3)

= fi(m) + f(m]) + f'(m3) + f"(m3)

= (f"+ )y +mi) + (f + f")(my +m3y)

and

(P4 S ml)) = (4 £ o)
= fi(rmy) + f"(rmf)
= () + o)
= r(f'(m)) + f'(mf))
r((f =+ 1) (my +mY))
for all r € R. (10)
To complete the proof that (M’ + M”, f" + f") € S we need to show
that (Mo, fo) < (M"+ M", f"+ f"). Since My € M', M" and f'|p, = fo,
1" \mo = fo, we see that My C M’ + M" and for m € My (C M') that

(f"+ ) (m) = (f' + f1)(m +0) = f'(m) + f7(0) = fo(m).

Thus (f"+ f")|m, = fo and hence (Mo, fo) < (M’ + M", f"+ f”). Therefore
(M'+ M", f'+ ") € S. Note: By the same argument (M, f'), (M", f") <
(M/+M,/,f/+f//). (5)

(2) First of all S is a partially ordered set; that is:

4



(PO.1) (f', M) < (f', M) for all (f', M') € S;

(PO.2) If (', M), (f",M") € S satisty (f/,M") < (f,M") and (f",M") <
(f/7M/) then (f/7M/) — (f//’M//);

(PO.3) If (f, M), (f", M"),(f",M") € S satisfy (f',M') < (f",M") and
(f//’ M//) S (f///’ M///) then (f/,MI) S (f///’M///).

To see (PO.1) note that M’ C M’ and f'|, = f/ for (f',M') € S. The
hypothesis of (PO.2) implies that M’ C M"” C M’, hence M' C M” and thus
" = f"lsr = f'\mr = f. Therefore (M’, f') = (M", f"). As for (PO.3),
(f/,M/> < (f”,M”) < (f”/,M”/) implies M’ C M"” C M"; thus M' C M""
and [l = (F" sl = 'l = f'. Therefore (M, ) < (M", ). (5)

Let C be a chain in §; that is a non-empty subset of S such that for all
i,j € I either (M, f]) < (Mj, ;) or (M, f;) < (Mj, f{). Then N = U/ M,
is a submodule of M. To see this, first of all note that N # ) since C # (). Let
n,n’ € N and r € R. Then n € M; and n’ € My for some 4,7 € I. Since C
is a chain either (M, fI) < (M}, fl,) or (M, fir) < (M, f]). Thus M; C M;
or My C M;. Without loss of generality we may assume M; C M;. Thus
n,n’ € My which means n+r-n’ € My C N. Therefore N is a submodule of
M.

Then there is a module map f : N — (@ described as follows. Let n € N.
Then n € M/ for some ¢ € I. Set f(n) = f/(n).

Suppose that there is a such a module map. Then (N, f) € S and
(M, fl) < (N, f) for all i € I. We have noted that (M, fo) € S. Let
(M!, fl) € C. Then (My, fo) < (M], f/) which implies My C M! C N and
flae = f10, fla, = fi by our construction of f. Therefore (Mo, fo) <
(M!, f1) < (N, f) which shows that (N, f) € S and that (N, f) is an upper
bound for C. It remains to show that f does in fact exist. (10)

First of all f is well-defined. Suppose that n € N. Then n € M/ for some
i € I, where (M/, f!) € C. Suppose that n € M/,, where (M/,, f!,) € C also.
Since (M;, f!) < (M, fi,) or vice versa, we may assume (M;, f/) < (M}, fl,).
Therefore M; C My which means that f(n) = fi|y:(n) = fi(n). Thus f is
well defined. To see that f is a module map, let n,n’ € N. We have seen
that n,n’ € M; for some i € I. Since f|y, = f! is a module map necessarily
f is a module map. (5)

4. (20 points) (1) 0 € L since 0-m = 0 € M’. Suppose that r,r"” € L and



€ R. Then (r +r'r")m =rm +1"-(r"-m) € M' +1"-M" C M'. Therefore
L is a left ideal of R. (5)

(2) Let r,r” € L and ' € R. Then, using part (1), we see that r-m,
r'r”-m € M'. Thus
Fir+7r")y = f((r+r7")m)
= f'(r-m+7r'r"-m)
f
r
T

(rom) + f('r"m)
f I/ (m)
f

"(m)+r'r"-f
= F(r)+r"-F(")

"(m) - (r"-f'(m))

which shows that F' is a module homomorphism. (5)

(3) g is well-defined. Suppose that " € R and r-m = r’-m. Then
(r —7")-m = 0 which means that » — 7’ € L. Therefore

Glr—1') = F(r =) = f/((r = 'ym) = f'(0) =0

which means that G(r) = G(r’"). Therefore g(r-m) = g(r'-m).
Let r,r'r” € R. Then

glrm ' m) = gl(r "))
= G(r+r'r")
= G(r)+G("r")
= G(r)+r"-G(r")
= g(rm)+r"g(r'"-m)
which shows that g is a module homomorphism.

Let © € M'NR-m. Then x = r-m for some r € R since x € R-m. Since
x € M', r € L. Therefore g(x) = g(r-m) = G(r) = F(r) = f'(r-m) = f'(x).
(5)

(4) Let m € M. With f’ = f. by parts (2) and (3) there is a homomor-
phism of left R-modules g : R-m — @ such that g|yr.nrm = f/|ym.nrm- By
part (1) of Problem 3, (M., f') < (f'+g, M.+ R-m). By (PO.3) we conclude
that (f'+g, M.+ R-m) € S. Therefore (M., ') = (f' + g, M. + R-m) which
means M, = M, + R-m. We have shown m € M, and thus M = M,. (5)




