Math 517

Radford

Written Homework # 1 Solution

02/28/07

Throughout R, S are rings with unity and modules are unital.

1. (20 points) Let I be a non-empty set and let $\{P_i\}_{i \in I}$ be an indexed family of left R-modules. A product of the family is a pair $(\{\pi_i\}_{i \in I}, P)$, where

- (P.1) P is a left R-module and $\pi_i : P \longrightarrow P_i$ is a homomorphism of left R-modules for all $i \in I$, and
- (P.2) If $(\{\pi'_i\}_{i\in I}, P')$ is a pair which satisfies (P.1) then there is a unique *R*-module homomorphism $\Phi: P' \longrightarrow P$ which satisfies $\pi_i \circ \Phi = \pi'_i$ for all $i \in I$.

Prove the following theorem:

Theorem 1 Let R be a ring with unity, let I be a non-empty set, and let $\{P_i\}_{i \in I}$ be an indexed family of left R-modules.

- (1) There is a product of the family $\{P_i\}_{i \in I}$.
- (2) Suppose that $(\{\pi_i\}_{i\in I}, P)$ and $(\{\pi'_i\}_{i\in I}, P')$ are products of the family $\{P_i\}_{i\in I}$. Then there is a unique isomorphism of left R-modules Φ : $P' \longrightarrow P$ which satisfies $\pi_i \circ \Phi = \pi'_i$ for all $i \in I$.

[Hint: Let P be the set of all functions $f : I \longrightarrow \bigcup_{i \in I} P_i$ which satisfy $f(i) \in P_i$ for all $i \in I$. Show that P is a left R-module under the operations

$$(f+g)(i) = f(i) + g(i)$$

and

$$(r \cdot f)(i) = r \cdot (f(i))$$

for all $f, g \in P$ and $i \in I$. Consider $\pi_i : P \longrightarrow P_i$ defined by $\pi_i(f) = f(i)$ for all $f \in P$ and $i \in I$.]

Solution: Part (1) of the theorem (10). Let $f, g, h \in P$ and $r, r' \in R$. Then $(f+g)(i) = f(i) + g(i) \in P_i$ and $(r \cdot f)(i) = r \cdot f(i) \in P_i$ for all $i \in I$ since the P_i 's are modules. Thus P is closed under addition and multiplication by elements of R.

Let $0 \in P$ be defined by $0(i) = 0 \in P_i$ for all $i \in I$ and $(-f)(i) = -f(i) \in P_i$ for all $i \in I$. Then

$$(f+g) + h = f + (g+h), f + g = g + f, 0 + f = f, f + (-f) = 0,$$

and

$$r \cdot (f+g) = r \cdot f + r \cdot g, \quad (r+r') \cdot f = r \cdot f + r' \cdot f, \quad rr' \cdot f = r \cdot (r' \cdot f), \quad 1 \cdot f = f$$

are established by showing that both sides of each equation evaluated on $i \in I$ agree. Thus P is a left R-module.

Let $I \in I$. Define $\pi_i : P \longrightarrow P_i$ by $\pi_i(f) = f(i)$ for all $f \in P$. Since

$$\pi_i(f+g) = (f+g)(i) = f(i) + g(i) = \pi_i(f) + \pi_i(g)$$

and

$$\pi_i(r \cdot f) = (r \cdot f)(i) = r \cdot f(i) = r \cdot \pi_i(f)$$

show that π_i is a homomorphism of left *R*-modules. Therefore $({\pi_i}_{i \in I}, P)$ satisfies (P.1).

Suppose that $(\{\pi'_i\}_{i\in I}, P')$ also satisfies (P.1) and $\Phi : P' \longrightarrow P$ is a homomorphism of left *R*-modules which satisfies $\pi_i \circ \Phi = \pi'_i$ for all $i \in I$. Let $p' \in P'$. Then

$$\Phi(p')(i) = \pi_i(\Phi(p')) = (\pi_i \circ \Phi)(p') = \pi'_i(p')$$
(1)

for all $i \in I$ shows the uniqueness part of (P.2). As for existence, let Φ be defined by (1) and let $p', p'' \in P'$. The calculations

$$\Phi(p' + p'')(i) = \pi'_i(p' + p'') = \pi'_i(p') + \pi'_i(p'') = \Phi(p')(i) + \Phi(p'')(i) = (\Phi(p') + \Phi(p''))(i)$$

and

$$\Phi(r \cdot p')(i) = \pi'_i(r \cdot p') = r \cdot \pi'_i(p') = r \cdot (\Phi(p')(i)) = (r \cdot \Phi(p'))(i)$$

for all $i \in I$ shows that $\Phi(p' + p'') = \Phi(p') + \Phi(p'')$ and $\Phi(r \cdot p') = r \cdot \Phi(p')$. Therefore Φ is a homomorphism of left *R*-modules; by (1) note that $\pi_i \circ \Phi = \pi'_i$ for all $i \in I$. We have completed the proof of part (1) of the theorem.

To show part (2) of the theorem (10), suppose that $({\pi_i}_{i \in I}, P)$ and $({\pi'_i}_{i \in I}, P')$ are products of the family ${P_i}_{i \in I}$. Then there is a unique isomorphism of left *R*-modules $\Phi : P' \longrightarrow P$ such that $\pi_i \circ \Phi = \pi'_i$ for all $i \in I$. Likewise there is a unique isomorphism of left *R*-modules $\Phi' : P \longrightarrow P'$ such that $\pi'_i \circ \Phi' = \pi_i$ for all $i \in I$. For $i \in I$ the composite $\Phi \circ \Phi' : P \longrightarrow P$ satisfies

$$\pi_i \circ (\Phi \circ \Phi') = \pi_i \circ \mathrm{Id}_P \tag{2}$$

as

$$\pi_i \circ (\Phi \circ \Phi') = (\pi_i \circ \Phi) \circ \Phi' = \pi' \circ \Phi' = \pi_i.$$

With $(\{\pi_i\}_{i\in I}, P)$ as the pair of (P.2) it follows by (2) that $\Phi \circ \Phi' = \mathrm{Id}_P$. Reversing the roles of $(\{\pi_i\}_{i\in I}, P)$ and $(\{\pi'_i\}_{i\in I}, P')$ we conclude that $\Phi' \circ \Phi = \mathrm{Id}_{P'}$ also. Therefore Φ and Φ' are isomorphisms.

2. (30 points) Let I be a non-empty set. A free R-module on I is a pair (i, F), where

- (F.1) F is a left R-module and $i: I \longrightarrow F$ is a set map, and
- (F.2) if (i', F') is a pair which satisfies (F.1) then there is a unique *R*-module homomorphism $\Phi: F \longrightarrow F'$ which satisfies $\Phi \circ i = i'$.

Prove the following theorem:

Theorem 2 Let R be a ring with unity and let I be a non-empty set.

- (1) There is a free left R-module (i, F) on I.
- (2) Suppose that (i, F) and (i', F') are free left R-modules on I. Then there is a unique isomorphism of left R-modules $\Phi : F \longrightarrow F'$ which satisfies $\Phi \circ i = i'$.

Suppose that (i, F) is a free left R-module.

(3) Im i generates F as a left R-module.

(4) i is injective and $\{i(\ell)\}_{\ell \in I}$ is a basis for F.

[Hint: For part (1), let F be the subset of the product P of the family $\{R_i\}_{i\in I}$, where $R_i = R$ for all $i \in I$, of Exercise 1 consisting of all functions with finite (which includes empty) support. For $f \in P$ the support of f is defined by

$$supp f = \{i \in I \mid f(i) \neq 0\}.$$

]

Solution: Part (1) of the theorem (8). Let P be the module of Exercise 1 constructed with the family $\{P_i\}_{i \in I}$, where $P_i = R$ for all $i \in I$, and let F be the subset of all functions $f \in P$ with finite support. For $f, g \in P$ and $r \in R$ observe that

$$\operatorname{supp}\left(f - r \cdot g\right) \subseteq \operatorname{supp} f \cup \operatorname{supp} g;\tag{3}$$

for if $0 \neq (f - r \cdot g)(i) = f(i) - r \cdot g(i)$ then either $f(i) \neq 0$ or $g(i) \neq 0$. Since $0 \in F$ it follows by (3) that F is a submodule of P.

For $i \in I$ let $i(i) : I \longrightarrow R$ be the function defined by

$$i(i)(j) = \begin{cases} 1 & : j = i; \\ 0 & : j \neq i \end{cases}$$

Then $i(i) \in F$ and $i: I \longrightarrow F$ defines an injective function.

We will show that $\{i(i)\}_{i\in I}$ is a basis for F. Suppose that $i_1, \ldots, i_n \in I$ are distinct and $r_1, \ldots, r_n \in R$. Set

$$f = \sum_{\ell=1}^{n} r_{\ell} \cdot \imath(i_{\ell}).$$

Since $f(j) = \sum_{\ell=1}^n (r_\ell \cdot i(i_\ell))(j) = \sum_{i=1}^n r_\ell(i(i_\ell)(j))$ for all $j \in I$ we have

$$f(j) = \begin{cases} 0 : j \notin \{i_1, \dots, i_n\}; \\ r_{\ell} : j = i_{\ell} \end{cases}$$

Thus $\{i_{\ell}\}_{i \in I}$ is independent (take f = 0) and spans as $f \in F \setminus 0$ can be written

$$f = \sum_{i \in \text{supp } f} f(i) \cdot i(i).$$
(4)

Therefore $\{i_{\ell}\}_{i \in I}$ is a basis for F. We have done most of the work at this point.

Suppose that (i', F') satisfies (F.2) and $\Phi : F \longrightarrow F'$ is a homomorphism of left *R*-modules such that $\Phi \circ i = i'$. Then $\Phi(i(i)) = i'(i)$ for all $i \in I$. Thus for $i_1, \ldots, i_n \in I$ distinct and $r_1, \ldots, r_n \in R$ we have

$$\Phi(r_1 \cdot i(i_1) + \dots + r_n \cdot i(i_n))$$

$$= r_1 \cdot \Phi(i(i_1)) + \dots + r_n \cdot \Phi(i(i_n))$$

$$= r_1 \cdot i'(i_1) + \dots + r_n \cdot i'(i_n).$$
(5)

We have shown the uniqueness part of (F.2); that is there is at most one Φ which satisfies (F.2). As for existence, the reader is left with the small exercise of showing that (5) describes a well-defined module homomorphism which satisfies the condition of (F.2).

Part (2) of the theorem (8). Let (i, F) and (i', F') be free left *R*-modules on *I*. There is a unique homomorphism of *R*-modules $\Phi : F \longrightarrow F'$ such that $\Phi \circ i = i'$ and there unique homomorphism of *R*-modules $\Phi' : F' \longrightarrow F$ such that $\Phi \circ i' = i$. Using (i, F) for (F.2) we see the identity map $\mathrm{Id}_F : F \longrightarrow F$ is the only *R*-module homomorphism *f* such that $f \circ i = i$.

Observe that

$$(\Phi' \circ \Phi) \circ i = \Phi' \circ (\Phi \circ i) = \Phi' \circ i' = i = \mathrm{Id}_F \circ i.$$

Thus $\Phi' \circ \Phi = \mathrm{Id}_F$ from which $\Phi \circ \Phi' = \mathrm{Id}_{F'}$ by reversing the roles of (i, F) and (i', F'). Thus Φ is an isomorphism.

Comment: To do parts (3) and (4) we can use (2) to note that that all free modules on I are isomorphic in a specific way and then transfer the (algebraic) properties of the particular model we constructed for part (1). We follow a different approach – namely we use the "universal mapping property" of free modules instead.

Part (3) of the theorem (7). We first show that (i, F_r) is a free left *R*-module on *I*, where $F_r = (\operatorname{Im} i)$. Since $\operatorname{Im} i \subseteq F_r$, by abuse of notation, we regard *i* as a function $i : I \longrightarrow F_r$.

Suppose that (i', F') is a pair which satisfies (F.1). Then there homomorphism of *R*-modules $\Phi : F \longrightarrow F'$ such that $\Phi \circ i = i'$. The restriction $\Phi_r = \Phi_r|_{F_r} : F_r \longrightarrow F'$ is a homomorphism of left *R*-modules and $\Phi_r \circ i = i'$. Suppose that $\Phi' : F_r \longrightarrow F'$ is also a homomorphism of left *R*-modules and $\Phi' \circ i = i'$. Then $\Phi_r(i(\ell)) = i'(\ell) = \Phi'(i(\ell))$ for all $\ell \in I$. Therefore Φ_r, Φ' agree on generators of F_r which means they are the same. Thus (i, F_r) is a free left *R*-module on *I*.

Now by the mapping property of free modules on I there is a unique homomorphism $\Phi : F_r \longrightarrow F$ which satisfies $\Phi \circ i = i$, and this is an isomorphism by part (2). But the inclusion inc : $F_r \longrightarrow F$ satisfies incoi = i. Therefore inc = Φ and is thus an isomorphism. This means $F_r = F$ as required.

Part (4) of the theorem (7). Let $\ell, \ell' \in I$ be distinct and let $i' : I \longrightarrow R$ by any function such that $i(\ell) = 0$ and $i(\ell') = 1$. As $\Phi \circ i = i'$ we have

$$\Phi(i(\ell)) = i'(\ell) = 0 \neq 1 = i'(\ell') = \Phi(i(\ell')).$$

Therefore $i(\ell) \neq i(\ell')$. We have shown that *i* is one-one.

In light of (3), to show that $\{i(\ell)\}_{\ell \in I}$ is a basis we F we need only show independence. Suppose that $\ell_1, \ldots, \ell_n \in I$ are distinct and

$$r_1 \cdot i(\ell_1) + \dots + r_n \cdot i(\ell_n) = 0,$$

where $r_1, \ldots, r_n \in R$. Fix $1 \leq i \leq n$ and let $i' : I \longrightarrow$ be any function such that $i'(\ell_i) = 1$ and i'(j) = 0 for all $j \in I$, $j \neq \ell_i$. Then the calculation

$$0 = \Phi(r_1 \cdot i(\ell_1) + \dots + r_n \cdot i(\ell_n))$$

= $r_1 \cdot \Phi(i(\ell_1)) + \dots + r_n \cdot \Phi(i(\ell_n))$
= $r_1 i'(\ell_1) + \dots + r_n i'(\ell_n)$
= $r_i 1$
= r_i

shows that $r_1 = \cdots = r_n = 0$.

3. (25 points) Suppose that $f : R \longrightarrow S$ is a function and for $r \in R$ and $s \in S$ define $r \cdot s = f(r)s$.

(a) (18) Show that f is a homomorphism of rings with unity and Im f is in the center of S if and only if S is a left R-module and

$$r \cdot (ss') = (r \cdot s)s' = s(r \cdot s') \tag{6}$$

for all $r \in R$ and $s, s' \in S$.

(b) (7) Suppose that S has a left R-module structure (S, \bullet) which satisfies (6). Define $F: R \longrightarrow S$ by $F(r) = r \bullet 1$ for all $r \in R$. Show that F is a homomorphism of rings with unity and Im F is in the center of S.

The ring S is called an R-algebra if $_RS$ and (6) is satisfied. The exercise shows there are two ways of describing an R-algebra.

Solution: Suppose that f is a homomorphism of rings with unity and Im f is in the center of S. Let $r, r' \in R$ and $s, s' \in S$. We have

$$(r+r') \cdot s = f(r+r')s = (f(r) + f(r'))s = f(r)s + f(r')s = r \cdot s + r' \cdot s,$$

$$r \cdot (s+s') = f(r)(s+s') = f(r)s + f(r)s' = r \cdot s + r \cdot s',$$

$$(rr') \cdot s = f(rr')s = f(r)f(r')s = f(r)(f(r')s) = r \cdot (r' \cdot s),$$

$$1 \cdot s = f(1)s = 1s = s$$

since f is a homomorphism of rings with unity. Since Im f is in the center of S we have

$$f(r)ss' = (f(r)s)s' = (sf(r))s' = s(f(r)s')$$

which translates to

$$r \cdot ss' = (r \cdot s)s' = s(r \cdot s').$$

Observe that $f(r) = r \cdot 1$ for all $r \in R$.

Now the converse follows by part (b). So we do both at once. That f (and thus F) is a homomorphism of rings with unity whose image lies in the center of S follows from

$$(r + r') \cdot 1 = r \cdot 1 + r' \cdot 1$$

 $rr' \cdot 1 = r \cdot (r' \cdot 1) = r \cdot (1(r' \cdot 1)) = (r \cdot 1)(r' \cdot 1),$
 $1 \cdot 1 = 1,$

and

$$(r \cdot 1)s = r \cdot (1s) = r \cdot (s1) = s(r \cdot 1).$$

4. (25 points) Let Z be the ring of integers and Q be the field of rational numbers.

(a) (8) Let $i : 2\mathbb{Z} \longrightarrow \mathbb{Z}$ be the inclusion. Show that $i \otimes \mathrm{Id} : 2\mathbb{Z} \otimes_{\mathbb{Z}} (\mathbb{Z}/2\mathbb{Z}) \longrightarrow \mathbb{Z} \otimes_{\mathbb{Z}} (\mathbb{Z}/2\mathbb{Z})$ is not injective.

Solution: Let $\mathbf{Z}_2 = \mathbf{Z}/2\mathbf{Z}$ and $f : \mathbf{Z} \longrightarrow 2\mathbf{Z}$ be the isomorphism of abelian groups (left **Z**-modules) defined by f(n) = 2n for all $n \in \mathbf{Z}$. The composition of isomorphisms

$$\mathbf{Z}_2 \longrightarrow \mathbf{Z} \otimes_{\mathbf{Z}} \mathbf{Z}_2 \stackrel{f \otimes \mathrm{Id}_{\mathbf{Z}_2}}{\longrightarrow} 2\mathbf{Z} \otimes_{\mathbf{Z}} \mathbf{Z}_2,$$

where the first is the "left version" of the isomorphism of ClassNotes, Proposition 2.1.2, yields $1 \mapsto 1 \otimes 1 \mapsto 2 \otimes 1$. Therefore $0 \neq 2 \otimes 1 \in 2 \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}_2$. As an element of $\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}_2$ we have $2 \otimes 1 = 1 \cdot 2 \otimes 1 = 1 \otimes 2 \cdot 1 = 1 \otimes 0 = 0$. Therefore $i \otimes \operatorname{Id}_{\mathbb{Z}}$ is not injective.

(b) (8) Show that $\mathbf{Q} \otimes_{\mathbf{Z}} A = (0)$ for all finite abelian groups A.

Solution: Let n = |A|. Then $n \cdot a = 0$ for all $a \in A$. (The multiplicative version of this is $a^n = e$ for all $a \in A$.) For $q \in \mathbf{Q}$ and $a \in A$ we calculate

$$q \otimes a = (q/n)n \otimes a = (q/n) \otimes n \cdot a = (q/n) \otimes 0 = 0.$$

Since the elements of $\mathbf{Q} \otimes A$ are sums of elements of the type $q \otimes a$ it follows that $\mathbf{Q} \otimes_{\mathbf{Z}} A = (0)$.

(c) (9) Suppose that $f: M_R \longrightarrow M'_R$ and $g: {}_RN \longrightarrow {}_RN'$ are surjective maps of *R*-modules. Show that the homomorphism of abelian groups $f \otimes g: M \otimes_R N \longrightarrow M' \otimes_R N'$ is a surjective.

Solution: Let $y \in M' \otimes_R N'$. Then $y = \sum_{i=1}^s m'_i \otimes n'_i$, where $m'_i \in M$ and $n'_i \in N'$ for all $1 \leq i \leq s$. Since f and g are surjective there are $m_i \in M$ and $n_i \in N$ such that $f(m_i) = m'_i$ and $g(n_i) = n'_i$ for all $1 \leq i \leq s$. Set $x = \sum_{i=1}^s m_i \otimes n_i$ Since $f \otimes g$ is a group homomorphism

$$(f \otimes g)(x) = (f \otimes g)(\sum_{i=1}^{s} m_i \otimes n_i)$$
$$= \sum_{i=1}^{s} (f \otimes g)(m_i \otimes n_i)$$
$$= \sum_{i=1}^{s} f(m_i) \otimes g(n_i)$$
$$= \sum_{i=1}^{s} m'_i \otimes n'_i$$
$$= y.$$

Therefore $f \otimes g$ is surjective.