Spring 2007

Written Homework # 3

Due at the beginning of class 03/16/07

Throughout R is a ring with unity and all R-modules are unital.

- 1. Suppose that R is commutative and $a, b, c \in R$ satisfy c|a and c|b.
 - (1) Show that there is a homomorphism of R-modules

 $f: R/Ra \otimes_R R/Rb \longrightarrow R/Rc$

such that $f((r + Ra) \otimes (s + Rb)) = rs + Rc$ for all $r, s \in R$.

- (2) Suppose further that c = xa + yb for some $x, y \in R$. Show that the homomorphism of (1) is an isomorphism. [Hint: Show that there is a homomorphism of *R*-modules $g : R/Rc \longrightarrow R/Ra \otimes_R R/Rb$ given by $g(r + Rc) = (r + Ra) \otimes (1 + Rb)$ for all $r \in R$.]
- (3) Suppose that R is a Principal Ideal Domain (for example **Z**) and c is a greatest common divisor of a and b. Show that $R/Ra \otimes_R R/Rb \simeq R/Rc$.

2. Let D be an integral domain, regard it as a subring of its field of quotients F, and regard F as a left D-module under multiplication.

- (1) Suppose that F is submodule of a free D-module. Show that F = D.
- (2) Show that F is a projective D-module if and only if F = D.

[Hint: For part (1) let M be a free left D-module with basis $\{m_i\}_{i \in I}$. For a non-zero $m \in M$ there is a finite list of distinct elements m_{i_1}, \ldots, m_{i_s} of M such that $m = r_1 \cdot m_{i_1} + \cdots + r_s \cdot m_{i_s}$ where $r_1, \ldots, r_s \in D \setminus 0$. This list is unique up to order. Define

$$\operatorname{supp}(m) = \{m_{i_1}, \dots, m_{i_s}\}.$$

You may assume the preceding (which holds for any ring with unity R).

Now suppose that F is a submodule of M. Show that $\operatorname{supp}(x) = \operatorname{supp}(1)$ for all $x \in F \setminus 0$. Let $\operatorname{supp}(1) = \{m_1, \ldots, m_s\}$, where the m_i 's are distinct. Use the fact that $F \subseteq D \cdot m_1 \oplus \cdots \oplus D \cdot m_s$ to construct a surjective homomorphism of D-modules $f : F \longrightarrow D$. You may use Exercise 5 of Written Homework #2.]

In the next two exercises we will consider the details of the proof of Baer's Criterion. The notion of injective module can be formulated in a slightly more convenient way:

Lemma 1 Let R be a ring with unity. Then a left R-module Q is injective if and only if whenever M' is a submodule of left R-module M, every R-module homomorphism $f': M' \longrightarrow Q$ extends to an R-module homomorphism $f: M \longrightarrow Q$.

From this point on M and Q are fixed left R-modules. The notation (f', M') will mean that M' is a submodule of M and $f : M' \longrightarrow Q$ is a homomorphism of left R-modules. For such pairs (f', M') and (f'', M'') the notation $(f', M') \leq (f'', M'')$ means that $M' \subseteq M''$ and f'' extends f'; that is f''(m) = f'(m) for all $m \in M'$.

3. Consider a fixed (f_0, M_0) and let

$$\mathcal{S} = \{ (f', M') \, | \, (f_0, M_0) \le (f', M') \}.$$

- (1) Suppose that $(f', M'), (f'', M'') \in S$ and satisfy f'(m) = f''(m) for all $m \in M' \cap M''$. Show that $(f' + f'', M' + M'') \in S$, where (f' + f'')(m' + m'') = f'(m') + f''(m'') for all $m' \in M'$ and $m'' \in M''$. [Hint: Be sure to show that f' + f'' is well-defined.]
- (2) Show that S is a partially ordered set under \leq and that S has a maximal element (f_e, M_e) .
- (3) Show that $(f', M') \leq (f_e, M_e)$ for all $(f', M') \in S$. [Hint: (f_e, M_e) maximal means whenever $(f', M') \in S$ and $(f_e, M_e) \leq (f', M')$ then $(f_e, M_e) = (f', M')$. Thus part (3) is saying something much more than maximal.]
- 4. Suppose that $(f', M') \in \mathcal{S}$ and let $m \in M$.

- (1) Show that $L = \{r \in R \mid r \cdot m \in M'\}$ is a left ideal of R.
- (2) Show that $F: L \longrightarrow Q$ defined by $F(r) = f'(r \cdot m)$ for all $r \in L$ is a homomorphism of left *R*-modules.
- (3) Suppose that F has an extension to an R-module homomorphism G: $R \longrightarrow Q$. Show that $g: R \cdot m \longrightarrow Q$ given by $g(r \cdot m) = G(r)$ for all $r \in R$ is a well-defined homomorphism of left R-modules and g(x) = f'(x) for all $x \in M' \cap R \cdot m$.
- (4) Suppose for all left ideals L of R that every homomorphism of left R-modules $F : L \longrightarrow Q$ has an R-module homomorphism extension $G : R \longrightarrow Q$. Show that $M_e = M$.