
Math 517 Spring 2007 Radford

Written Homework # 1 Solution
02/28/07

Throughout R, S are rings with unity and modules are unital.

1. (20 points) Let I be a non-empty set and let {Pi}i∈I be an indexed family
of left R-modules. A product of the family is a pair ({πi}i∈I , P ), where

(P.1) P is a left R-module and πi : P −→ Pi is a homomorphism of left
R-modules for all i ∈ I, and

(P.2) If ({π′i}i∈I , P
′) is a pair which satisfies (P.1) then there is a unique R-

module homomorphism Φ : P ′ −→ P which satisfies πi◦Φ = π′i for all
i ∈ I.

Prove the following theorem:

Theorem 1 Let R be a ring with unity, let I be a non-empty set, and let
{Pi}i∈I be an indexed family of left R-modules.

(1) There is a product of the family {Pi}i∈I .

(2) Suppose that ({πi}i∈I , P ) and ({π′i}i∈I , P
′) are products of the family

{Pi}i∈I . Then there is a unique isomorphism of left R-modules Φ :
P ′ −→ P which satisfies πi◦Φ = π′i for all i ∈ I.

[Hint: Let P be the set of all functions f : I −→ ⋃
i∈I Pi which satisfy

f(i) ∈ Pi for all i ∈ I. Show that P is a left R-module under the operations

(f + g)(i) = f(i) + g(i)

and
(r·f)(i) = r·(f(i))
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for all f, g ∈ P and i ∈ I. Consider πi : P −→ Pi defined by πi(f) = f(i) for
all f ∈ P and i ∈ I.]

Solution: Part (1) of the theorem (10). Let f, g, h ∈ P and r, r′ ∈ R. Then
(f + g)(i) = f(i) + g(i) ∈ Pi and (r·f)(i) = r·f(i) ∈ Pi for all i ∈ I since
the Pi’s are modules. Thus P is closed under addition and multiplication by
elements of R.

Let 0 ∈ P be defined by 0(i) = 0 ∈ Pi for all i ∈ I and (−f)(i) = −f(i) ∈
Pi for all i ∈ I. Then

(f + g) + h = f + (g + h), f + g = g + f, 0 + f = f, f + (−f) = 0,

and

r·(f + g) = r·f + r·g, (r + r′)·f = r·f + r′·f, rr′·f = r·(r′·f), 1·f = f

are established by showing that both sides of each equation evaluated on
i ∈ I agree. Thus P is a left R-module.

Let I ∈ I. Define πi : P −→ Pi by πi(f) = f(i) for all f ∈ P . Since

πi(f + g) = (f + g)(i) = f(i) + g(i) = πi(f) + πi(g)

and
πi(r·f) = (r·f)(i) = r·f(i) = r·πi(f)

show that πi is a homomorphism of left R-modules. Therefore ({πi}i∈I , P )
satisfies (P.1).

Suppose that ({π′i}i∈I , P
′) also satisfies (P.1) and Φ : P ′ −→ P is a

homomorphism of left R-modules which satisfies πi◦Φ = π′i for all i ∈ I. Let
p′ ∈ P ′. Then

Φ(p′)(i) = πi(Φ(p′)) = (πi◦Φ)(p′) = π′i(p
′) (1)

for all i ∈ I shows the uniqueness part of (P.2). As for existence, let Φ be
defined by (1) and let p′, p′′ ∈ P ′. The calculations

Φ(p′ + p′′)(i) = π′i(p
′ + p′′)

= π′i(p
′) + π′i(p

′′)

= Φ(p′)(i) + Φ(p′′)(i)

= (Φ(p′) + Φ(p′′))(i)
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and
Φ(r·p′)(i) = π′i(r·p′) = r·π′i(p′) = r·(Φ(p′)(i)) = (r·Φ(p′))(i)

for all i ∈ I shows that Φ(p′ + p′′) = Φ(p′) + Φ(p′′) and Φ(r·p′) = r·Φ(p′).
Therefore Φ is a homomorphism of left R-modules; by (1) note that πi◦Φ = π′i
for all i ∈ I. We have completed the proof of part (1) of the theorem.

To show part (2) of the theorem (10), suppose that ({πi}i∈I , P ) and
({π′i}i∈I , P

′) are products of the family {Pi}ı∈I . Then there is a unique iso-
morphism of left R-modules Φ : P ′ −→ P such that πi◦Φ = π′i for all i ∈ I.
Likewise there is a unique isomorphism of left R-modules Φ′ : P −→ P ′ such
that π′i◦Φ′ = πi for all i ∈ I. For i ∈ I the composite Φ◦Φ′ : P −→ P
satisfies

πi◦(Φ◦Φ′) = πi◦IdP (2)

as
πi◦(Φ◦Φ′) = (πi◦Φ)◦Φ′ = π′◦Φ′ = πi.

With ({πi}i∈I , P ) as the pair of (P.2) it follows by (2) that Φ◦Φ′ = IdP .
Reversing the roles of ({πi}i∈I , P ) and ({π′i}i∈I , P

′) we conclude that Φ′◦Φ =
IdP ′ also. Therefore Φ and Φ′ are isomorphisms.

2. (30 points) Let I be a non-empty set. A free R-module on I is a pair
(ı, F ), where

(F.1) F is a left R-module and ı : I −→ F is a set map, and

(F.2) if (ı′, F ′) is a pair which satisfies (F.1) then there is a unique R-module
homomorphism Φ : F −→ F ′ which satisfies Φ◦ı = ı′.

Prove the following theorem:

Theorem 2 Let R be a ring with unity and let I be a non-empty set.

(1) There is a free left R-module (ı, F ) on I.

(2) Suppose that (ı, F ) and (ı′, F ′) are free left R-modules on I. Then there
is a unique isomorphism of left R-modules Φ : F −→ F ′ which satisfies
Φ◦ı = ı′.

Suppose that (ı, F ) is a free left R-module.

(3) Im ı generates F as a left R-module.
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(4) ı is injective and {ı(`)}`∈I is a basis for F .

[Hint: For part (1), let F be the subset of the product P of the family
{Ri}i∈I , where Ri = R for all i ∈ I, of Exercise 1 consisting of all functions
with finite (which includes empty) support. For f ∈ P the support of f is
defined by

supp f = {i ∈ I | f(i) 6= 0}.
]

Solution: Part (1) of the theorem (8) . Let P be the module of Exercise 1
constructed with the family {Pi}i∈I , where Pi = R for all i ∈ I, and let F
be the subset of all functions f ∈ P with finite support. For f, g ∈ P and
r ∈ R observe that

supp (f − r·g) ⊆ supp f ∪ supp g; (3)

for if 0 6= (f − r·g)(i) = f(i)− r·g(i) then either f(i) 6= 0 or g(i) 6= 0. Since
0 ∈ F it follows by (3) that F is a submodule of P .

For i ∈ I let ı(i) : I −→ R be the function defined by

ı(i)(j) =

{
1 : j = i;
0 : j 6= i

.

Then ı(i) ∈ F and ı : I −→ F defines an injective function.
We will show that {ı(i)}i∈I is a basis for F . Suppose that i1, . . . , in ∈ I

are distinct and r1, . . . , rn ∈ R. Set

f =
n∑

`=1

r`·ı(i`).

Since f(j) =
∑n

`=1(r`·ı(i`))(j) =
∑n

i=1 r`(ı(i`)(j)) for all j ∈ I we have

f(j) =

{
0 : j 6∈ {i1, . . . , in};
r` : j = i`

Thus {i`)}i∈I is independent (take f = 0) and spans as f ∈ F\0 can be
written

f =
∑

i∈supp f

f(i)·ı(i). (4)
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Therefore {i`)}i∈I is a basis for F . We have done most of the work at this
point.

Suppose that (ı′, F ′) satisfies (F.2) and Φ : F −→ F ′ is a homomorphism
of left R-modules such that Φ◦ı = ı′. Then Φ(ı(i)) = ı′(i) for all i ∈ I. Thus
for i1, . . . , in ∈ I distinct and r1, . . . , rn ∈ R we have

Φ(r1·ı(i1) + · · ·+ rn·ı(in))

= r1·Φ(ı(i1)) + · · ·+ rn·Φ(ı(in))

= r1·ı′(i1) + · · ·+ rn·ı′(in). (5)

We have shown the uniqueness part of (F.2); that is there is at most one
Φ which satisfies (F.2). As for existence, the reader is left with the small
exercise of showing that (5) describes a well-defined module homomorphism
which satisfies the condition of (F.2).

Part (2) of the theorem (8). Let (ı, F ) and (ı′, F ′) be free left R-modules on
I. There is a unique homomorphism of R-modules Φ : F −→ F ′ such that
Φ◦ı = ı′ and there unique homomorphism of R-modules Φ′ : F ′ −→ F such
that Φ◦ı′ = ı. Using (ı, F ) for (F.2) we see the identity map IdF : F −→ F
is the only R-module homomorphism f such that f◦ı = ı.

Observe that

(Φ′◦Φ)◦ı = Φ′◦(Φ◦ı) = Φ′◦ı′ = ı = IdF◦ı.

Thus Φ′◦Φ = IdF from which Φ◦Φ′ = IdF ′ by reversing the roles of (ı, F )
and (ı′, F ′). Thus Φ is an isomorphism.

Comment: To do parts (3) and (4) we can use (2) to note that that all
free modules on I are isomorphic in a specific way and then transfer the
(algebraic) properties of the particular model we constructed for part (1). We
follow a different approach – namely we use the “universal mapping property”
of free modules instead.

Part (3) of the theorem (7). We first show that (ı, Fr) is a free left R-module
on I, where Fr = (Im ı). Since Im ı ⊆ Fr, by abuse of notation, we regard ı
as a function ı : I −→ Fr.

Suppose that (ı′, F ′) is a pair which satisfies (F.1). Then there homo-
morphism of R-modules Φ : F −→ F ′ such that Φ◦ı = ı′. The restriction
Φr = Φr|Fr : Fr −→ F ′ is a homomorphism of left R-modules and Φr◦ı = ı′.
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Suppose that Φ′ : Fr −→ F ′ is also a homomorphism of left R-modules
and Φ′◦ı = ı′. Then Φr(ı(`)) = ı′(`) = Φ′(ı(`)) for all ` ∈ I. Therefore Φr, Φ

′

agree on generators of Fr which means they are the same. Thus (ı, Fr) is a
free left R-module on I.

Now by the mapping property of free modules on I there is a unique
homomorphism Φ : Fr −→ F which satisfies Φ◦ı = ı, and this is an iso-
morphism by part (2). But the inclusion inc : Fr −→ F satisfies inc◦ı = ı.
Therefore inc = Φ and is thus an isomorphism. This means Fr = F as
required.

Part (4) of the theorem (7). Let `, `′ ∈ I be distinct and let ı′ : I −→ R by
any function such that ı(`) = 0 and ı(`′) = 1. As Φ◦ı = ı′ we have

Φ(ı(`)) = ı′(`) = 0 6= 1 = ı′(`′) = Φ(ı(`′)).

Therefore ı(`) 6= ı(`′). We have shown that ı is one-one.
In light of (3), to show that {ı(`)}`∈I is a basis we F we need only show

independence. Suppose that `1, . . . , `n ∈ I are distinct and

r1·ı(`1) + · · ·+ rn·ı(`n) = 0,

where r1, . . . , rn ∈ R. Fix 1 ≤ i ≤ n and let ı′ : I −→ be any function such
that ı′(`i) = 1 and ı′(j) = 0 for all j ∈ I, j 6= `i. Then the calculation

0 = Φ(r1·ı(`1) + · · ·+ rn·ı(`n))

= r1·Φ(ı(`1)) + · · ·+ rn·Φ(ı(`n))

= r1ı
′(`1) + · · ·+ rnı

′(`n)

= ri1

= ri

shows that r1 = · · · = rn = 0.

3. (25 points) Suppose that f : R −→ S is a function and for r ∈ R and
s ∈ S define r·s = f(r)s.

(a) (18) Show that f is a homomorphism of rings with unity and Im f is
in the center of S if and only if S is a left R-module and

r·(ss′) = (r·s)s′ = s(r·s′) (6)

for all r ∈ R and s, s′ ∈ S.
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(b) (7) Suppose that S has a left R-module structure (S, •) which satisfies
(6). Define F : R −→ S by F (r) = r•1 for all r ∈ R. Show that F is a
homomorphism of rings with unity and Im F is in the center of S.

The ring S is called an R-algebra if RS and (6) is satisfied. The exercise
shows there are two ways of describing an R-algebra.

Solution: Suppose that f is a homomorphism of rings with unity and Im f
is in the center of S. Let r, r′ ∈ R and s, s′ ∈ S. We have

(r + r′)·s = f(r + r′)s = (f(r) + f(r′))s = f(r)s + f(r′)s = r·s + r′·s,

r·(s + s′) = f(r)(s + s′) = f(r)s + f(r)s′ = r·s + r·s′,
(rr′)·s = f(rr′)s = f(r)f(r′)s = f(r)(f(r′)s) = r·(r′·s),

1·s = f(1)s = 1s = s

since f is a homomorphism of rings with unity. Since Im f is in the center of
S we have

f(r)ss′ = (f(r)s)s′ = (sf(r))s′ = s(f(r)s′)

which translates to
r·ss′ = (r·s)s′ = s(r·s′).

Observe that f(r) = r·1 for all r ∈ R.

Now the converse follows by part (b). So we do both at once. That f
(and thus F ) is a homomorphism of rings with unity whose image lies in the
center of S follows from

(r + r′)·1 = r·1 + r′·1

rr′·1 = r·(r′·1) = r·(1(r′·1)) = (r·1)(r′·1),

1·1 = 1,

and
(r·1)s = r·(1s) = r·(s1) = s(r·1).

4. (25 points) Let Z be the ring of integers and Q be the field of rational
numbers.
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(a) (8) Let ı : 2Z −→ Z be the inclusion. Show that ı⊗Id : 2Z⊗Z(Z/2Z) −→
Z⊗Z(Z/2Z) is not injective.

Solution: Let Z2 = Z/2Z and f : Z −→ 2Z be the isomorphism of abelian
groups (left Z-modules) defined by f(n) = 2n for all n ∈ Z. The composition
of isomorphisms

Z2 −→ Z⊗ZZ2

f⊗IdZ2−→ 2Z⊗ZZ2,

where the first is the “left version” of the isomorphism of ClassNotes, Propo-
sition 2.1.2, yields 1 7→ 1⊗1 7→ 2⊗1. Therefore 0 6= 2⊗1 ∈ 2Z⊗ZZ2. As an
element of Z⊗ZZ2 we have 2⊗1 = 1·2⊗1 = 1⊗2·1 = 1⊗0 = 0. Therefore
ı⊗IdZ is not injective.

(b) (8) Show that Q⊗ZA = (0) for all finite abelian groups A.

Solution: Let n = |A|. Then n·a = 0 for all a ∈ A. (The multiplicative
version of this is an = e for all a ∈ A.) For q ∈ Q and a ∈ A we calculate

q⊗a = (q/n)n⊗a = (q/n)⊗n·a = (q/n)⊗0 = 0.

Since the elements of Q⊗A are sums of elements of the type q⊗a it follows
that Q⊗ZA = (0).

(c) (9) Suppose that f : MR −→ M ′
R and g : RN −→ RN ′ are surjective

maps of R-modules. Show that the homomorphism of abelian groups
f⊗g : M⊗RN −→ M ′⊗RN ′ is a surjective.

Solution: Let y ∈ M ′⊗RN ′. Then y =
∑s

i=1 m′
i⊗n′i, where m′

i ∈ M and
n′i ∈ N ′ for all 1 ≤ i ≤ s. Since f and g are surjective there are mi ∈ M
and ni ∈ N such that f(mi) = m′

i and g(ni) = n′i for all 1 ≤ i ≤ s. Set
x =

∑s
i=1 mi⊗ni Since f⊗g is a group homomorphism

(f⊗g)(x) = (f⊗g)(
s∑

i=1

mi⊗ni)

=
s∑

i=1

(f⊗g)(mi⊗ni)

=
s∑

i=1

f(mi)⊗g(ni)

=
s∑

i=1

m′
i⊗n′i

= y.
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Therefore f⊗g is surjective.
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