Spring 2007

Radford

Written Homework # 5

Due at the beginning of class 05/04/07

If F and K are fields then $F \subseteq K$ means that F is a subfield of K. Also **Q**, **R** and **C** denote the fields of rational, real, and complex numbers respectively.

1. Let $f : \mathbf{R} \longrightarrow \mathbf{R}$ be a homomorphism of rings with unity. Show that $f = \text{Id}_{\mathbf{R}}$ (thus $\text{Aut}(\mathbf{R})$ is trivial). [Hint: Show that f is order preserving. You can assume the following facts from Analysis: $a \leq b$ if and only if b-a is a square and there is a rational number between two different real numbers.]

2. Let $F \subseteq K$, where F is finite, $|F| = p^m$, and [K : F] = n. Show that the product of all monic irreducible polynomials $p(x) \in F[x]$ whose degree divides n is $x^{p^{mn}} - x$.

3. Let $K = \mathbf{Q}[a, b, \omega] \subseteq \mathbf{C}$, where $a, b \in \mathbf{R}$ satisfy $a^3 = 5$, $b^5 = 6$, and $\omega \in \mathbf{C}$ is a primitive 3^{rd} root of unity.

- (1) Find $[K : \mathbf{Q}]$.
- (2) Determine the group $\operatorname{Aut}(K)$.
- (3) Is K a Galois extension of \mathbf{Q} ? Of $\mathbf{Q}[b]$?
- (4) What is the smallest closed subfield of K?
- 4. Find the Galois group of $f(x) = x^4 30$ over
 - (1) \mathbf{Q} , and
 - (2) over $\mathbf{Q}[i]$

by determining generators and relations.