Written Homework \# 3 Solution

05/06/07

1. (25 points) (1) First of all we show that $\varphi: R / R a \times R / R b \longrightarrow R / R c$ given by $(r+R a, s+R b) \mapsto r s+R c$ is a well-defined function. Suppose that $r+R a=r^{\prime}+R a$ and $s+R b=s^{\prime}+R b$, were $r, r^{\prime}, s, s^{\prime} \in R$. As c divides a, b we have $R a, R b \subseteq R c$. Since $r^{\prime}-r \in R a \subseteq R c$ and $s^{\prime}-s \in R b \subseteq R c$ for some $x, y \in R, r^{\prime}-r=x c$ and $s^{\prime}-s=y c$. Therefore $r^{\prime} s^{\prime}-r s=(r+x c)(s+y c)-r s=$ $r y c+x c(s+y c) \in R c$ which means $r^{\prime} s^{\prime}+R c=r s+R c$. We have shown that φ is a well-defined function. The reader is left with the direct calculation that φ is R-bilinear; that is

$$
\begin{aligned}
& \varphi\left((r+R a)+\left(r^{\prime}+R a\right), s+R b\right)=\varphi(r+R a, s+R b)+\varphi\left(r^{\prime}+R a, s+R b\right) \\
& \varphi\left(r+R a,(s+R b)+\left(s^{\prime}+R b\right)\right)=\varphi(r+R a, s+R b)+\varphi\left(r+R a, s^{\prime}+R b\right)
\end{aligned}
$$

and

$$
\varphi\left(r^{\prime} \cdot(r+R a), s+R b\right)=\varphi\left(r+R a, r^{\prime} \cdot(s+R b)\right)
$$

for all $r, r^{\prime}, s, s^{\prime} \in R$.
By the universal mapping property of the tensor product of R-modules over a commutative ring there is homomorphism of R-modules

$$
f: R / R a \otimes_{R} R / R b \longrightarrow R / R c
$$

such that $f \circ \imath=\varphi$, where $\imath: R / R a \times R / R b \longrightarrow R / R a \otimes_{R} R / R b$ is defined by $\imath(r+R a, s+R b)=(r+R a) \otimes(s+R b)$. Therefore $f((r+R a) \otimes(s+R b))=$ $r s+R c$. (10)
(2) We show that g is well defined first of all. Suppose that $r+R c=$ $r^{\prime}+R c$. Then $r^{\prime}-r=z c$ for some $z \in R$. As $c=x a+y b$ we have
$r^{\prime}=r+z c=r+z x a+z y b$ and therefore

$$
\begin{aligned}
& \left(r^{\prime}+R a\right) \otimes(1+R b) \\
& =(r+z x a+z y b+R a) \otimes(1+R b) \\
& =(r+z y b+R a) \otimes(1+R b) \\
& =((r+R a)+(z y b+R a)) \otimes(1+R b) \\
& =(r+R a) \otimes(1+R b)+(z y b+R a) \otimes(1+R b) \\
& =(r+R a) \otimes(1+R b)+b \cdot(z y+R a) \otimes(1+R b) \\
& =(r+R a) \otimes(1+R b)+(z y+R a) \otimes b \cdot(1+R b) \\
& =(r+R a) \otimes(1+R b)+(z y+R a) \otimes(b+R b) \\
& =(r+R a) \otimes(1+R b)+(z y+R a) \otimes(0+R b) \\
& =(r+R a) \otimes(1+R b) .
\end{aligned}
$$

Thus g is well-defined. Since

$$
\begin{aligned}
g\left((r+R c)+r^{\prime} \cdot\left(r^{\prime \prime}+R c\right)\right) & =g\left(\left(r+r^{\prime} r^{\prime \prime}\right)+R c\right) \\
& =\left(\left(r+r^{\prime} r^{\prime \prime}\right)+R a\right) \otimes(1+R b) \\
& =\left((r+R a)+\left(r^{\prime} r^{\prime \prime}+R a\right)\right) \otimes(1+R b) \\
& =(r+R a) \otimes(1+R b)+\left(r^{\prime} r^{\prime \prime}+R a\right) \otimes(1+R b) \\
& =(r+R a) \otimes(1+R b)+r^{\prime} \cdot\left(\left(r^{\prime \prime}+R a\right) \otimes(1+R b)\right) \\
& =g(r+R c)+r^{\prime} \cdot g\left(r^{\prime \prime}+R c\right)
\end{aligned}
$$

it follows that g is a homomorphism of left R-modules.
We show that the module maps f and g are inverses. To this end we need only check that

$$
\begin{aligned}
(g \circ f)((r+R a) \otimes(s+R b)) & =g(f((r+R a) \otimes(s+R b)) \\
& =g(r s+R c) \\
& =(r s+R a) \otimes(1+R b) \\
& =(s \cdot(r+R a)) \otimes(1+R b) \\
& =(r+R a) \otimes(s \cdot(1+R b)) \\
& =(r+R a) \otimes(s+R b)
\end{aligned}
$$

and
$(f \circ g)((r+R c))=f(g((r+R a))=f((r+R a) \otimes(1+R b))=r 1+R c=r+R c$
for all $r, s \in R$. (10)
(3) The hypothesis of (2) is met in this case. (5)
2. (20 points) (1) We may assume that D is a subring of F. Suppose that F is a submodule of a free left D-module M and let $\left\{m_{i}\right\}_{i \in I}$ be a basis for M. Let $a, b \in D \backslash 0$ and write

$$
\frac{1}{b}=a_{1} \cdot m_{i_{1}}+\cdots+a_{s} \cdot m_{i_{s}}
$$

where $i_{1}, \ldots i_{s} \in I$ are distinct and $a_{1}, \ldots, a_{s} \in D \backslash 0$. Then

$$
\frac{a}{b}=a a_{1} \cdot m_{i_{1}}+\cdots+a a_{s} \cdot m_{i_{s}}
$$

and

$$
1=b a_{1} \cdot m_{i_{1}}+\cdots+b a_{s} \cdot m_{i_{s}} .
$$

Since D is an integral domain none of the coefficients in the two preceding equations are zero. Therefore $\operatorname{supp}(1)=\left\{m_{i_{1}}, \ldots, m_{i_{s}}\right\}=\operatorname{supp}(r)$ for all $r \in F \backslash 0$. Writing

$$
\frac{1}{b a_{1}}=c_{1} \cdot m_{i_{1}}+\cdots+c_{s} \cdot m_{i_{s}}
$$

for some $c_{1}, \ldots, c_{s} \in D$ we have that

$$
1=b a_{1} c_{1} \cdot m_{i_{1}}+\cdots+b a_{1} c_{s} \cdot m_{i_{s}}
$$

from which we deduce that $b a_{1}=b a_{1} c_{1}$ and therefore $c_{1}=1$.
The composition of the projection $D \cdot m_{i_{1}} \oplus \cdots \oplus D \cdot m_{i_{s}} \longrightarrow D \cdot m_{i_{1}}$ to the first summand followed by the isomorphism $D \cdot m_{i_{1}} \simeq D\left(d \cdot m_{i_{1}} \mapsto d\right)$ restricts to an injective homomorphism of left R-modules $f: F \longrightarrow \mathrm{D}$. Since $f\left(\frac{1}{b a_{1}}\right)=1$ it follows that f is surjective. Therefore f is an isomorphism of left D-modules which means that F is a free left D-module. By part (3) of WH2 it follows that $F=D$. (15)
(2) If $F=D$ then it is a free, hence a projective, D-module. Conversely, suppose that F is projective. Then it is isomorphic to a submodule of a free D-module. Without loss of generality we may assume that F is a submodule of a free D-module. Therefore $F=D$ by part (1). (5)
3. (35 points) (1) Let $m_{1}^{\prime}, m_{2}^{\prime} \in M^{\prime}$ and $m_{1}^{\prime \prime}, m_{2}^{\prime \prime} \in M^{\prime \prime}$. First of all we show that $f^{\prime}+f^{\prime \prime}: M^{\prime}+M^{\prime \prime} \longrightarrow Q$ is well-defined. Suppose that $m_{1}^{\prime}+m_{1}^{\prime \prime}=$ $m_{2}^{\prime}+m_{2}^{\prime \prime}$. Then $m_{1}^{\prime}-m_{2}^{\prime}=m_{2}^{\prime \prime}-m_{1}^{\prime \prime} \in M^{\prime} \cap M^{\prime \prime}$ which means

$$
f^{\prime}\left(m_{1}^{\prime}\right)-f^{\prime}\left(m_{2}^{\prime}\right)=f^{\prime}\left(m_{1}^{\prime}-m_{2}^{\prime}\right)=f^{\prime \prime}\left(m_{2}^{\prime \prime}-m_{1}^{\prime \prime}\right)=f^{\prime \prime}\left(m_{2}^{\prime \prime}\right)-f^{\prime \prime}\left(m_{1}^{\prime \prime}\right)
$$

and therefore

$$
f^{\prime}\left(m_{1}^{\prime}\right)+f^{\prime \prime}\left(m_{1}^{\prime \prime}\right)=f^{\prime}\left(m_{2}^{\prime}\right)+f^{\prime \prime}\left(m_{2}^{\prime \prime}\right) .
$$

That $f^{\prime}+f^{\prime \prime}$ is a module map follows by

$$
\begin{aligned}
& \left(f^{\prime}+f^{\prime \prime}\right)\left(\left(m_{1}^{\prime}+m_{1}^{\prime \prime}\right)+\left(m_{2}^{\prime}+m_{2}^{\prime \prime}\right)\right) \\
& \quad=\left(f^{\prime}+f^{\prime \prime}\right)\left(\left(m_{1}^{\prime}+m_{2}^{\prime}\right)+\left(m_{1}^{\prime \prime}+m_{2}^{\prime \prime}\right)\right) \\
& \quad=f^{\prime}\left(\left(m_{1}^{\prime}+m_{2}^{\prime}\right)+f^{\prime \prime}\left(m_{1}^{\prime \prime}+m_{2}^{\prime \prime}\right)\right. \\
& =f^{\prime}\left(m_{1}^{\prime}\right)+f^{\prime}\left(m_{2}^{\prime}\right)+f^{\prime \prime}\left(m_{1}^{\prime \prime}\right)+f^{\prime \prime}\left(m_{2}^{\prime \prime}\right) \\
& =f^{\prime}\left(m_{1}^{\prime}\right)+f^{\prime \prime}\left(m_{1}^{\prime \prime}\right)+f^{\prime}\left(m_{2}^{\prime}\right)+f^{\prime \prime}\left(m_{2}^{\prime \prime}\right) \\
& =\left(f^{\prime}+f^{\prime \prime}\right)\left(m_{1}^{\prime}+m_{1}^{\prime \prime}\right)+\left(f^{\prime}+f^{\prime \prime}\right)\left(m_{2}^{\prime}+m_{2}^{\prime \prime}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(f^{\prime}+f^{\prime \prime}\right)\left(r \cdot\left(m_{1}^{\prime}+m_{1}^{\prime \prime}\right)\right) & =\left(f^{\prime}+f^{\prime \prime}\right)\left(r \cdot m_{1}^{\prime}+r \cdot m_{1}^{\prime \prime}\right) \\
& =f^{\prime}\left(r \cdot m_{1}^{\prime}\right)+f^{\prime \prime}\left(r \cdot m_{1}^{\prime \prime}\right) \\
& =r \cdot f^{\prime}\left(m_{1}^{\prime}\right)+r \cdot f^{\prime \prime}\left(m_{1}^{\prime \prime}\right) \\
& =r \cdot\left(f^{\prime}\left(m_{1}^{\prime}\right)+f^{\prime \prime}\left(m_{1}^{\prime \prime}\right)\right) \\
& =r \cdot\left(\left(f^{\prime}+f^{\prime \prime}\right)\left(m_{1}^{\prime}+m_{1}^{\prime \prime}\right)\right)
\end{aligned}
$$

for all $r \in R$. (10)
To complete the proof that $\left(M^{\prime}+M^{\prime \prime}, f^{\prime}+f^{\prime \prime}\right) \in \mathcal{S}$ we need to show that $\left(M_{0}, f_{0}\right) \leq\left(M^{\prime}+M^{\prime \prime}, f^{\prime}+f^{\prime \prime}\right)$. Since $M_{0} \subseteq M^{\prime}, M^{\prime \prime}$ and $\left.f^{\prime}\right|_{M_{0}}=f_{0}$, $\left.f^{\prime \prime}\right|_{M_{0}}=f_{0}$, we see that $M_{0} \subseteq M^{\prime}+M^{\prime \prime}$ and for $m \in M_{0}\left(\subseteq M^{\prime}\right)$ that

$$
\left(f^{\prime}+f^{\prime \prime}\right)(m)=\left(f^{\prime}+f^{\prime \prime}\right)(m+0)=f^{\prime}(m)+f^{\prime \prime}(0)=f_{0}(m)
$$

Thus $\left.\left(f^{\prime}+f^{\prime \prime}\right)\right|_{M_{0}}=f_{0}$ and hence $\left(M_{0}, f_{0}\right) \leq\left(M^{\prime}+M^{\prime \prime}, f^{\prime}+f^{\prime \prime}\right)$. Therefore $\left(M^{\prime}+M^{\prime \prime}, f^{\prime}+f^{\prime \prime}\right) \in \mathcal{S}$. Note: By the same argument $\left(M^{\prime}, f^{\prime}\right),\left(M^{\prime \prime}, f^{\prime \prime}\right) \leq$ $\left(M^{\prime}+M^{\prime \prime}, f^{\prime}+f^{\prime \prime}\right)$.
(2) First of all \mathcal{S} is a partially ordered set; that is:
(PO.1) $\left(f^{\prime}, M^{\prime}\right) \leq\left(f^{\prime}, M^{\prime}\right)$ for all $\left(f^{\prime}, M^{\prime}\right) \in \mathcal{S}$;
(PO.2) If $\left(f^{\prime}, M^{\prime}\right),\left(f^{\prime \prime}, M^{\prime \prime}\right) \in \mathcal{S}$ satisfy $\left(f^{\prime}, M^{\prime}\right) \leq\left(f^{\prime \prime}, M^{\prime \prime}\right)$ and $\left(f^{\prime \prime}, M^{\prime \prime}\right) \leq$ $\left(f^{\prime}, M^{\prime}\right)$ then $\left(f^{\prime}, M^{\prime}\right)=\left(f^{\prime \prime}, M^{\prime \prime}\right)$;
(PO.3) If $\left(f^{\prime}, M^{\prime}\right),\left(f^{\prime \prime}, M^{\prime \prime}\right),\left(f^{\prime \prime \prime}, M^{\prime \prime \prime}\right) \in \mathcal{S}$ satisfy $\left(f^{\prime}, M^{\prime}\right) \leq\left(f^{\prime \prime}, M^{\prime \prime}\right)$ and $\left(f^{\prime \prime}, M^{\prime \prime}\right) \leq\left(f^{\prime \prime \prime}, M^{\prime \prime \prime}\right)$ then $\left(f^{\prime}, M^{\prime}\right) \leq\left(f^{\prime \prime \prime}, M^{\prime \prime \prime}\right)$.

To see (PO.1) note that $M^{\prime} \subseteq M^{\prime}$ and $\left.f^{\prime}\right|_{M^{\prime}}=f^{\prime}$ for $\left(f^{\prime}, M^{\prime}\right) \in \mathcal{S}$. The hypothesis of (PO.2) implies that $M^{\prime} \subseteq M^{\prime \prime} \subseteq M^{\prime}$, hence $M^{\prime} \subseteq M^{\prime \prime}$ and thus $f^{\prime \prime}=\left.f^{\prime \prime}\right|_{M^{\prime \prime}}=\left.f^{\prime \prime}\right|_{M^{\prime}}=f^{\prime}$. Therefore $\left(M^{\prime}, f^{\prime}\right)=\left(M^{\prime \prime}, f^{\prime \prime}\right)$. As for (PO.3), $\left(f^{\prime}, M^{\prime}\right) \leq\left(f^{\prime \prime}, M^{\prime \prime}\right) \leq\left(f^{\prime \prime \prime}, M^{\prime \prime \prime}\right)$ implies $M^{\prime} \subseteq M^{\prime \prime} \subseteq M^{\prime \prime} ;$ thus $M^{\prime} \subseteq M^{\prime \prime \prime}$ and $\left.f^{\prime \prime \prime \prime}\right|_{M^{\prime}}=\left.\left(\left.f^{\prime \prime \prime}\right|_{M^{\prime \prime}}\right)\right|_{M^{\prime}}=\left.f^{\prime \prime}\right|_{M^{\prime}}=f^{\prime}$. Therefore $\left(M^{\prime}, f^{\prime}\right) \leq\left(M^{\prime \prime \prime}, f^{\prime \prime \prime}\right)$. (5)

Let \mathcal{C} be a chain in \mathcal{S}; that is a non-empty subset of \mathcal{S} such that for all $i, j \in I$ either $\left(M_{i}^{\prime}, f_{i}^{\prime}\right) \leq\left(M_{j}^{\prime}, f_{j}^{\prime}\right)$ or $\left(M_{j}^{\prime}, f_{j}^{\prime}\right) \leq\left(M_{i}^{\prime}, f_{i}^{\prime}\right)$. Then $N=\cup_{i \in I} M_{i}^{\prime}$ is a submodule of M. To see this, first of all note that $N \neq \emptyset$ since $\mathcal{C} \neq \emptyset$. Let $n, n^{\prime} \in N$ and $r \in R$. Then $n \in M_{i}$ and $n^{\prime} \in M_{i^{\prime}}$ for some $i, i^{\prime} \in I$. Since \mathcal{C} is a chain either $\left(M_{i}^{\prime}, f_{i}^{\prime}\right) \leq\left(M_{i^{\prime}}^{\prime}, f_{i^{\prime}}^{\prime}\right)$ or $\left(M_{i^{\prime}}^{\prime}, f_{i^{\prime}}\right) \leq\left(M_{i}^{\prime}, f_{i}^{\prime}\right)$. Thus $M_{i} \subseteq M_{i^{\prime}}$ or $M_{i^{\prime}} \subseteq M_{i}$. Without loss of generality we may assume $M_{i} \subseteq M_{i^{\prime}}$. Thus $n, n^{\prime} \in M_{i^{\prime}}$ which means $n+r \cdot n^{\prime} \in M_{i^{\prime}} \subseteq N$. Therefore N is a submodule of M.

Then there is a module map $f: N \longrightarrow Q$ described as follows. Let $n \in N$. Then $n \in M_{i}^{\prime}$ for some $i \in I$. Set $f(n)=f_{i}^{\prime}(n)$.

Suppose that there is a such a module map. Then $(N, f) \in \mathcal{S}$ and $\left(M_{i}^{\prime}, f_{i}^{\prime}\right) \leq(N, f)$ for all $i \in I$. We have noted that $\left(M_{0}, f_{0}\right) \in \mathcal{S}$. Let $\left(M_{i}^{\prime}, f_{i}^{\prime}\right) \in \mathcal{C}$. Then $\left(M_{0}, f_{0}\right) \leq\left(M_{i}^{\prime}, f_{i}^{\prime}\right)$ which implies $M_{0} \subseteq M_{i}^{\prime} \subseteq N$ and $\left.f\right|_{M_{0}}=f|0, f|_{M_{i}}=f_{i}$ by our construction of f. Therefore $\left(M_{0}, f_{0}\right) \leq$ $\left(M_{i}^{\prime}, f_{i}^{\prime}\right) \leq(N, f)$ which shows that $(N, f) \in \mathcal{S}$ and that (N, f) is an upper bound for \mathcal{C}. It remains to show that f does in fact exist. (10)

First of all f is well-defined. Suppose that $n \in N$. Then $n \in M_{i}^{\prime}$ for some $i \in I$, where $\left(M_{i}^{\prime}, f_{i}^{\prime}\right) \in \mathcal{C}$. Suppose that $n \in M_{i^{\prime}}^{\prime}$, where $\left(M_{i^{\prime}}^{\prime}, f_{i^{\prime}}^{\prime}\right) \in \mathcal{C}$ also. Since $\left(M_{i}, f_{i}^{\prime}\right) \leq\left(M_{i^{\prime}}^{\prime}, f_{i^{\prime}}^{\prime}\right)$ or vice versa, we may assume $\left(M_{i}, f_{i}^{\prime}\right) \leq\left(M_{i^{\prime}}^{\prime}, f_{i^{\prime}}^{\prime}\right)$. Therefore $M_{i} \subseteq M_{i^{\prime}}$ which means that $f_{i^{\prime}}^{\prime}(n)=\left.f_{i^{\prime}}^{\prime}\right|_{M_{i}^{\prime}}(n)=f_{i}^{\prime}(n)$. Thus f is well defined. To see that f is a module map, let $n, n^{\prime} \in N$. We have seen that $n, n^{\prime} \in M_{i}$ for some $i \in I$. Since $\left.f\right|_{M_{i}}=f_{i}^{\prime}$ is a module map necessarily f is a module map. (5)
4. (20 points) (1) $0 \in L$ since $0 \cdot m=0 \in M^{\prime}$. Suppose that $r, r^{\prime \prime} \in L$ and
$r^{\prime} \in R$. Then $\left(r+r^{\prime} r^{\prime \prime}\right) \cdot m=r \cdot m+r^{\prime} \cdot\left(r^{\prime \prime} \cdot m\right) \in M^{\prime}+r^{\prime} \cdot M^{\prime} \subseteq M^{\prime}$. Therefore L is a left ideal of R. (5)
(2) Let $r, r^{\prime \prime} \in L$ and $r^{\prime} \in R$. Then, using part (1), we see that $r \cdot m$, $r^{\prime} r^{\prime \prime} \cdot m \in M^{\prime}$. Thus

$$
\begin{aligned}
F\left(r+r^{\prime} r^{\prime \prime}\right) & =f^{\prime}\left(\left(r+r^{\prime} r^{\prime \prime}\right) \cdot m\right) \\
& =f^{\prime}\left(r \cdot m+r^{\prime} r^{\prime \prime} \cdot m\right) \\
& =f^{\prime}(r \cdot m)+f^{\prime}\left(r^{\prime} r^{\prime \prime} \cdot m\right) \\
& =r \cdot f^{\prime}(m)+r^{\prime} r^{\prime \prime} \cdot f^{\prime}(m) \\
& =r \cdot f^{\prime}(m)+r^{\prime} \cdot\left(r^{\prime \prime} \cdot f^{\prime}(m)\right) \\
& =F(r)+r^{\prime} \cdot F\left(r^{\prime \prime}\right)
\end{aligned}
$$

which shows that F is a module homomorphism. (5)
(3) g is well-defined. Suppose that $r, r^{\prime} \in R$ and $r \cdot m=r^{\prime} \cdot m$. Then $\left(r-r^{\prime}\right) \cdot m=0$ which means that $r-r^{\prime} \in L$. Therefore

$$
G\left(r-r^{\prime}\right)=F\left(r-r^{\prime}\right)=f^{\prime}\left(\left(r-r^{\prime}\right) \cdot m\right)=f^{\prime}(0)=0
$$

which means that $G(r)=G\left(r^{\prime}\right)$. Therefore $g(r \cdot m)=g\left(r^{\prime} \cdot m\right)$.
Let $r, r^{\prime} r^{\prime \prime} \in R$. Then

$$
\begin{aligned}
g\left(r \cdot m+r^{\prime} \cdot\left(r^{\prime \prime} \cdot m\right)\right) & =g\left(\left(r+r^{\prime} r^{\prime \prime}\right) \cdot m\right) \\
& =G\left(r+r^{\prime} r^{\prime \prime}\right) \\
& =G(r)+G\left(r^{\prime} r^{\prime \prime}\right) \\
& =G(r)+r^{\prime} \cdot G\left(r^{\prime \prime}\right) \\
& =g(r \cdot m)+r^{\prime} \cdot g\left(r^{\prime \prime} \cdot m\right)
\end{aligned}
$$

which shows that g is a module homomorphism.
Let $x \in M^{\prime} \cap R \cdot m$. Then $x=r \cdot m$ for some $r \in R$ since $x \in R \cdot m$. Since $x \in M^{\prime}, r \in L$. Therefore $g(x)=g(r \cdot m)=G(r)=F(r)=f^{\prime}(r \cdot m)=f^{\prime}(x)$. (5)
(4) Let $m \in M$. With $f^{\prime}=f_{e}$ by parts (2) and (3) there is a homomorphism of left R-modules $g: R \cdot m \longrightarrow Q$ such that $\left.g\right|_{M_{e} \cap R \cdot m}=\left.f^{\prime}\right|_{M_{e} \cap R \cdot m}$. By part (1) of Problem 3, $\left(M_{e}, f^{\prime}\right) \leq\left(f^{\prime}+g, M_{e}+R \cdot m\right)$. By (PO.3) we conclude that $\left(f^{\prime}+g, M_{e}+R \cdot m\right) \in \mathcal{S}$. Therefore $\left(M_{e}, f^{\prime}\right)=\left(f^{\prime}+g, M_{e}+R \cdot m\right)$ which means $M_{e}=M_{e}+R \cdot m$. We have shown $m \in M_{e}$ and thus $M=M_{e}$. (5)

