Math 517

Written Homework # 4 Solution ¹

04/25/07

This homework set is a workout in Sections 6.1 and 6.2 of the ClassNotes.

1. (25 points) (1) (5) By the Eisenstein Criterion $x^{10} - 34 \in \mathbf{Q}[x]$ is irreducible with p = 2 (or 17). Therefore $x^{10} - 34$ this is the minimal polynomial of $\sqrt[10]{34}$ over \mathbf{Q} by 6.2.1(5). The degree of $\sqrt[10]{34}$ is 3 by 6.2.1(2).

(10) Ditto, by the Eisenstein Criterion $x^3 - 21 \in \mathbf{Q}[x]$ is irreducible with p = 3 (or 7). Thus $x^3 - 21$ this is the minimal polynomial of $\sqrt[3]{21}$ over \mathbf{Q} by 6.2.1(5). The degree of $\sqrt[3]{21}$ is 3 by 6.2.1(2). By 6.1.6 both $\mathbf{Q}[\sqrt[10]{34}]$ and $\mathbf{Q}[\sqrt[3]{21}]$ are finite field extensions of \mathbf{Q} .

Let $K = \mathbf{Q}[\sqrt[10]{34}][\sqrt[3]{21}] = \mathbf{Q}[\sqrt[3]{21}][\sqrt[10]{34}]$. Since $\sqrt[3]{21}$ is a root of $x^3 - 21 \in \mathbf{Q}[\sqrt[10]{34}]$ it follows that $[K : \mathbf{Q}[\sqrt[10]{34}]] \leq 3$ by 6.1.6. Therefore

$$[K: \mathbf{Q}] = [K: \mathbf{Q}[\sqrt[10]{34}]][\mathbf{Q}[\sqrt[10]{34}]: \mathbf{Q}] \le 3.10 = 30$$

by 6.1.1. Now $10 = [\mathbf{Q}[\sqrt[10]{34}] : \mathbf{Q}]$ and $3 = [\mathbf{Q}[\sqrt[3]{21}] : \mathbf{Q}]$ divide $[K : \mathbf{Q}]$ by 6.2.1(2). Therefore $30 \le [K : \mathbf{Q}]$. As $[K : \mathbf{Q}] \le 30$ we conclude $[K : \mathbf{Q}[\sqrt[10]{34}]] = 30$.

(2) (5) Since

$$30 = [K : \mathbf{Q}] = [K : \mathbf{Q}[\sqrt[3]{21}]][\mathbf{Q}[\sqrt[3]{21}] : \mathbf{Q}] = [K : \mathbf{Q}[\sqrt[3]{21}]] \cdot 3$$

it follows that $[K : \mathbf{Q}[\sqrt[3]{21}]] = 10$. Since $x^{10} - 34 \in \mathbf{Q}[\sqrt[3]{21}]$ is monic of degree 10 and has root $\sqrt[10]{34}$ it follows that $m_{\mathbf{Q}[\sqrt[3]{21}], \sqrt[10]{34}}(x) = x^{10} - 34$ by 6.2.1(5).

(3) (5) Since

$$30 = [K : \mathbf{Q}] = [K : \mathbf{Q}[\sqrt[10]{34}]][\mathbf{Q}[\sqrt[10]{34}] : \mathbf{Q}] = [K : \mathbf{Q}[\sqrt[10]{34}]] \cdot 10$$

¹Slightly revised 04/26/07.

it follows that $[K: \mathbf{Q}[\sqrt[10]{34}]] = 3$. Since $x^3 - 21 \in \mathbf{Q}[\sqrt[10]{34}]$ is monic of degree 3 and has root $\sqrt[3]{21}$ it follows that $m_{\mathbf{Q}[\sqrt[10]{34}], \sqrt[3]{21}}(x) = x^3 - 21$ by 6.2.1(5).

2. (25 points) (1) (10) By the Eisenstein Criterion $x^3 - n \in \mathbf{Q}[x]$ is irreducible. As $a \in \mathbf{R}$ is a root of this polynomial it follows by 6.1.6 that a is algebraic over \mathbf{Q} and by 6.2.1 that $m_{\mathbf{Q},a}(x) = x^3 - n$ and $[\mathbf{Q}[a] : \mathbf{Q}] = 3$. Now $\{1, a, a^2\}$ is a basis for $K = \mathbf{Q}[a]$ over \mathbf{Q} by 6.1.7.

(2) (15) Since $\{1, a, a^2\}$ is a basis for K over \mathbf{Q} and all $r \in \mathbf{Q}$ can be written $r = r1 + 0a + 0a^2$, it follows that $b = r + sa \notin \mathbf{Q}$ since $s \neq 0$. Now $\operatorname{Deg} m_{\mathbf{Q},a}(x)$ divides $[K : \mathbf{Q}] = 3$ by 6.2.1(3). Since $b \notin \mathbf{Q}$ necessarily $\operatorname{Deg} m_{\mathbf{Q},a}(x) = 3$. By 6.2.1(5) any monic polynomial $f(x) \in \mathbf{Q}[x]$ of degree 3 which has b as a root is $m_{\mathbf{Q},b}(x)$.

There are a couple of ways to find such an f(x). One is to note that b^3 is a **Q**-linear of $\{1, b, b^2\}$ by 6.1.7 and then find such a relation. From

$$b = r1 + sa, \quad b^2 = r^2 1 + 2rsa + s^2 a^2,$$

and

$$b^{3} = r^{3} + 3r^{2}sa + 3rs^{2}a^{2} + s^{3}a^{3} = (r^{3} + s^{3}n)1 + (3r^{2}s)a + (3rs^{2})a^{2}$$

we deduce

$$b^3 = (r^3 + s^3n)1 - 3r^2b + 3rb^2$$

Another way is to note that $a = \frac{1}{s}(b-r)$ and therefore

$$n = a^{3} = \frac{1}{s^{3}}(b^{3} - 3b^{2}r + 3br^{2} - r^{3}))$$

which leads to

$$b^3 - 3b^2r + 3br^2 - r^3 - s^3n = 0.$$

Therefore

$$m_{\mathbf{Q},b}(x) = x^3 - 3rx^2 + 3r^2x - r^3 - ns^3.$$

3. (25 points) (1) (7) Note that $\sqrt{2}$ is a root of $x^2 - 2 \in \mathbf{Q}[x]$. For the reasons cited in the solution to Problem 2 we can conclude that $\mathbf{Q}[\sqrt{2}]$ is an algebraic extension of \mathbf{Q} of degree 2 and $\mathbf{Q}[\sqrt{2}]$ has \mathbf{Q} -basis $\{1, \sqrt{2}\}$.

Suppose that $a = \sqrt{1 + \sqrt{2}} \in \mathbf{Q}[\sqrt{2}]$. Then $a = r1 + s\sqrt{2}$ for some $r, s \in \mathbf{Q}$. Squaring a yields

$$1 + \sqrt{2} = a^2 = r^2 + 2rs\sqrt{2} + 2s^2 = (r^2 + 2s^2)1 + 2rs\sqrt{2}$$

which holds if and only if

$$r^2 + 2s^2 = 1$$
 and $2rs = 1$.

Thus $r \neq 0$ (and incidently 1-2rs = 0; can't divide by this!!!!!). Substituting $s = \frac{1}{2r}$ into the first equation yields

$$2r^4 - 2r^2 + 1 = 0.$$

But then r^2 is a root of $2x^2 - 2x + 1$ which has no real roots by the quadratic formula, contradiction. (One student noted that $2r^2$ is a rational root of $x^2 - 2x + 2$ which is impossible by Eisenstein again.) Therefore $a \notin \mathbf{Q}[\sqrt{2}]$.

(2) (12) Since *a* is a root of $x^2 - (1 + \sqrt{2}) \in \mathbf{Q}[\sqrt{2}][x]$ it follows that $[\mathbf{Q}[\sqrt{2}][a] : \mathbf{Q}[\sqrt{2}]] \le 2$ by 6.1.6. Let $E = \mathbf{Q}[\sqrt{2}][a]$. Since $a \notin \mathbf{Q}[\sqrt{2}]$ necessarily $[E : \mathbf{Q}[\sqrt{2}]] = 2$. Thus $[E : \mathbf{Q}] = 4$ by 6.1.1. By 6.2.1(5) we deduce that $m_{\mathbf{Q}[\sqrt{2}],a}(x) = x^2 - (1 + \sqrt{2})$ and, as $(a^2 - 1)^2 = 2$, or equivalently $a^4 - 2a^2 - 1 = 0$, $m_{\mathbf{Q},a}(x) = x^4 - 2x^2 - 1$.

(3) (6) We note that

$$\begin{split} \mathbf{m}_{\mathbf{Q},a}(x) &= x^4 - 2x^2 - 1 \\ &= (x^2 - 1)^2 - 2 \\ &= ((x^2 - 1) - \sqrt{2})((x^2 - 1) + \sqrt{2}) \\ &= (x^2 - (1 + \sqrt{2}))(x^2 + (\sqrt{2} - 1)) \\ &= (x - \sqrt{1 + \sqrt{2}})(x + \sqrt{1 + \sqrt{2}})(x - i\sqrt{\sqrt{2} - 1})(x + i\sqrt{\sqrt{2} - 1}) \end{split}$$

Since $E \subseteq \mathbf{R}$ and $i\sqrt{\sqrt{2}-1} \notin \mathbf{R}$ and is a root of $x^2 + (\sqrt{2}-1) \in E[x]$, [K:E] = 2 and therefore $[K:\mathbf{Q}] = [K:E][E:\mathbf{Q}] = 8$ by 6.1.1.

There is a simpler description of K. Observe that

$$(i\sqrt{\sqrt{2}-1})(\sqrt{1+\sqrt{2}}) = i\sqrt{(\sqrt{2}-1)(\sqrt{2}+1)} = i\sqrt{2-1} = i.$$

Therefore $i \in K$ which means

$$K = E[i] = \mathbf{Q}[\sqrt{2}, \sqrt{1 + \sqrt{2}}, i].$$

4. (25 points) (1) (10) Let $a \in K$. The statement " $a \notin K_{alg}$ implies a is transcendental over K_{alg} ", that is " $a \notin K_{alg}$ implies a is not algebraic over K_{alg} ", is logically equivalent to its contrapositive "a algebraic over K_{alg} ". We show the latter.

Suppose that a is algebraic over K_{alg} . Then $K_{alg}[a]$ is an algebraic extension of K_{alg} by 6.1.6 and 6.2.2(1). By definition K_{alg} is an algebraic extension of F. Therefore $K_{alg}[a]$ is an algebraic extension of F by 6.2.2(3). By definition of algebraic extension $a \in K_{alg}$.

(2) (5) By definition $\{1, a, a^2, \ldots\}$ is linearly independent over F. Generally for vectors spaces over F, non-empty subsets of linearly independent subsets are linearly independent. Therefore $\{1, 1^n, a^{2n}, \ldots\}$ is linearly independent which means that a^n is transcendental over F by definition.

(10) Since a is a root of $x^n - a^n \in F(a^n)$ it follows that a is algebraic over $F(a^n)$ and $[F(a^n)[a]: F(a^n)] \leq n$ by 6.1.6. Since a is algebraic over $F(a^n)$ we have $F(a) = F(a^n)(a) = F(a^n)[a]$ by 6.1.5(2). Therefore $[F(a): F(a^n)] \leq n$. To complete the proof we need only show that $\{1, a, \ldots, a^{n-1}\}$ is linearly independent over $F(a^n)$.

Since a^n is transcendental over F the ring $F[a^n]$ is a polynomial ring in indeterminant a^n over F. The elements of $F(a^n)$ are quotients of polynomials in $F[a^n]$. Suppose that

$$\frac{f_0(a^n)}{g_0(a^n)} + \frac{f_1(a^n)}{g_1(a^n)}a + \dots + \frac{f_{n-1}(a^n)}{g_{n-1}(a^n)}a^{n-1} = 0,$$

where $f_i(a^n), g_i(a^n) \in F[a^n]$ and $g_i(a^n) \neq 0$ for all $0 \leq i \leq n-1$. "Clearing denominators" by multiplying both sides of the equation above by the product $g_0(a^n) \cdots g_{n-1}(a^n)$ results in

$$\sum_{i=0}^{n-1} g_0(a^n) \cdots g_{i-1}(a^n) \widehat{g_i(a^n)} g_{i+1}(a^n) \cdots g_{n-1}(a^n) f_i(a^n) a^i = 0,$$

where \frown means factor omitted. Now

$$g_0(a^n)\cdots g_{i-1}(a^n)g_i(a^n)g_{i+1}(a^n)\cdots g_{n-1}(a^n)f_i(a^n)a^i$$

is an *F*-linear combination of powers of the type $a^{\ell n+i}$, where $\ell \geq 0$. Since $n\mathbf{Z}, 1 + n\mathbf{Z}, \ldots, (n-1) + n\mathbf{Z}$, the left cosets of $n\mathbf{Z}$ in \mathbf{Z} , are disjoint and a is transcendental over *F*,

$$g_0(a^n)\cdots g_{i-1}(a^n)g_i(a^n)g_{i+1}(a^n)\cdots g_{n-1}(a^n)f_i(a^n)a^i=0$$

for all $0 \le i \le n-1$. Since F[a] is an integral domain $f_i(a^n) = 0$ for all $0 \le i \le n-1$. Therefore

$$\frac{f_0(a^n)}{g_0(a^n)} = \frac{f_1(a^n)}{g_1(a^n)} = \dots = \frac{f_{n-1}(a^n)}{g_{n-1}(a^n)} = 0$$

which shows that $\{1, a, \ldots, a^{n-1}\}$ is linearly independent.