
Math 517 Spring 2007 Radford

Written Homework # 2 Solution
02/23/07

Throughout R and S are rings with unity; Z denotes the ring of integers
and Q, R, and C denote the rings of rational, real, and complex numbers
respectively.

1. (20 points) Regard C as a (left) Z-module, Q-module, and R-module by
multiplication in C. Let f : C −→ C be the function defined by f(r + sı) =
s + rı for all r, s ∈ R. Prove or disprove:

(1) (5) f is a homomorphism of additive groups (that is a homomorphism
of Z-modules);

(2) (5) f is a homomorphism of Q-modules;

(3) (5) f is a homomorphism of R-modules;

(4) (5) f is a homomorphism of C-modules.

To disprove a statement find one specific example for which the statement
fails.

Solution: Let z = r + sı and z′ = r′ + s′ı be complex numbers written in
standard form and let r′′ ∈ R. The calculations

f(z + z′) = (f((r + r′) + (s + s′)ı)

= (s + s′) + (r + r′)ı

= (s + rı) + (s′ + r′ı)

= f(z) + f(z′)

and
f(r′′z) = f(r′′r + r′′sı) = r′′s + r′′rı = r′′(s + rı) = r′′f(z)
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show that f is a homomorphism of left R-modules, hence of left Q-modules
and Z-modules since Q,Z ⊆ R.

Since f(ıı) = f((−1) + 0ı) = 0 + (−1)ı = −ı and ıf(ı) = ıf(0 + 1ı) =
ı(1 + 0ı) = ı, then function f is not a homomorphism of left C-modules.

2. (20 points) Suppose that R is commutative, RL, RM , RN , RL′, and RM ′.
Using results from ClassNotes:

(1) Show that there are R-module isomorphisms R⊗RM ' M (5), M⊗RR '
M (5), and L⊗R(M⊗RN) ' (L⊗RM)⊗RN (5).

(2) (5) Suppose that f : L −→ L′ and g : M −→ M ′ are left R-module
homomorphisms. Show that f⊗g : L⊗RM −→ L′⊗RM ′ is a left R-
module homomorphism.

Solution: Background for both parts. Let RL, RM , and RN . Since R
is commutative these are right R-modules as defined in ClassNotes. Also

R(M⊗RN) by Lemma 2.1.6, where

r·(m⊗n) = r·m⊗n = m·r⊗n = m⊗r·n

for all r ∈ R, ∈ M , and n ∈ N .

Part (1). By Proposition 2.1.2 there is an isomorphism of abelian groups
f : M −→ M⊗RR given by f(m) = m⊗1 for all m ∈ M . Let r ∈ R and
m ∈ M . The calculation

f(r·m) = r·m⊗1 = r·(m⊗1) = r·f(m)

shows that f is a homomorphism of R-modules; hence an isomorphism of
R-modules.

You may assume that the function g : M −→ R⊗RM defined by g(m) =
1⊗m for all m ∈ M is an isomorphism of abelian groups. For r ∈ R and
m ∈ M the calculation

g(r·m) = 1⊗r·m = 1r⊗m = r1⊗m = r·(1⊗m) = r·g(m)

shows that g is a homomorphism of R-modules; hence is an isomorphism of
R-modules.
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There is an isomorphism of abelian groups

f : L⊗R(M⊗RN) −→ (L⊗RM)⊗RN

given by f(`⊗(m⊗n)) = (`⊗m)⊗n by Proposition 2.1.9. The calculation

f(r·(`⊗(m⊗n))) = f((r·`⊗(m⊗n)))

= (r·`⊗m)⊗n

= r·(`⊗m)⊗n

= r·((`⊗m)⊗n)

= r·f(`⊗(m⊗n))

for all r ∈ R, ` ∈ L, m ∈ M , and n ∈ N shows that f is a homomorphism of
left R-modules; hence is an isomorphism.

Part (2). By Proposition 2.1.5 f⊗g is a homomorphism of abelian groups.
Let r ∈ R, m ∈ M , and n ∈ N . The calculation

f⊗g(r·(m⊗n)) = f⊗g(r·m⊗n)

= f(r·m)⊗g(n)

= r·f(m)⊗g(n)

= r·(f(m)⊗g(n))

= r·(f⊗g(m⊗n))

shows that f⊗g is a homomorphism of left R-modules.

3. (20 points) Suppose LR, RMS, and SN . Use results from ClassNotes, ex-
cept Propostion 2.1.9, to establish that there is a homomorphism of abelian
groups F : L⊗R(M⊗SN) −→ (L⊗RM)⊗SN given by F (`⊗(m⊗n)) =
(`⊗m)⊗n as follows:

(1) (5) Let ` ∈ L be fixed. Show that there is a homomorphism of abelian
groups f` : M⊗SN −→ (L⊗RM)⊗SN given by f`(m⊗n) = (`⊗m)⊗n
for all m ∈ M and n ∈ N .

Solution: By definition of the tensor product, we need only show the
function ϕ` : M×N −→ (L⊗RM)⊗SN given by ϕ`(m,n) = (`⊗m)⊗n
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for all m ∈ M , n ∈ N , and ` ∈ L, is S-balanced. This is established
by the calculations

ϕ`(m + m′, n) = (`⊗(m + m′))⊗n

= (`⊗m + `⊗m′)⊗n

= (`⊗m)⊗n + (`⊗m′)⊗n

= ϕ(m,n) + ϕ`(m
′, n),

ϕ`(m,n + n′) = (`⊗m)⊗(n + n′)

= (`⊗m)⊗n + (`⊗m)⊗n′

= ϕ(m,n) + ϕ`(m,n′),

and

ϕ`(m·s, n) = (`⊗m·s)⊗n

= (`⊗m)·s⊗n

= (`⊗m)·⊗s·n
= ϕ(m, s·n)

for all m,m′ ∈ M , n, n′ ∈ N , and r ∈ R.

(2) (5) Show that f` + f`′ = f`+`′ for all `, `′ ∈ L.

Solution: Let `, `′ ∈ L, m ∈ M , and n ∈ N . Then

(f` + f`′)(m⊗n)

= f`(m⊗n) + f`′(m⊗n)

= (`⊗m)⊗n + (`′⊗m)⊗n

= (`⊗m + `′⊗m)⊗n

= ((` + `′)⊗m)⊗n

= f`+`′(m⊗n)

shows that the homomorphisms of abelian groups f` + f`′ and f`+`′

agree on group generators. Thus f` + f`′ = f`+`′ .
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(3) (5) Show that f : L×(M⊗SN) −→ (L⊗RM)⊗SN defined by f(`, x) =
f`(x) for all ` ∈ L and x ∈ M⊗N is R-balanced.

Solution: For `, `′ ∈ L and x ∈ M⊗N we have

f(` + `′, x) = f`+`′(x)

= (f` + f`′)(x)

= (f`(x) + f`′)(x)

= f(`, x) + f(`′, x)

by part (2),

f(`, x + x′) = f`(x + x′)

= f`(x) + f`(x
′)

= f(`, x) + f(`, x′)

since f` is a group homomorphism. Writing x =
∑v

i=1 mi⊗ni and noting
that f`·r is a group homomorphism, we calculate

f(`·r, x) = f`·r(x)

=
v∑

i=1

f`·r(mi⊗ni)

=
v∑

i=1

(`·r⊗mi)⊗ni

=
v∑

i=1

(`⊗r·mi)⊗ni

=
v∑

i=1

f(`, r·mi⊗ni)

= f(`, r·x).

This completes our proof.

(4) (5) Using (3) deduce the existence of F .

Solution: In light of (3), by definition of the tensor product there is a
homomorphism of abelian groups F as described.
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4. (20 points) Prove Proposition 3.2.1, parts (2) and (3), and Theorem 3.2.2
from ClassNotes.

Solution: Proof of part (2) of Proposition 3.2.1. (5) Consider the restriction
π|B′′ : B′′ −→ A. Since π is an R-module homomorphism π′′ is also. Let
b ∈ B. Then b = b′⊕b′′ for unique b′ ∈ B′ = Ker, π and b′′ ∈ B′′. The
calculation

π(b) = π(b′ + b′′) = π(b′) + π(b′′) = 0 + π(b′′) = π|B′′(b′′)

shows that
π(b) = π|B′′(b′′).

Since π is surjective and it follows that π|B′′ is surjective. Suppose that
b′′ ∈ ker π|B′′ . Then with b = 0⊕b′′ we see that 0 = π|B′′(b′′) = π(b) which
means 0⊕b′′ ∈ Ker π = Ker π⊕(0). Therefore b′′ = 0. We have shown that
the restriction π|B′′ : B′′ −→ A is an isomorphism of R-modules.

Consider ′ = π| −1
B′′ : A −→ B. Then Im ′ = B′′; thus

(π◦′)(a) = π(π| −1
B′′ (a)) = π|B′′(π| −1

B′′ (a)) = a

for all a ∈ A which means that π◦′ = IdA.

Proof of part (3) of Proposition 3.2.1. (5) First of all if L = M⊕N
is the direct sum of submodules then the projection p : L −→ N given
by p(m⊕n) = n is a well-defined homomorphism of left R-modules. Well-
defined follow from the fact that if ` ∈ L then ` = m⊕n for unique m ∈ M
and n ∈ N . Now p is a module map since

p(m⊕n + m′⊕n′) = p((m + m′)⊕(n + n′)) = n + n′ = p(m⊕n) + p(m′⊕n′)

and
p(r·(m⊕n)) = p((r·m)⊕(r·n)) = r·n = r·p(m⊕n)

for all m⊕n,m′⊕n′ ∈ L and r ∈ R.
Since  is injective it determines an isomorphism which we denote, by

abuse of notation,  : A −→ Im . Write B = B′⊕Im jmath = M⊕N . Let
π′ : B −→ A be the composite π′ = −1◦p. Then π′ is a homomorphism of
left R-modules and

π′◦(a) = −1(p((a)) = −1(p(0⊕(a)) = −1((a)) = a
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for all a ∈ A shows that π′◦ = IdA. Now Ker π′ = Ker p = B′ since −1 is
injective.

Proof of Theorem 3.2.2. (10) Parts (1) and (2) are reformulations of each
other since Ker π = Im α by exactness and if M = L⊕N is the direct sum of
submodules then M = N⊕L as well. Part (1) implies part (3) follows by part
(2) of Proposition 3.2.1, and part (3) implies part (1) follows by part (1) of
Proposition 3.2.1. Part (2) implies part (4) follows by part (3) of Proposition
3.2.1, and part (4) implies part (2) follows by part (1) of Proposition 3.2.1.

5. (20 points) Let D be an integral domain and let F be its field of quotients.
We may assume that D is a subring of F and we regard F as a left D-module
by multiplication in F .

(1) (4) Suppose that M and N are submodules of F . Show that M∩N =
(0) implies M = (0) or N = (0).

Solution: Suppose M 6= (0) and let 0 6= m/n ∈ M . Let m′/n′ ∈
N . Then nm′(m/n) = mm′ = n′m(m′/n′) means that nm′(m/n) ∈
M∩N = (0). Therefore nm′(m/n) = 0. Since F is an integral domain
and n, m/n 6= 0 necessarily m′ = 0. Thus m′/n′ = 0 and therefore
N = (0).

We have shown that M 6= (0) implies N = (0). Therefore M = (0) or
N = (0).

(2) (4) Suppose that F is a free D-module and let {mi}i∈I be a basis for
F . Show that |I| = 1.

Solution: Suppose that m1,m2 ∈ F are two different elements which
belong to a basis. Then Dm1∩Dm2 = (0). For let a ∈ Dm1∩Dm2.
Then a = d1m1 for some d1 ∈ D and a = d2m2 for some d2 ∈ D. But
then

0 = a− a = d1m1 − d2m2 = d1m1 + (−d2)m2

which means d1 = −d2 = 0. Therefore a = 0.

Now Dm1, Dm2 6= (0) since m1 ∈ Dm1 and m2 ∈ Dm2. By part (1) we
have a contradiction. Thus no basis for F has more than one element.
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(3) (4) Show that F is a free D-module if and only if D = F .

Solution: D is a free left D-module with basis {1}. So F is a free
D-module when F = D.

Suppose that F is a free left D-module. There is a basis for F , and it
must have one element by part (3). Let {m} be the basis and write
m = a/b = ab−1. We only need to show that b−1 ∈ D; for then
F = Dm ⊆ D ⊆ F means F = D.

Now 1/b2 = cm = c(a/b) for some c ∈ D. Multiplying both sides of
the equation by b2 yields 1 = cab. Therefore b−1 = ca ∈ D.

(4) (4) Suppose that P is a non-zero projective R-module and f : F −→ P
is a surjective R-module homomorphism. Show that f is an isomor-
phism. [Hint: Consider part (1) of Proposition 3.2.1 which you can use
without proof.]

Solution: Since F
f−→ P −→ 0 is exact, for IdP : P −→ P there is

a homomorphism of left R-modules  : P −→ F such that f◦ = IdP .
Therefore F = Ker π⊕Im  by part (1) of ClassNotes Proposition 3.2.1.
As  is injective (and f is surjective) by part (1) by the same, and
P 6= (0), by part (1) necessarily Ker π = (0). Therefore f is injective
and thus is an isomorphism.

(5) (4) Show that there is no surjective homomorphism of D-modules f :
F −→ D unless D = F . [Hint: D is a free, hence projective, D-
module.]

Solution: Suppose f : F −→ D is an isomorphism of left D-modules.
Since D is a free left D-module it is projective. Thus f is an isomor-
phism by part (4). Since D is a free left D-module F must be also.
Thus D = F by part (3).
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