
Math 517 Spring 2007 Radford

Written Homework # 3 Solution
05/06/07

1. (25 points) (1) First of all we show that ϕ : R/Ra×R/Rb −→ R/Rc
given by (r +Ra, s+Rb) 7→ rs+Rc is a well-defined function. Suppose that
r + Ra = r′ + Ra and s + Rb = s′ + Rb, were r, r′, s, s′ ∈ R. As c divides a, b
we have Ra,Rb ⊆ Rc. Since r′−r ∈ Ra ⊆ Rc and s′−s ∈ Rb ⊆ Rc for some
x, y ∈ R, r′−r = xc and s′−s = yc. Therefore r′s′−rs = (r+xc)(s+yc)−rs =
ryc+xc(s+ yc) ∈ Rc which means r′s′+Rc = rs+Rc. We have shown that
ϕ is a well-defined function. The reader is left with the direct calculation
that ϕ is R-bilinear; that is

ϕ((r + Ra) + (r′ + Ra), s + Rb) = ϕ(r + Ra, s + Rb) + ϕ(r′ + Ra, s + Rb),

ϕ(r + Ra, (s + Rb) + (s′ + Rb)) = ϕ(r + Ra, s + Rb) + ϕ(r + Ra, s′ + Rb),

and
ϕ(r′·(r + Ra), s + Rb) = ϕ(r + Ra, r′·(s + Rb))

for all r, r′, s, s′ ∈ R.
By the universal mapping property of the tensor product of R-modules

over a commutative ring there is homomorphism of R-modules

f : R/Ra⊗RR/Rb −→ R/Rc

such that f◦ı = ϕ, where ı : R/Ra×R/Rb −→ R/Ra⊗RR/Rb is defined by
ı(r + Ra, s + Rb) = (r + Ra)⊗(s + Rb). Therefore f((r + Ra)⊗(s + Rb)) =
rs + Rc. (10)

(2) We show that g is well defined first of all. Suppose that r + Rc =
r′ + Rc. Then r′ − r = zc for some z ∈ R. As c = xa + yb we have
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r′ = r + zc = r + zxa + zyb and therefore

(r′ + Ra)⊗(1 + Rb)

= (r + zxa + zyb + Ra)⊗(1 + Rb)

= (r + zyb + Ra)⊗(1 + Rb)

= ((r + Ra) + (zyb + Ra))⊗(1 + Rb)

= (r + Ra)⊗(1 + Rb) + (zyb + Ra)⊗(1 + Rb)

= (r + Ra)⊗(1 + Rb) + b·(zy + Ra)⊗(1 + Rb)

= (r + Ra)⊗(1 + Rb) + (zy + Ra)⊗b·(1 + Rb)

= (r + Ra)⊗(1 + Rb) + (zy + Ra)⊗(b + Rb)

= (r + Ra)⊗(1 + Rb) + (zy + Ra)⊗(0 + Rb)

= (r + Ra)⊗(1 + Rb).

Thus g is well-defined. Since

g((r + Rc) + r′·(r′′ + Rc)) = g((r + r′r′′) + Rc)

= ((r + r′r′′) + Ra)⊗(1 + Rb)

= ((r + Ra) + (r′r′′ + Ra))⊗(1 + Rb)

= (r + Ra)⊗(1 + Rb) + (r′r′′ + Ra)⊗(1 + Rb)

= (r + Ra)⊗(1 + Rb) + r′·((r′′ + Ra)⊗(1 + Rb))

= g(r + Rc) + r′·g(r′′ + Rc)

it follows that g is a homomorphism of left R-modules.
We show that the module maps f and g are inverses. To this end we need

only check that

(g◦f)((r + Ra)⊗(s + Rb)) = g(f((r + Ra)⊗(s + Rb))

= g(rs + Rc)

= (rs + Ra)⊗(1 + Rb)

= (s·(r + Ra))⊗(1 + Rb)

= (r + Ra)⊗(s·(1 + Rb))

= (r + Ra)⊗(s + Rb)

and

(f◦g)((r+Rc)) = f(g((r+Ra)) = f((r+Ra)⊗(1+Rb)) = r1+Rc = r+Rc
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for all r, s ∈ R. (10)

(3) The hypothesis of (2) is met in this case. (5)

2. (20 points) (1) We may assume that D is a subring of F . Suppose that
F is a submodule of a free left D-module M and let {mi}i∈I be a basis for
M . Let a, b ∈ D\0 and write

1

b
= a1·mi1 + · · ·+ as·mis ,

where i1, . . . is ∈ I are distinct and a1, . . . , as ∈ D\0. Then

a

b
= aa1·mi1 + · · ·+ aas·mis

and
1 = ba1·mi1 + · · ·+ bas·mis .

Since D is an integral domain none of the coefficients in the two preceding
equations are zero. Therefore supp(1) = {mi1 , . . . ,mis} = supp(r) for all
r ∈ F\0. Writing

1

ba1

= c1·mi1 + · · ·+ cs·mis

for some c1, . . . , cs ∈ D we have that

1 = ba1c1·mi1 + · · ·+ ba1cs·mis

from which we deduce that ba1 = ba1c1 and therefore c1 = 1.
The composition of the projection D·mi1⊕ · · ·⊕D·mis −→ D·mi1 to the

first summand followed by the isomorphism D·mi1 ' D (d·mi1 7→ d) re-
stricts to an injective homomorphism of left R-modules f : F −→D. Since

f(
1

ba1

) = 1 it follows that f is surjective. Therefore f is an isomorphism of

left D-modules which means that F is a free left D-module. By part (3) of
WH2 it follows that F = D. (15)

(2) If F = D then it is a free, hence a projective, D-module. Conversely,
suppose that F is projective. Then it is isomorphic to a submodule of a free
D-module. Without loss of generality we may assume that F is a submodule
of a free D-module. Therefore F = D by part (1). (5)
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3. (35 points) (1) Let m′
1,m

′
2 ∈ M ′ and m′′

1,m
′′
2 ∈ M ′′. First of all we show

that f ′ + f ′′ : M ′ + M ′′ −→ Q is well-defined. Suppose that m′
1 + m′′

1 =
m′

2 + m′′
2. Then m′

1 −m′
2 = m′′

2 −m′′
1 ∈ M ′∩M ′′ which means

f ′(m′
1)− f ′(m′

2) = f ′(m′
1 −m′

2) = f ′′(m′′
2 −m′′

1) = f ′′(m′′
2)− f ′′(m′′

1)

and therefore
f ′(m′

1) + f ′′(m′′
1) = f ′(m′

2) + f ′′(m′′
2).

That f ′ + f ′′ is a module map follows by

(f ′ + f ′′)((m′
1 + m′′

1) + (m′
2 + m′′

2))

= (f ′ + f ′′)((m′
1 + m′

2) + (m′′
1 + m′′

2))

= f ′((m′
1 + m′

2) + f ′′(m′′
1 + m′′

2)

= f ′(m′
1) + f ′(m′

2) + f ′′(m′′
1) + f ′′(m′′

2)

= f ′(m′
1) + f ′′(m′′

1) + f ′(m′
2) + f ′′(m′′

2)

= (f ′ + f ′′)(m′
1 + m′′

1) + (f ′ + f ′′)(m′
2 + m′′

2)

and

(f ′ + f ′′)(r·(m′
1 + m′′

1)) = (f ′ + f ′′)(r·m′
1 + r·m′′

1)

= f ′(r·m′
1) + f ′′(r·m′′

1)

= r·f ′(m′
1) + r·f ′′(m′′

1)

= r·(f ′(m′
1) + f ′′(m′′

1))

= r·((f ′ + f ′′)(m′
1 + m′′

1))

for all r ∈ R. (10)
To complete the proof that (M ′ + M ′′, f ′ + f ′′) ∈ S we need to show

that (M0, f0) ≤ (M ′ + M ′′, f ′ + f ′′). Since M0 ⊆ M ′, M ′′ and f ′|M0 = f0,
f ′′|M0 = f0, we see that M0 ⊆ M ′ + M ′′ and for m ∈ M0 (⊆ M ′) that

(f ′ + f ′′)(m) = (f ′ + f ′′)(m + 0) = f ′(m) + f ′′(0) = f0(m).

Thus (f ′ + f ′′)|M0 = f0 and hence (M0, f0) ≤ (M ′ + M ′′, f ′ + f ′′). Therefore
(M ′ + M ′′, f ′ + f ′′) ∈ S. Note: By the same argument (M ′, f ′), (M ′′, f ′′) ≤
(M ′ + M ′′, f ′ + f ′′). (5)

(2) First of all S is a partially ordered set; that is:
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(PO.1) (f ′,M ′) ≤ (f ′,M ′) for all (f ′,M ′) ∈ S;

(PO.2) If (f ′,M ′), (f ′′,M ′′) ∈ S satisfy (f ′, M ′) ≤ (f ′′,M ′′) and (f ′′,M ′′) ≤
(f ′,M ′) then (f ′,M ′) = (f ′′,M ′′);

(PO.3) If (f ′,M ′), (f ′′,M ′′), (f ′′′,M ′′′) ∈ S satisfy (f ′,M ′) ≤ (f ′′,M ′′) and
(f ′′, M ′′) ≤ (f ′′′,M ′′′) then (f ′,M ′) ≤ (f ′′′,M ′′′).

To see (PO.1) note that M ′ ⊆ M ′ and f ′|M ′ = f ′ for (f ′, M ′) ∈ S. The
hypothesis of (PO.2) implies that M ′ ⊆ M ′′ ⊆ M ′, hence M ′ ⊆ M ′′ and thus
f ′′ = f ′′|M ′′ = f ′′|M ′ = f ′. Therefore (M ′, f ′) = (M ′′, f ′′). As for (PO.3),
(f ′,M ′) ≤ (f ′′,M ′′) ≤ (f ′′′,M ′′′) implies M ′ ⊆ M ′′ ⊆ M ′′; thus M ′ ⊆ M ′′′

and f ′′′|M ′ = (f ′′′|M ′′)|M ′ = f ′′|M ′ = f ′. Therefore (M ′, f ′) ≤ (M ′′′, f ′′′). (5)
Let C be a chain in S; that is a non-empty subset of S such that for all

i, j ∈ I either (M ′
i , f

′
i) ≤ (M ′

j, f
′
j) or (M ′

j, f
′
j) ≤ (M ′

i , f
′
i). Then N = ∪i∈IM

′
i

is a submodule of M . To see this, first of all note that N 6= ∅ since C 6= ∅. Let
n, n′ ∈ N and r ∈ R. Then n ∈ Mi and n′ ∈ Mi′ for some i, i′ ∈ I. Since C
is a chain either (M ′

i , f
′
i) ≤ (M ′

i′ , f
′
i′) or (M ′

i′ , fi′) ≤ (M ′
i , f

′
i). Thus Mi ⊆ Mi′

or Mi′ ⊆ Mi. Without loss of generality we may assume Mi ⊆ Mi′ . Thus
n, n′ ∈ Mi′ which means n + r·n′ ∈ Mi′ ⊆ N . Therefore N is a submodule of
M .

Then there is a module map f : N −→ Q described as follows. Let n ∈ N .
Then n ∈ M ′

i for some i ∈ I. Set f(n) = f ′i(n).
Suppose that there is a such a module map. Then (N, f) ∈ S and

(M ′
i , f

′
i) ≤ (N, f) for all i ∈ I. We have noted that (M0, f0) ∈ S. Let

(M ′
i , f

′
i) ∈ C. Then (M0, f0) ≤ (M ′

i , f
′
i) which implies M0 ⊆ M ′

i ⊆ N and
f |M0 = f |0, f |Mi

= fi by our construction of f . Therefore (M0, f0) ≤
(M ′

i , f
′
i) ≤ (N, f) which shows that (N, f) ∈ S and that (N, f) is an upper

bound for C. It remains to show that f does in fact exist. (10)
First of all f is well-defined. Suppose that n ∈ N . Then n ∈ M ′

i for some
i ∈ I, where (M ′

i , f
′
i) ∈ C. Suppose that n ∈ M ′

i′ , where (M ′
i′ , f

′
i′) ∈ C also.

Since (Mi, f
′
i) ≤ (M ′

i′ , f
′
i′) or vice versa, we may assume (Mi, f

′
i) ≤ (M ′

i′ , f
′
i′).

Therefore Mi ⊆ Mi′ which means that f ′i′(n) = f ′i′|M ′
i
(n) = f ′i(n). Thus f is

well defined. To see that f is a module map, let n, n′ ∈ N . We have seen
that n, n′ ∈ Mi for some i ∈ I. Since f |Mi

= f ′i is a module map necessarily
f is a module map. (5)

4. (20 points) (1) 0 ∈ L since 0·m = 0 ∈ M ′. Suppose that r, r′′ ∈ L and
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r′ ∈ R. Then (r + r′r′′)·m = r·m + r′·(r′′·m) ∈ M ′ + r′·M ′ ⊆ M ′. Therefore
L is a left ideal of R. (5)

(2) Let r, r′′ ∈ L and r′ ∈ R. Then, using part (1), we see that r·m,
r′r′′·m ∈ M ′. Thus

F (r + r′r′′) = f ′((r + r′r′′)·m)

= f ′(r·m + r′r′′·m)

= f ′(r·m) + f ′(r′r′′·m)

= r·f ′(m) + r′r′′·f ′(m)

= r·f ′(m) + r′·(r′′·f ′(m))

= F (r) + r′·F (r′′)

which shows that F is a module homomorphism. (5)

(3) g is well-defined. Suppose that r, r′ ∈ R and r·m = r′·m. Then
(r − r′)·m = 0 which means that r − r′ ∈ L. Therefore

G(r − r′) = F (r − r′) = f ′((r − r′)·m) = f ′(0) = 0

which means that G(r) = G(r′). Therefore g(r·m) = g(r′·m).
Let r, r′r′′ ∈ R. Then

g(r·m + r′·(r′′·m)) = g((r + r′r′′)·m)

= G(r + r′r′′)

= G(r) + G(r′r′′)

= G(r) + r′·G(r′′)

= g(r·m) + r′·g(r′′·m)

which shows that g is a module homomorphism.
Let x ∈ M ′∩R·m. Then x = r·m for some r ∈ R since x ∈ R·m. Since

x ∈ M ′, r ∈ L. Therefore g(x) = g(r·m) = G(r) = F (r) = f ′(r·m) = f ′(x).
(5)

(4) Let m ∈ M . With f ′ = fe by parts (2) and (3) there is a homomor-
phism of left R-modules g : R·m −→ Q such that g|Me∩R·m = f ′|Me∩R·m. By
part (1) of Problem 3, (Me, f

′) ≤ (f ′+g, Me +R·m). By (PO.3) we conclude
that (f ′ + g, Me + R·m) ∈ S. Therefore (Me, f

′) = (f ′ + g, Me + R·m) which
means Me = Me + R·m. We have shown m ∈ Me and thus M = Me. (5)
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