Written Homework \# 1 Solution

02/28/07

Throughout R, S are rings with unity and modules are unital.

1. ($\mathbf{2 0}$ points) Let I be a non-empty set and let $\left\{P_{i}\right\}_{i \in I}$ be an indexed family of left R-modules. A product of the family is a pair $\left(\left\{\pi_{i}\right\}_{i \in I}, P\right)$, where
(P.1) P is a left R-module and $\pi_{i}: P \longrightarrow P_{i}$ is a homomorphism of left R-modules for all $i \in I$, and
(P.2) If $\left(\left\{\pi_{i}^{\prime}\right\}_{i \in I}, P^{\prime}\right)$ is a pair which satisfies (P.1) then there is a unique R module homomorphism $\Phi: P^{\prime} \longrightarrow P$ which satisfies $\pi_{i} \circ \Phi=\pi_{i}^{\prime}$ for all $i \in I$.

Prove the following theorem:
Theorem 1 Let R be a ring with unity, let I be a non-empty set, and let $\left\{P_{i}\right\}_{i \in I}$ be an indexed family of left R-modules.
(1) There is a product of the family $\left\{P_{i}\right\}_{i \in I}$.
(2) Suppose that $\left(\left\{\pi_{i}\right\}_{i \in I}, P\right)$ and $\left(\left\{\pi_{i}^{\prime}\right\}_{i \in I}, P^{\prime}\right)$ are products of the family $\left\{P_{i}\right\}_{i \in I}$. Then there is a unique isomorphism of left R-modules Φ : $P^{\prime} \longrightarrow P$ which satisfies $\pi_{i} \circ \Phi=\pi_{i}^{\prime}$ for all $i \in I$.
[Hint: Let P be the set of all functions $f: I \longrightarrow \bigcup_{i \in I} P_{i}$ which satisfy $f(i) \in P_{i}$ for all $i \in I$. Show that P is a left R-module under the operations

$$
(f+g)(i)=f(i)+g(i)
$$

and

$$
(r \cdot f)(i)=r \cdot(f(i))
$$

for all $f, g \in P$ and $i \in I$. Consider $\pi_{i}: P \longrightarrow P_{i}$ defined by $\pi_{i}(f)=f(i)$ for all $f \in P$ and $i \in I$.]
Solution: Part (1) of the theorem (10). Let $f, g, h \in P$ and $r, r^{\prime} \in R$. Then $(f+g)(i)=f(i)+g(i) \in P_{i}$ and $(r \cdot f)(i)=r \cdot f(i) \in P_{i}$ for all $i \in I$ since the P_{i} 's are modules. Thus P is closed under addition and multiplication by elements of R.

Let $0 \in P$ be defined by $0(i)=0 \in P_{i}$ for all $i \in I$ and $(-f)(i)=-f(i) \in$ P_{i} for all $i \in I$. Then

$$
(f+g)+h=f+(g+h), \quad f+g=g+f, \quad 0+f=f, \quad f+(-f)=0
$$

and

$$
r \cdot(f+g)=r \cdot f+r \cdot g, \quad\left(r+r^{\prime}\right) \cdot f=r \cdot f+r^{\prime} \cdot f, \quad r r^{\prime} \cdot f=r \cdot\left(r^{\prime} \cdot f\right), \quad 1 \cdot f=f
$$

are established by showing that both sides of each equation evaluated on $i \in I$ agree. Thus P is a left R-module.

Let $I \in I$. Define $\pi_{i}: P \longrightarrow P_{i}$ by $\pi_{i}(f)=f(i)$ for all $f \in P$. Since

$$
\pi_{i}(f+g)=(f+g)(i)=f(i)+g(i)=\pi_{i}(f)+\pi_{i}(g)
$$

and

$$
\pi_{i}(r \cdot f)=(r \cdot f)(i)=r \cdot f(i)=r \cdot \pi_{i}(f)
$$

show that π_{i} is a homomorphism of left R-modules. Therefore $\left(\left\{\pi_{i}\right\}_{i \in I}, P\right)$ satisfies (P.1).

Suppose that $\left(\left\{\pi_{i}^{\prime}\right\}_{i \in I}, P^{\prime}\right)$ also satisfies (P.1) and $\Phi: P^{\prime} \longrightarrow P$ is a homomorphism of left R-modules which satisfies $\pi_{i} \circ \Phi=\pi_{i}^{\prime}$ for all $i \in I$. Let $p^{\prime} \in P^{\prime}$. Then

$$
\begin{equation*}
\Phi\left(p^{\prime}\right)(i)=\pi_{i}\left(\Phi\left(p^{\prime}\right)\right)=\left(\pi_{i} \circ \Phi\right)\left(p^{\prime}\right)=\pi_{i}^{\prime}\left(p^{\prime}\right) \tag{1}
\end{equation*}
$$

for all $i \in I$ shows the uniqueness part of (P.2). As for existence, let Φ be defined by (1) and let $p^{\prime}, p^{\prime \prime} \in P^{\prime}$. The calculations

$$
\begin{aligned}
\Phi\left(p^{\prime}+p^{\prime \prime}\right)(i) & =\pi_{i}^{\prime}\left(p^{\prime}+p^{\prime \prime}\right) \\
& =\pi_{i}^{\prime}\left(p^{\prime}\right)+\pi_{i}^{\prime}\left(p^{\prime \prime}\right) \\
& =\Phi\left(p^{\prime}\right)(i)+\Phi\left(p^{\prime \prime}\right)(i) \\
& =\left(\Phi\left(p^{\prime}\right)+\Phi\left(p^{\prime \prime}\right)\right)(i)
\end{aligned}
$$

and

$$
\Phi\left(r \cdot p^{\prime}\right)(i)=\pi_{i}^{\prime}\left(r \cdot p^{\prime}\right)=r \cdot \pi_{i}^{\prime}\left(p^{\prime}\right)=r \cdot\left(\Phi\left(p^{\prime}\right)(i)\right)=\left(r \cdot \Phi\left(p^{\prime}\right)\right)(i)
$$

for all $i \in I$ shows that $\Phi\left(p^{\prime}+p^{\prime \prime}\right)=\Phi\left(p^{\prime}\right)+\Phi\left(p^{\prime \prime}\right)$ and $\Phi\left(r \cdot p^{\prime}\right)=r \cdot \Phi\left(p^{\prime}\right)$. Therefore Φ is a homomorphism of left R-modules; by (1) note that $\pi_{i} \circ \Phi=\pi_{i}^{\prime}$ for all $i \in I$. We have completed the proof of part (1) of the theorem.

To show part (2) of the theorem (10), suppose that $\left(\left\{\pi_{i}\right\}_{i \in I}, P\right)$ and $\left(\left\{\pi_{i}^{\prime}\right\}_{i \in I}, P^{\prime}\right)$ are products of the family $\left\{P_{i}\right\}_{1 \in I}$. Then there is a unique isomorphism of left R-modules $\Phi: P^{\prime} \longrightarrow P$ such that $\pi_{i} \circ \Phi=\pi_{i}^{\prime}$ for all $i \in I$. Likewise there is a unique isomorphism of left R-modules $\Phi^{\prime}: P \longrightarrow P^{\prime}$ such that $\pi_{i}^{\prime} \circ \Phi^{\prime}=\pi_{i}$ for all $i \in I$. For $i \in I$ the composite $\Phi \circ \Phi^{\prime}: P \longrightarrow P$ satisfies

$$
\begin{equation*}
\pi_{i} \circ\left(\Phi \circ \Phi^{\prime}\right)=\pi_{i} \circ \operatorname{Id}_{P} \tag{2}
\end{equation*}
$$

as

$$
\pi_{i} \circ\left(\Phi \circ \Phi^{\prime}\right)=\left(\pi_{i} \circ \Phi\right) \circ \Phi^{\prime}=\pi^{\prime} \circ \Phi^{\prime}=\pi_{i}
$$

With $\left(\left\{\pi_{i}\right\}_{i \in I}, P\right)$ as the pair of (P.2) it follows by (2) that $\Phi \circ \Phi^{\prime}=\operatorname{Id}_{P}$. Reversing the roles of $\left(\left\{\pi_{i}\right\}_{i \in I}, P\right)$ and $\left(\left\{\pi_{i}^{\prime}\right\}_{i \in I}, P^{\prime}\right)$ we conclude that $\Phi^{\prime} \circ \Phi=$ $\mathrm{Id}_{P^{\prime}}$ also. Therefore Φ and Φ^{\prime} are isomorphisms.
2. (30 points) Let I be a non-empty set. A free R-module on I is a pair (\imath, F), where
(F.1) F is a left R-module and $\imath: I \longrightarrow F$ is a set map, and
(F.2) if $\left(\imath^{\prime}, F^{\prime}\right)$ is a pair which satisfies (F.1) then there is a unique R-module homomorphism $\Phi: F \longrightarrow F^{\prime}$ which satisfies $\Phi \circ \imath=\imath^{\prime}$.

Prove the following theorem:
Theorem 2 Let R be a ring with unity and let I be a non-empty set.
(1) There is a free left R-module (\imath, F) on I.
(2) Suppose that (\imath, F) and $\left(\imath^{\prime}, F^{\prime}\right)$ are free left R-modules on I. Then there is a unique isomorphism of left R-modules $\Phi: F \longrightarrow F^{\prime}$ which satisfies $\Phi \circ \imath=\imath^{\prime}$.

Suppose that (\imath, F) is a free left R-module.
(3) $\operatorname{Im} \imath$ generates F as a left R-module.
(4) \imath is injective and $\{\imath(\ell)\}_{\ell \in I}$ is a basis for F.
[Hint: For part (1), let F be the subset of the product P of the family $\left\{R_{i}\right\}_{i \in I}$, where $R_{i}=R$ for all $i \in I$, of Exercise 1 consisting of all functions with finite (which includes empty) support. For $f \in P$ the support of f is defined by

$$
\operatorname{supp} f=\{i \in I \mid f(i) \neq 0\}
$$

]
Solution: Part (1) of the theorem (8) . Let P be the module of Exercise 1 constructed with the family $\left\{P_{i}\right\}_{i \in I}$, where $P_{i}=R$ for all $i \in I$, and let F be the subset of all functions $f \in P$ with finite support. For $f, g \in P$ and $r \in R$ observe that

$$
\begin{equation*}
\operatorname{supp}(f-r \cdot g) \subseteq \operatorname{supp} f \cup \operatorname{supp} g ; \tag{3}
\end{equation*}
$$

for if $0 \neq(f-r \cdot g)(i)=f(i)-r \cdot g(i)$ then either $f(i) \neq 0$ or $g(i) \neq 0$. Since $0 \in F$ it follows by (3) that F is a submodule of P.

For $i \in I$ let $\imath(i): I \longrightarrow R$ be the function defined by

$$
\imath(i)(j)=\left\{\begin{array}{lll}
1 & : & j=i \\
0 & : & j \neq i
\end{array} .\right.
$$

Then $\imath(i) \in F$ and $\imath: I \longrightarrow F$ defines an injective function.
We will show that $\{\imath(i)\}_{i \in I}$ is a basis for F. Suppose that $i_{1}, \ldots, i_{n} \in I$ are distinct and $r_{1}, \ldots, r_{n} \in R$. Set

$$
f=\sum_{\ell=1}^{n} r_{\ell} \cdot \imath\left(i_{\ell}\right) .
$$

Since $f(j)=\sum_{\ell=1}^{n}\left(r_{\ell} \cdot \imath\left(i_{\ell}\right)\right)(j)=\sum_{i=1}^{n} r_{\ell}\left(\imath\left(i_{\ell}\right)(j)\right)$ for all $j \in I$ we have

$$
f(j)=\left\{\begin{array}{lll}
0 & : & j \notin\left\{i_{1}, \ldots, i_{n}\right\} \\
r_{\ell} & : & j=i_{\ell}
\end{array}\right.
$$

Thus $\left.\left\{i_{\ell}\right)\right\}_{i \in I}$ is independent (take $f=0$) and spans as $f \in F \backslash 0$ can be written

$$
\begin{equation*}
f=\sum_{i \in \operatorname{supp} f} f(i) \cdot \imath(i) . \tag{4}
\end{equation*}
$$

Therefore $\left.\left\{i_{\ell}\right)\right\}_{i \in I}$ is a basis for F. We have done most of the work at this point.

Suppose that $\left(\imath^{\prime}, F^{\prime}\right)$ satisfies (F.2) and $\Phi: F \longrightarrow F^{\prime}$ is a homomorphism of left R-modules such that $\Phi \circ \imath=\imath^{\prime}$. Then $\Phi(\imath(i))=\imath^{\prime}(i)$ for all $i \in I$. Thus for $i_{1}, \ldots, i_{n} \in I$ distinct and $r_{1}, \ldots, r_{n} \in R$ we have

$$
\begin{align*}
& \Phi\left(r_{1} \cdot \imath\left(i_{1}\right)+\cdots+r_{n} \cdot \imath\left(i_{n}\right)\right) \\
& \quad=r_{1} \cdot \Phi\left(\imath\left(i_{1}\right)\right)+\cdots+r_{n} \cdot \Phi\left(\imath\left(i_{n}\right)\right) \\
& \quad=r_{1} \cdot \imath^{\prime}\left(i_{1}\right)+\cdots+r_{n} \cdot \imath^{\prime}\left(i_{n}\right) . \tag{5}
\end{align*}
$$

We have shown the uniqueness part of (F.2); that is there is at most one Φ which satisfies (F.2). As for existence, the reader is left with the small exercise of showing that (5) describes a well-defined module homomorphism which satisfies the condition of (F.2).
Part (2) of the theorem (8). Let (\imath, F) and $\left(\imath^{\prime}, F^{\prime}\right)$ be free left R-modules on I. There is a unique homomorphism of R-modules $\Phi: F \longrightarrow F^{\prime}$ such that $\Phi \circ \imath=\iota^{\prime}$ and there unique homomorphism of R-modules $\Phi^{\prime}: F^{\prime} \longrightarrow F$ such that $\Phi \circ \imath^{\prime}=\imath$. Using (\imath, F) for (F.2) we see the identity map $\operatorname{Id}_{F}: F \longrightarrow F$ is the only R-module homomorphism f such that $f \circ \imath=\imath$.

Observe that

$$
\left(\Phi^{\prime} \circ \Phi\right) \circ \imath=\Phi^{\prime} \circ(\Phi \circ \imath)=\Phi^{\prime} \circ \imath^{\prime}=\imath=\operatorname{Id}_{F} \circ \imath .
$$

Thus $\Phi^{\prime} \circ \Phi=\operatorname{Id}_{F}$ from which $\Phi \circ \Phi^{\prime}=\operatorname{Id}_{F^{\prime}}$ by reversing the roles of (\imath, F) and $\left(\imath^{\prime}, F^{\prime}\right)$. Thus Φ is an isomorphism.
Comment: To do parts (3) and (4) we can use (2) to note that that all free modules on I are isomorphic in a specific way and then transfer the (algebraic) properties of the particular model we constructed for part (1). We follow a different approach - namely we use the "universal mapping property" of free modules instead.

Part (3) of the theorem (7). We first show that $\left(\imath, F_{r}\right)$ is a free left R-module on I, where $F_{r}=(\operatorname{Im} \imath)$. Since $\operatorname{Im} \imath \subseteq F_{r}$, by abuse of notation, we regard \imath as a function $\imath: I \longrightarrow F_{r}$.

Suppose that $\left(\imath^{\prime}, F^{\prime}\right)$ is a pair which satisfies (F.1). Then there homomorphism of R-modules $\Phi: F \longrightarrow F^{\prime}$ such that $\Phi \circ \imath=\imath^{\prime}$. The restriction $\Phi_{r}=\left.\Phi_{r}\right|_{F_{r}}: F_{r} \longrightarrow F^{\prime}$ is a homomorphism of left R-modules and $\Phi_{r} \circ \imath=\imath^{\prime}$.

Suppose that $\Phi^{\prime}: F_{r} \longrightarrow F^{\prime}$ is also a homomorphism of left R-modules and $\Phi^{\prime} \circ \imath=\imath^{\prime}$. Then $\Phi_{r}(\imath(\ell))=\iota^{\prime}(\ell)=\Phi^{\prime}(\imath(\ell))$ for all $\ell \in I$. Therefore Φ_{r}, Φ^{\prime} agree on generators of F_{r} which means they are the same. Thus $\left(\imath, F_{r}\right)$ is a free left R-module on I.

Now by the mapping property of free modules on I there is a unique homomorphism $\Phi: F_{r} \longrightarrow F$ which satisfies $\Phi \circ \imath=\imath$, and this is an isomorphism by part (2). But the inclusion inc : $F_{r} \longrightarrow F$ satisfies inco $=\imath$. Therefore inc $=\Phi$ and is thus an isomorphism. This means $F_{r}=F$ as required.
Part (4) of the theorem (7). Let $\ell, \ell^{\prime} \in I$ be distinct and let $\imath^{\prime}: I \longrightarrow R$ by any function such that $\imath(\ell)=0$ and $\imath\left(\ell^{\prime}\right)=1$. As $\Phi \circ \imath=\imath^{\prime}$ we have

$$
\Phi(\imath(\ell))=\imath^{\prime}(\ell)=0 \neq 1=\imath^{\prime}\left(\ell^{\prime}\right)=\Phi\left(\imath\left(\ell^{\prime}\right)\right) .
$$

Therefore $\imath(\ell) \neq \imath\left(\ell^{\prime}\right)$. We have shown that \imath is one-one.
In light of (3), to show that $\{\imath(\ell)\}_{\ell \in I}$ is a basis we F we need only show independence. Suppose that $\ell_{1}, \ldots, \ell_{n} \in I$ are distinct and

$$
r_{1} \cdot v\left(\ell_{1}\right)+\cdots+r_{n} \cdot v\left(\ell_{n}\right)=0
$$

where $r_{1}, \ldots, r_{n} \in R$. Fix $1 \leq i \leq n$ and let $\imath^{\prime}: I \longrightarrow$ be any function such that $\iota^{\prime}\left(\ell_{i}\right)=1$ and $\iota^{\prime}(j)=0$ for all $j \in I, j \neq \ell_{i}$. Then the calculation

$$
\begin{aligned}
0 & =\Phi\left(r_{1} \cdot \imath\left(\ell_{1}\right)+\cdots+r_{n} \cdot \imath\left(\ell_{n}\right)\right) \\
& =r_{1} \cdot \Phi\left(\imath\left(\ell_{1}\right)\right)+\cdots+r_{n} \cdot \Phi\left(\imath\left(\ell_{n}\right)\right) \\
& =r_{1} \imath^{\prime}\left(\ell_{1}\right)+\cdots+r_{n} \imath^{\prime}\left(\ell_{n}\right) \\
& =r_{i} 1 \\
& =r_{i}
\end{aligned}
$$

shows that $r_{1}=\cdots=r_{n}=0$.
3. (25 points) Suppose that $f: R \longrightarrow S$ is a function and for $r \in R$ and $s \in S$ define $r \cdot s=f(r) s$.
(a) (18) Show that f is a homomorphism of rings with unity and $\operatorname{Im} f$ is in the center of S if and only if S is a left R-module and

$$
\begin{equation*}
r \cdot\left(s s^{\prime}\right)=(r \cdot s) s^{\prime}=s\left(r \cdot s^{\prime}\right) \tag{6}
\end{equation*}
$$

for all $r \in R$ and $s, s^{\prime} \in S$.
(b) (7) Suppose that S has a left R-module structure (S, \bullet) which satisfies (6). Define $F: R \longrightarrow S$ by $F(r)=r \bullet 1$ for all $r \in R$. Show that F is a homomorphism of rings with unity and $\operatorname{Im} F$ is in the center of S.

The ring S is called an R-algebra if ${ }_{R} S$ and (6) is satisfied. The exercise shows there are two ways of describing an R-algebra.
Solution: Suppose that f is a homomorphism of rings with unity and $\operatorname{Im} f$ is in the center of S. Let $r, r^{\prime} \in R$ and $s, s^{\prime} \in S$. We have

$$
\begin{gathered}
\left(r+r^{\prime}\right) \cdot s=f\left(r+r^{\prime}\right) s=\left(f(r)+f\left(r^{\prime}\right)\right) s=f(r) s+f\left(r^{\prime}\right) s=r \cdot s+r^{\prime} \cdot s, \\
r \cdot\left(s+s^{\prime}\right)=f(r)\left(s+s^{\prime}\right)=f(r) s+f(r) s^{\prime}=r \cdot s+r \cdot s^{\prime} \\
\left(r r^{\prime}\right) \cdot s=f\left(r r^{\prime}\right) s=f(r) f\left(r^{\prime}\right) s=f(r)\left(f\left(r^{\prime}\right) s\right)=r \cdot\left(r^{\prime} \cdot s\right) \\
1 \cdot s=f(1) s=1 s=s
\end{gathered}
$$

since f is a homomorphism of rings with unity. Since $\operatorname{Im} f$ is in the center of S we have

$$
f(r) s s^{\prime}=(f(r) s) s^{\prime}=(s f(r)) s^{\prime}=s\left(f(r) s^{\prime}\right)
$$

which translates to

$$
r \cdot s s^{\prime}=(r \cdot s) s^{\prime}=s\left(r \cdot s^{\prime}\right) .
$$

Observe that $f(r)=r \cdot 1$ for all $r \in R$.
Now the converse follows by part (b). So we do both at once. That f (and thus F) is a homomorphism of rings with unity whose image lies in the center of S follows from

$$
\begin{gathered}
\left(r+r^{\prime}\right) \cdot 1=r \cdot 1+r^{\prime} \cdot 1 \\
r r^{\prime} \cdot 1=r \cdot\left(r^{\prime} \cdot 1\right)=r \cdot\left(1\left(r^{\prime} \cdot 1\right)\right)=(r \cdot 1)\left(r^{\prime} \cdot 1\right) \\
1 \cdot 1=1
\end{gathered}
$$

and

$$
(r \cdot 1) s=r \cdot(1 s)=r \cdot(s 1)=s(r \cdot 1) .
$$

4. ($\mathbf{2 5}$ points) Let \mathbf{Z} be the ring of integers and \mathbf{Q} be the field of rational numbers.
(a) (8) Let $\imath: 2 \mathbf{Z} \longrightarrow \mathbf{Z}$ be the inclusion. Show that $\imath \otimes \mathbf{I d}: 2 \mathbf{Z} \otimes \mathbf{Z}(\mathbf{Z} / 2 \mathbf{Z}) \longrightarrow$ $\mathbf{Z} \otimes_{\mathbf{Z}}(\mathbf{Z} / 2 \mathbf{Z})$ is not injective.

Solution: Let $\mathbf{Z}_{2}=\mathbf{Z} / 2 \mathbf{Z}$ and $f: \mathbf{Z} \longrightarrow 2 \mathbf{Z}$ be the isomorphism of abelian groups (left Z-modules) defined by $f(n)=2 n$ for all $n \in \mathbf{Z}$. The composition of isomorphisms

$$
\mathbf{Z}_{2} \longrightarrow \mathbf{Z} \otimes_{\mathbf{Z}} \mathbf{Z}_{2} \xrightarrow{f \otimes \mathrm{Id} \mathbf{Z}_{2}} 2 \mathbf{Z} \otimes_{\mathbf{Z}} \mathbf{Z}_{2},
$$

where the first is the "left version" of the isomorphism of ClassNotes, Proposition 2.1.2, yields $1 \mapsto 1 \otimes 1 \mapsto 2 \otimes 1$. Therefore $0 \neq 2 \otimes 1 \in 2 \mathbf{Z} \otimes_{\mathbf{z}} \mathbf{Z}_{2}$. As an element of $\mathbf{Z} \otimes_{\mathbf{Z}} \mathbf{Z}_{2}$ we have $2 \otimes 1=1 \cdot 2 \otimes 1=1 \otimes 2 \cdot 1=1 \otimes 0=0$. Therefore $\imath \otimes \operatorname{Id}_{\mathbf{Z}}$ is not injective.
(b) (8) Show that $\mathbf{Q} \otimes_{\mathbf{z}} A=(0)$ for all finite abelian groups A.

Solution: Let $n=|A|$. Then $n \cdot a=0$ for all $a \in A$. (The multiplicative version of this is $a^{n}=e$ for all $a \in A$.) For $q \in \mathbf{Q}$ and $a \in A$ we calculate

$$
q \otimes a=(q / n) n \otimes a=(q / n) \otimes n \cdot a=(q / n) \otimes 0=0 .
$$

Since the elements of $\mathbf{Q} \otimes A$ are sums of elements of the type $q \otimes a$ it follows that $\mathbf{Q} \otimes_{\mathbf{z}} A=(0)$.
(c) (9) Suppose that $f: M_{R} \longrightarrow M_{R}^{\prime}$ and $g:{ }_{R} N \longrightarrow{ }_{R} N^{\prime}$ are surjective maps of R-modules. Show that the homomorphism of abelian groups $f \otimes g: M \otimes_{R} N \longrightarrow M^{\prime} \otimes_{R} N^{\prime}$ is a surjective.

Solution: Let $y \in M^{\prime} \otimes_{R} N^{\prime}$. Then $y=\sum_{i=1}^{s} m_{i}^{\prime} \otimes n_{i}^{\prime}$, where $m_{i}^{\prime} \in M$ and $n_{i}^{\prime} \in N^{\prime}$ for all $1 \leq i \leq s$. Since f and g are surjective there are $m_{i} \in M$ and $n_{i} \in N$ such that $f\left(m_{i}\right)=m_{i}^{\prime}$ and $g\left(n_{i}\right)=n_{i}^{\prime}$ for all $1 \leq i \leq s$. Set $x=\sum_{i=1}^{s} m_{i} \otimes n_{i}$ Since $f \otimes g$ is a group homomorphism

$$
\begin{aligned}
(f \otimes g)(x) & =(f \otimes g)\left(\sum_{i=1}^{s} m_{i} \otimes n_{i}\right) \\
& =\sum_{i=1}^{s}(f \otimes g)\left(m_{i} \otimes n_{i}\right) \\
& =\sum_{i=1}^{s} f\left(m_{i}\right) \otimes g\left(n_{i}\right) \\
& =\sum_{i=1}^{s} m_{i}^{\prime} \otimes n_{i}^{\prime} \\
& =y .
\end{aligned}
$$

Therefore $f \otimes g$ is surjective.

