Spring 2007

Radford

Written Homework # 2

Due at the beginning of class $02/23/07^1$

Throughout R and S are rings with unity; \mathbf{Z} denotes the ring of integers and \mathbf{Q} , \mathbf{R} , and \mathbf{C} denote the rings of rational, real, and complex numbers respectively.

1. Regard **C** as a (left) **Z**-module, **Q**-module, and **R**-module by multiplication in **C**. Let $f : \mathbf{C} \longrightarrow \mathbf{C}$ be the function defined by f(r + si) = s + ri for all $r, s \in \mathbf{R}$. Prove or disprove:

- (1) f is a homomorphism of additive groups (that is a homomorphism of **Z**-modules);
- (2) f is a homomorphism of **Q**-modules;
- (3) f is a homomorphism of **R**-modules;
- (4) f is a homomorphism of C-modules.

To disprove a statement find one specific example for which the statement fails.

2. Suppose that R is commutative, $_{R}L$, $_{R}M$, $_{R}N$, $_{R}L'$, and $_{R}M'$. Using results from ClassNotes:

- (1) Show that there are *R*-module isomorphisms $R \otimes_R M \simeq M$, $M \otimes_R R \simeq M$, and $L \otimes_R (M \otimes_R N) \simeq (L \otimes_R M) \otimes_R N$.
- (2) Suppose that $f : L \longrightarrow L'$ and $g : M \longrightarrow M'$ are left *R*-module homomorphisms. Show that $f \otimes g : L \otimes_R M \longrightarrow L' \otimes_R M'$ is a left *R*-module homomorphism.

¹Slightly revised 02/07/07.

3. Suppose L_R , $_RM_S$, and $_SN$. Use results from ClassNotes, except Propostion 2.1.9, to establish that there is a homomorphism of abelian groups $F: L \otimes_R (M \otimes_S N) \longrightarrow (L \otimes_R M) \otimes_S N$ given by $F(\ell \otimes (m \otimes n)) = (\ell \otimes m) \otimes n$ as follows:

- (1) Let $\ell \in L$ be fixed. Show that there is a homomorphism of abelian groups $f_{\ell}: M \otimes_S N \longrightarrow (L \otimes_R M) \otimes_S N$ given by $f_{\ell}(m \otimes n) = (\ell \otimes m) \otimes n$ for all $m \in M$ and $n \in N$.
- (2) Show that $f_{\ell} + f_{\ell'} = f_{\ell+\ell'}$ for all $\ell, \ell' \in L$.
- (3) Show that $f : L \times (M \otimes_S N) \longrightarrow (L \otimes_R M) \otimes_S N$ defined by $f(\ell, x) = f_{\ell}(x)$ for all $\ell \in L$ and $x \in M \otimes N$ is *R*-balanced.
- (4) Using (3) deduce the existence of F.

4. Prove Proposition 3.2.1, parts (2) and (3), and Theorem 3.2.2 from Class-Notes.

5. Let D be an integral domain and let F be its field of quotients. We may assume that D is a subring of F and we regard F as a left D-module by multiplication in F.

- (1) Suppose that M and N are submodules of F. Show that $M \cap N = (0)$ implies M = (0) or N = (0).
- (2) Suppose that F is a free D-module and let $\{m_i\}_{i \in I}$ be a basis for F. Show that |I| = 1.
- (3) Show that F is a free D-module if and only if D = F.
- (4) Suppose that P is a non-zero projective R-module and $f : F \longrightarrow P$ is a surjective R-module homomorphism. Show that f is an isomorphism. [Hint: Consider part (1) of Proposition 3.2.1 which you can use without proof.]
- (5) Show that there is no surjective homomorphism of *D*-modules $f : F \longrightarrow D$ unless D = F. [Hint: *D* is a free, hence projective, *D*-module.]