Math 517

Spring 2007

Radford

Written Homework # 4

Due at the beginning of class 04/13/07

If F and K are fields then $F \subseteq K$ means that F is a subfield of K. Also **Q**, **R** and **C** denote the fields of rational, real, and complex numbers respectively. You must justify your answers.

1. Find:

- (1) The degree of $\sqrt[10]{34}$ over **Q**;
- (2) $m_{\mathbf{Q}[\sqrt[3]{21}], \sqrt[10]{34}}(x);$
- (3) $m_{\mathbf{Q}^{[10/34]},\sqrt[3]{21}}(x).$

2. Let $a = \sqrt[3]{n} \in \mathbf{R}$, where $n \ge 2$ and is an integer such that p divides n but p^2 does not divide n for some prime p. Let $K = \mathbf{Q}[a]$.

- (1) Determine $[K : \mathbf{Q}]$ and find a basis for K as a vector space over \mathbf{Q} .
- (2) Let b = r + sa, where $r, s \in \mathbf{Q}$ and $s \neq 0$. Show $b \notin \mathbf{Q}$ and find $m_{\mathbf{Q},b}(x)$.

3. Let
$$a = \sqrt{1 + \sqrt{2}} \in \mathbf{R}$$
.

- (1) Show that $a \notin \mathbf{Q}[\sqrt{2}]$.
- (2) Find $m_{\mathbf{Q},a}(x)$ and find $m_{\mathbf{Q}[\sqrt{2}],a}(x)$.
- (3) Write $f(x) = m_{\mathbf{Q},a}(x)$ as a product of linear factors over \mathbf{C} , determine a splitting field $K \subseteq \mathbf{C}$ for f(x) over \mathbf{Q} , and determine $[K : \mathbf{Q}]$.
- 4. Let F and K be fields and $F \subseteq K$.
 - (1) Show that all $a \in K \setminus K_{alg}$ are transcendental over K_{alg} . (Thus a is transcendental over F.)
 - (2) Suppose that $a \in K$ is transcendental over F. For $n \ge 1$ show that a^n is transcendental over F and that $[F(a) : F(a^n)] = n$. (Thus F(a) is an algebraic extension of $F(a^n)$ of degree n.)