Written Homework \# 4 Solution ${ }^{1}$

04/25/07

This homework set is a workout in Sections 6.1 and 6.2 of the ClassNotes.

1. (25 points) (1) (5) By the Eisenstein Criterion $x^{10}-34 \in \mathbf{Q}[x]$ is irreducible with $p=2$ (or 17). Therefore $x^{10}-34$ this is the minimal polynomial of $\sqrt[10]{34}$ over \mathbf{Q} by 6.2.1(5). The degree of $\sqrt[10]{34}$ is 3 by 6.2.1(2).
(10) Ditto, by the Eisenstein Criterion $x^{3}-21 \in \mathbf{Q}[x]$ is irreducible with $p=3$ (or 7). Thus $x^{3}-21$ this is the minimal polynomial of $\sqrt[3]{21}$ over \mathbf{Q} by $6.2 \cdot 1(5)$. The degree of $\sqrt[3]{21}$ is 3 by $6 \cdot 2 \cdot 1(2)$. By 6.1 .6 both $\mathbf{Q}[\sqrt[10]{34}]$ and $\mathbf{Q} \sqrt[3]{21}]$ are finite field extensions of \mathbf{Q}.

Let $K=\mathbf{Q}[\sqrt[10]{34}][\sqrt[3]{21}]=\mathbf{Q}[\sqrt[3]{21}][\sqrt[10]{34}]$. Since $\sqrt[3]{21}$ is a root of $x^{3}-21 \in$ $\mathbf{Q}[\sqrt[10]{34}]$ it follows that $[K: \mathbf{Q}[\sqrt[10]{34}]] \leq 3$ by 6.1.6. Therefore

$$
[K: \mathbf{Q}]=[K: \mathbf{Q}[\sqrt[10]{34}]][\mathbf{Q}[\sqrt[10]{34}]: \mathbf{Q}] \leq 3 \cdot 10=30
$$

by 6.1.1. Now $10=[\mathbf{Q}[\sqrt[10]{34}]: \mathbf{Q}]$ and $3=[\mathbf{Q}[\sqrt[3]{21}]: \mathbf{Q}]$ divide $[K: \mathbf{Q}]$ by $6.2 .1(2)$. Therefore $30 \leq[K: \mathbf{Q}]$. As $[K: \mathbf{Q}] \leq 30$ we conclude $[K:$ $\mathbf{Q}[\sqrt[10]{34}]]=30$.
(2) (5) Since

$$
30=[K: \mathbf{Q}]=[K: \mathbf{Q}[\sqrt[3]{21}]][\mathbf{Q} \sqrt[3]{21}]: \mathbf{Q}]=[K: \mathbf{Q}[\sqrt[3]{21}]] \cdot 3
$$

it follows that $[K: \mathbf{Q}[\sqrt[3]{21}]]=10$. Since $\left.x^{10}-34 \in \mathbf{Q} \sqrt[3]{21}\right]$ is monic of degree 10 and has root $\sqrt[10]{34}$ it follows that $\mathrm{m}_{\mathbf{Q}[\sqrt[3]{21}], \sqrt[10]{34}}(x)=x^{10}-34$ by $6.2 .1(5)$.
(3) (5) Since

$$
30=[K: \mathbf{Q}]=[K: \mathbf{Q}[\sqrt[10]{34}]][\mathbf{Q}[\sqrt[{[} 0]{34}]: \mathbf{Q}]=[K: \mathbf{Q}[\sqrt[10]{34}]] \cdot 10
$$

[^0]it follows that $[K: \mathbf{Q}[\sqrt[10]{34}]]=3$. Since $x^{3}-21 \in \mathbf{Q}[\sqrt[10]{34}]$ is monic of degree 3 and has root $\sqrt[3]{21}$ it follows that $\mathrm{m}_{\mathbf{Q}[\sqrt[1]{34]}, \sqrt[3]{21}}(x)=x^{3}-21$ by $6.2 \cdot 1(5)$.
2. (25 points) (1) (10) By the Eisenstein Criterion $x^{3}-n \in \mathbf{Q}[x]$ is irreducible. As $a \in \mathbf{R}$ is a root of this polynomial it follows by 6.1.6 that a is algebraic over \mathbf{Q} and by 6.2 .1 that $m_{\mathbf{Q}, a}(x)=x^{3}-n$ and $[\mathbf{Q}[a]: \mathbf{Q}]=3$. Now $\left\{1, a, a^{2}\right\}$ is a basis for $K=\mathbf{Q}[a]$ over \mathbf{Q} by 6.1.7.
(2) (15) Since $\left\{1, a, a^{2}\right\}$ is a basis for K over \mathbf{Q} and all $r \in \mathbf{Q}$ can be written $r=r 1+0 a+0 a^{2}$, it follows that $b=r+s a \notin \mathbf{Q}$ since $s \neq 0$. Now $\operatorname{Deg} m_{\mathbf{Q}, a}(x)$ divides $[K: \mathbf{Q}]=3$ by 6.2.1(3). Since $b \notin \mathbf{Q}$ necessarily $\operatorname{Deg} m_{\mathbf{Q}, a}(x)=3$. By 6.2.1(5) any monic polynomial $f(x) \in \mathbf{Q}[x]$ of degree 3 which has b as a root is $m_{\mathbf{Q}, b}(x)$.

There are a couple of ways to find such an $f(x)$. One is to note that b^{3} is a \mathbf{Q}-linear of $\left\{1, b, b^{2}\right\}$ by 6.1.7 and then find such a relation. From

$$
b=r 1+s a, \quad b^{2}=r^{2} 1+2 r s a+s^{2} a^{2},
$$

and

$$
b^{3}=r^{3}+3 r^{2} s a+3 r s^{2} a^{2}+s^{3} a^{3}=\left(r^{3}+s^{3} n\right) 1+\left(3 r^{2} s\right) a+\left(3 r s^{2}\right) a^{2}
$$

we deduce

$$
b^{3}=\left(r^{3}+s^{3} n\right) 1-3 r^{2} b+3 r b^{2}
$$

Another way is to note that $a=\frac{1}{s}(b-r)$ and therefore

$$
\left.n=a^{3}=\frac{1}{s^{3}}\left(b^{3}-3 b^{2} r+3 b r^{2}-r^{3}\right)\right)
$$

which leads to

$$
b^{3}-3 b^{2} r+3 b r^{2}-r^{3}-s^{3} n=0
$$

Therefore

$$
\mathrm{m}_{\mathbf{Q}, b}(x)=x^{3}-3 r x^{2}+3 r^{2} x-r^{3}-n s^{3} .
$$

3. (25 points) (1) (7) Note that $\sqrt{2}$ is a root of $x^{2}-2 \in \mathbf{Q}[x]$. For the reasons cited in the solution to Problem 2 we can conclude that $\mathbf{Q}[\sqrt{2}]$ is an algebraic extension of \mathbf{Q} of degree 2 and $\mathbf{Q}[\sqrt{2}]$ has \mathbf{Q}-basis $\{1, \sqrt{2}\}$.

Suppose that $a=\sqrt{1+\sqrt{2}} \in \mathbf{Q}[\sqrt{2}]$. Then $a=r 1+s \sqrt{2}$ for some $r, s \in \mathbf{Q}$. Squaring a yields

$$
1+\sqrt{2}=a^{2}=r^{2}+2 r s \sqrt{2}+2 s^{2}=\left(r^{2}+2 s^{2}\right) 1+2 r s \sqrt{2}
$$

which holds if and only if

$$
r^{2}+2 s^{2}=1 \quad \text { and } \quad 2 r s=1 .
$$

Thus $r \neq 0$ (and incidently $1-2 r s=0$; can't divide by this!!!!!). Substituting $s=\frac{1}{2 r}$ into the first equation yields

$$
2 r^{4}-2 r^{2}+1=0
$$

But then r^{2} is a root of $2 x^{2}-2 x+1$ which has no real roots by the quadratic formula, contradiction. (One student noted that $2 r^{2}$ is a rational root of $x^{2}-2 x+2$ which is impossible by Eisenstein again.) Therefore $a \notin \mathbf{Q}[\sqrt{2}]$.
(2) (12) Since a is a root of $x^{2}-(1+\sqrt{2}) \in \mathbf{Q}[\sqrt{2}][x]$ it follows that $[\mathbf{Q}[\sqrt{2}][a]: \mathbf{Q}[\sqrt{2}]] \leq 2$ by 6.1.6. Let $E=\mathbf{Q}[\sqrt{2}][a]$. Since $a \notin \mathbf{Q}[\sqrt{2}]$ necessarily $[E: \mathbf{Q}[\sqrt{2}]]=2$. Thus $[E: \mathbf{Q}]=4$ by 6.1.1. By 6.2.1(5) we deduce that $\mathrm{m}_{\mathbf{Q}[\sqrt{2}], a}(x)=x^{2}-(1+\sqrt{2})$ and, as $\left(a^{2}-1\right)^{2}=2$, or equivalently $a^{4}-2 a^{2}-1=0, \mathrm{~m}_{\mathbf{Q}, a}(x)=x^{4}-2 x^{2}-1$.
(3) (6) We note that

$$
\begin{aligned}
\mathrm{m}_{\mathbf{Q}, a}(x) & =x^{4}-2 x^{2}-1 \\
& =\left(x^{2}-1\right)^{2}-2 \\
& =\left(\left(x^{2}-1\right)-\sqrt{2}\right)\left(\left(x^{2}-1\right)+\sqrt{2}\right) \\
& =\left(x^{2}-(1+\sqrt{2})\right)\left(x^{2}+(\sqrt{2}-1)\right) \\
& =(x-\sqrt{1+\sqrt{2}})(x+\sqrt{1+\sqrt{2}})(x-\imath \sqrt{\sqrt{2}-1})(x+\imath \sqrt{\sqrt{2}-1})
\end{aligned}
$$

Since $E \subseteq \mathbf{R}$ and $2 \sqrt{\sqrt{2}-1} \notin \mathbf{R}$ and is a root of $x^{2}+(\sqrt{2}-1) \in E[x]$, $[K: E]=2$ and therefore $[K: \mathbf{Q}]=[K: E][E: \mathbf{Q}]=8$ by 6.1.1.

There is a simpler description of K. Observe that

$$
(\imath \sqrt{\sqrt{2}-1})(\sqrt{1+\sqrt{2}})=\imath \sqrt{(\sqrt{2}-1)(\sqrt{2}+1)}=\imath \sqrt{2-1}=\imath .
$$

Therefore $\imath \in K$ which means

$$
K=E[\imath]=\mathbf{Q}[\sqrt{2}, \sqrt{1+\sqrt{2}}, \imath] .
$$

4. (25 points) (1) (10) Let $a \in K$. The statement " $a \notin K_{\text {alg }}$ implies a is transcendental over $K_{a l g}$ ", that is " $a \notin K_{a l g}$ implies a is not algebraic over $K_{\text {alg }}$ ", is logically equivalent to its contrapositive " a algebraic over $K_{\text {alg }}$ implies $a \in K_{\text {alg }}$ ". We show the latter.

Suppose that a is algebraic over $K_{a l g}$. Then $K_{a l g}[a]$ is an algebraic extension of $K_{a l g}$ by 6.1.6 and 6.2.2(1). By definition $K_{a l g}$ is an algebraic extension of F. Therefore $K_{a l g}[a]$ is an algebraic extension of F by 6.2.2(3). By definition of algebraic extension $a \in K_{a l g}$.
(2) (5) By definition $\left\{1, a, a^{2}, \ldots\right\}$ is linearly independent over F. Generally for vectors spaces over F, non-empty subsets of linearly independent subsets are linearly independent. Therefore $\left\{1,1^{n}, a^{2 n}, \ldots\right\}$ is linearly independent which means that a^{n} is transcendental over F by definition.
(10) Since a is a root of $x^{n}-a^{n} \in F\left(a^{n}\right)$ it follows that a is algebraic over $F\left(a^{n}\right)$ and $\left[F\left(a^{n}\right)[a]: F\left(a^{n}\right)\right] \leq n$ by 6.1.6. Since a is algebraic over $F\left(a^{n}\right)$ we have $F(a)=F\left(a^{n}\right)(a)=F\left(a^{n}\right)[a]$ by 6.1.5(2). Therefore $\left[F(a): F\left(a^{n}\right)\right] \leq n$. To complete the proof we need only show that $\left\{1, a, \ldots, a^{n-1}\right\}$ is linearly independent over $F\left(a^{n}\right)$.

Since a^{n} is transcendental over F the ring $F\left[a^{n}\right]$ is a polynomial ring in indeterminant a^{n} over F. The elements of $F\left(a^{n}\right)$ are quotients of polynomials in $F\left[a^{n}\right]$. Suppose that

$$
\frac{f_{0}\left(a^{n}\right)}{g_{0}\left(a^{n}\right)}+\frac{f_{1}\left(a^{n}\right)}{g_{1}\left(a^{n}\right)} a+\cdots+\frac{f_{n-1}\left(a^{n}\right)}{g_{n-1}\left(a^{n}\right)} a^{n-1}=0
$$

where $f_{i}\left(a^{n}\right), g_{i}\left(a^{n}\right) \in F\left[a^{n}\right]$ and $g_{i}\left(a^{n}\right) \neq 0$ for all $0 \leq i \leq n-1$. "Clearing denominators" by multiplying both sides of the equation above by the product $g_{0}\left(a^{n}\right) \cdots g_{n-1}\left(a^{n}\right)$ results in

$$
\left.\sum_{i=0}^{n-1} g_{0}\left(a^{n}\right) \cdots g_{i-1}\left(a^{n}\right) g_{i} \widehat{\left(a^{n}\right.}\right) g_{i+1}\left(a^{n}\right) \cdots g_{n-1}\left(a^{n}\right) f_{i}\left(a^{n}\right) a^{i}=0
$$

where means factor omitted. Now

$$
\left.g_{0}\left(a^{n}\right) \cdots g_{i-1}\left(a^{n}\right) g_{i} \widehat{\left(a^{n}\right.}\right) g_{i+1}\left(a^{n}\right) \cdots g_{n-1}\left(a^{n}\right) f_{i}\left(a^{n}\right) a^{i}
$$

is an F-linear combination of powers of the type $a^{\ell n+i}$, where $\ell \geq 0$. Since $n \mathbf{Z}, 1+n \mathbf{Z}, \ldots,(n-1)+n \mathbf{Z}$, the left cosets of $n \mathbf{Z}$ in \mathbf{Z}, are disjoint and a is transcendental over F,

$$
\left.g_{0}\left(a^{n}\right) \cdots g_{i-1}\left(a^{n}\right) g_{i} \widehat{\left(a^{n}\right.}\right) g_{i+1}\left(a^{n}\right) \cdots g_{n-1}\left(a^{n}\right) f_{i}\left(a^{n}\right) a^{i}=0
$$

for all $0 \leq i \leq n-1$. Since $F[a]$ is an integral domain $f_{i}\left(a^{n}\right)=0$ for all $0 \leq i \leq n-1$. Therefore

$$
\frac{f_{0}\left(a^{n}\right)}{g_{0}\left(a^{n}\right)}=\frac{f_{1}\left(a^{n}\right)}{g_{1}\left(a^{n}\right)}=\cdots=\frac{f_{n-1}\left(a^{n}\right)}{g_{n-1}\left(a^{n}\right)}=0
$$

which shows that $\left\{1, a, \ldots, a^{n-1}\right\}$ is linearly independent.

[^0]: ${ }^{1}$ Slightly revised 04/26/07.

