Written Homework \# 4

Due at the beginning of class 04/13/07

If F and K are fields then $F \subseteq K$ means that F is a subfield of K. Also \mathbf{Q}, \mathbf{R} and \mathbf{C} denote the fields of rational, real, and complex numbers respectively. You must justify your answers.

1. Find:
(1) The degree of $\sqrt[10]{34}$ over \mathbf{Q};

(3) $\mathrm{m}_{\mathbf{Q}[\sqrt[1234]{34}, \sqrt[3]{21}}(x)$.
2. Let $a=\sqrt[3]{n} \in \mathbf{R}$, where $n \geq 2$ and is an integer such that p divides n but p^{2} does not divide n for some prime p. Let $K=\mathbf{Q}[a]$.
(1) Determine $[K: \mathbf{Q}]$ and find a basis for K as a vector space over \mathbf{Q}.
(2) Let $b=r+s a$, where $r, s \in \mathbf{Q}$ and $s \neq 0$. Show $b \notin \mathbf{Q}$ and find $\mathrm{m}_{\mathbf{Q}, b}(x)$.
3. Let $a=\sqrt{1+\sqrt{2}} \in \mathbf{R}$.
(1) Show that $a \notin \mathbf{Q}[\sqrt{2}]$.
(2) Find $\mathrm{m}_{\mathbf{Q}, a}(x)$ and find $\mathrm{m}_{\mathbf{Q}[\sqrt{2}], a}(x)$.
(3) Write $f(x)=\mathrm{m}_{\mathbf{Q}, a}(x)$ as a product of linear factors over \mathbf{C}, determine a splitting field $K \subseteq \mathbf{C}$ for $f(x)$ over \mathbf{Q}, and determine $[K: \mathbf{Q}]$.
4. Let F and K be fields and $F \subseteq K$.
(1) Show that all $a \in K \backslash K_{\text {alg }}$ are transcendental over $K_{\text {alg }}$. (Thus a is transcendental over F.)
(2) Suppose that $a \in K$ is transcendental over F. For $n \geq 1$ show that a^{n} is transcendental over F and that $\left[F(a): F\left(a^{n}\right)\right]=n$. (Thus $F(a)$ is an algebraic extension of $F\left(a^{n}\right)$ of degree n.)
