
Math 517 Spring 2007 Radford

Written Homework # 4 Solution 1

04/25/07

This homework set is a workout in Sections 6.1 and 6.2 of the ClassNotes.

1. (25 points) (1) (5) By the Eisenstein Criterion x10 − 34 ∈ Q[x] is irre-
ducible with p = 2 (or 17). Therefore x10−34 this is the minimal polynomial
of 10
√

34 over Q by 6.2.1(5). The degree of 10
√

34 is 3 by 6.2.1(2).
(10) Ditto, by the Eisenstein Criterion x3− 21 ∈ Q[x] is irreducible with

p = 3 (or 7). Thus x3 − 21 this is the minimal polynomial of 3
√

21 over Q
by 6.2.1(5). The degree of 3

√
21 is 3 by 6.2.1(2). By 6.1.6 both Q[10

√
34] and

Q[3
√

21] are finite field extensions of Q.
Let K = Q[10

√
34][3
√

21] = Q[3
√

21][10
√

34]. Since 3
√

21 is a root of x3 − 21 ∈
Q[10
√

34] it follows that [K : Q[10
√

34]] ≤ 3 by 6.1.6. Therefore

[K : Q] = [K : Q[10
√

34]][Q[10
√

34] : Q] ≤ 3·10 = 30

by 6.1.1. Now 10 = [Q[10
√

34] : Q] and 3 = [Q[3
√

21] : Q] divide [K : Q]
by 6.2.1(2). Therefore 30 ≤ [K : Q]. As [K : Q] ≤ 30 we conclude [K :
Q[10
√

34]] = 30.

(2) (5) Since

30 = [K : Q] = [K : Q[3
√

21]][Q[3
√

21] : Q] = [K : Q[3
√

21]]·3

it follows that [K : Q[3
√

21]] = 10. Since x10− 34 ∈ Q[3
√

21] is monic of degree
10 and has root 10

√
34 it follows that mQ[3

√
21], 10

√
34(x) = x10 − 34 by 6.2.1(5).

(3) (5) Since

30 = [K : Q] = [K : Q[10
√

34]][Q[10
√

34] : Q] = [K : Q[10
√

34]]·10

1Slightly revised 04/26/07.
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it follows that [K : Q[10
√

34]] = 3. Since x3 − 21 ∈ Q[10
√

34] is monic of degree
3 and has root 3

√
21 it follows that mQ[10

√
34], 3

√
21(x) = x3 − 21 by 6.2.1(5).

2. (25 points) (1) (10) By the Eisenstein Criterion x3 − n ∈ Q[x] is irre-
ducible. As a ∈ R is a root of this polynomial it follows by 6.1.6 that a is
algebraic over Q and by 6.2.1 that mQ,a(x) = x3 − n and [Q[a] : Q] = 3.
Now {1, a, a2} is a basis for K = Q[a] over Q by 6.1.7.

(2) (15) Since {1, a, a2} is a basis for K over Q and all r ∈ Q can be
written r = r1 + 0a + 0a2, it follows that b = r + sa 6∈ Q since s 6= 0.
Now Deg mQ,a(x) divides [K : Q] = 3 by 6.2.1(3). Since b 6∈ Q necessarily
Deg mQ,a(x) = 3. By 6.2.1(5) any monic polynomial f(x) ∈ Q[x] of degree
3 which has b as a root is mQ,b(x).

There are a couple of ways to find such an f(x). One is to note that b3

is a Q-linear of {1, b, b2} by 6.1.7 and then find such a relation. From

b = r1 + sa, b2 = r21 + 2rsa + s2a2,

and

b3 = r3 + 3r2sa + 3rs2a2 + s3a3 = (r3 + s3n)1 + (3r2s)a + (3rs2)a2

we deduce
b3 = (r3 + s3n)1− 3r2b + 3rb2.

Another way is to note that a =
1

s
(b− r) and therefore

n = a3 =
1

s3
(b3 − 3b2r + 3br2 − r3))

which leads to
b3 − 3b2r + 3br2 − r3 − s3n = 0.

Therefore
mQ,b(x) = x3 − 3rx2 + 3r2x− r3 − ns3.

3. (25 points) (1) (7) Note that
√

2 is a root of x2 − 2 ∈ Q[x]. For the
reasons cited in the solution to Problem 2 we can conclude that Q[

√
2] is an

algebraic extension of Q of degree 2 and Q[
√

2] has Q-basis {1,√2}.
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Suppose that a =
√

1 +
√

2 ∈ Q[
√

2]. Then a = r1 + s
√

2 for some
r, s ∈ Q. Squaring a yields

1 +
√

2 = a2 = r2 + 2rs
√

2 + 2s2 = (r2 + 2s2)1 + 2rs
√

2

which holds if and only if

r2 + 2s2 = 1 and 2rs = 1.

Thus r 6= 0 (and incidently 1−2rs = 0; can’t divide by this!!!!!). Substituting

s =
1

2r
into the first equation yields

2r4 − 2r2 + 1 = 0.

But then r2 is a root of 2x2−2x+1 which has no real roots by the quadratic
formula, contradiction. (One student noted that 2r2 is a rational root of
x2 − 2x + 2 which is impossible by Eisenstein again.) Therefore a 6∈ Q[

√
2].

(2) (12) Since a is a root of x2 − (1 +
√

2) ∈ Q[
√

2][x] it follows that
[Q[
√

2][a] : Q[
√

2]] ≤ 2 by 6.1.6. Let E = Q[
√

2][a]. Since a 6∈ Q[
√

2]
necessarily [E : Q[

√
2]] = 2. Thus [E : Q] = 4 by 6.1.1. By 6.2.1(5) we

deduce that mQ[
√

2],a(x) = x2−(1+
√

2) and, as (a2−1)2 = 2, or equivalently

a4 − 2a2 − 1 = 0, mQ,a(x) = x4 − 2x2 − 1.
(3) (6) We note that

mQ,a(x) = x4 − 2x2 − 1

= (x2 − 1)2 − 2

= ((x2 − 1)−
√

2)((x2 − 1) +
√

2)

= (x2 − (1 +
√

2))(x2 + (
√

2− 1))

= (x−
√

1 +
√

2)(x +
√

1 +
√

2)(x− ı
√√

2− 1)(x + ı
√√

2− 1)

Since E ⊆ R and ı
√√

2− 1 6∈ R and is a root of x2 + (
√

2− 1) ∈ E[x],
[K : E] = 2 and therefore [K : Q] = [K : E][E : Q] = 8 by 6.1.1.

There is a simpler description of K. Observe that

(ı
√√

2− 1)(
√

1 +
√

2) = ı
√

(
√

2− 1)(
√

2 + 1) = ı
√

2− 1 = ı.
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Therefore ı ∈ K which means

K = E[ı] = Q[
√

2,
√

1 +
√

2, ı].

4. (25 points) (1) (10) Let a ∈ K. The statement “a 6∈ Kalg implies a
is transcendental over Kalg”, that is “a 6∈ Kalg implies a is not algebraic
over Kalg”, is logically equivalent to its contrapositive “a algebraic over Kalg

implies a ∈ Kalg”. We show the latter.
Suppose that a is algebraic over Kalg. Then Kalg[a] is an algebraic ex-

tension of Kalg by 6.1.6 and 6.2.2(1). By definition Kalg is an algebraic
extension of F . Therefore Kalg[a] is an algebraic extension of F by 6.2.2(3).
By definition of algebraic extension a ∈ Kalg.

(2) (5) By definition {1, a, a2, . . .} is linearly independent over F . Gen-
erally for vectors spaces over F , non-empty subsets of linearly independent
subsets are linearly independent. Therefore {1, 1n, a2n, . . .} is linearly inde-
pendent which means that an is transcendental over F by definition.

(10) Since a is a root of xn−an ∈ F (an) it follows that a is algebraic over
F (an) and [F (an)[a] : F (an)] ≤ n by 6.1.6. Since a is algebraic over F (an) we
have F (a) = F (an)(a) = F (an)[a] by 6.1.5(2). Therefore [F (a) : F (an)] ≤ n.
To complete the proof we need only show that {1, a, . . . , an−1} is linearly
independent over F (an).

Since an is transcendental over F the ring F [an] is a polynomial ring in
indeterminant an over F . The elements of F (an) are quotients of polynomials
in F [an]. Suppose that

f0(a
n)

g0(an)
+

f1(a
n)

g1(an)
a + · · ·+ fn−1(a

n)

gn−1(an)
an−1 = 0,

where fi(a
n), gi(a

n) ∈ F [an] and gi(a
n) 6= 0 for all 0 ≤ i ≤ n − 1. “Clear-

ing denominators” by multiplying both sides of the equation above by the
product g0(a

n) · · · gn−1(a
n) results in

n−1∑

i=0

g0(a
n) · · · gi−1(a

n) ̂gi(an)gi+1(a
n) · · · gn−1(a

n)fi(a
n)ai = 0,

where ̂ means factor omitted. Now

g0(a
n) · · · gi−1(a

n) ̂gi(an)gi+1(a
n) · · · gn−1(a

n)fi(a
n)ai
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is an F -linear combination of powers of the type a`n+i, where ` ≥ 0. Since
nZ, 1 + nZ, . . . , (n − 1) + nZ, the left cosets of nZ in Z, are disjoint and a
is transcendental over F ,

g0(a
n) · · · gi−1(a

n) ̂gi(an)gi+1(a
n) · · · gn−1(a

n)fi(a
n)ai = 0

for all 0 ≤ i ≤ n − 1. Since F [a] is an integral domain fi(a
n) = 0 for all

0 ≤ i ≤ n− 1. Therefore

f0(a
n)

g0(an)
=

f1(a
n)

g1(an)
= · · · = fn−1(a

n)

gn−1(an)
= 0

which shows that {1, a, . . . , an−1} is linearly independent.
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