Spring 2007

Radford

Written Homework # 1

Due at the beginning of class $02/02/07^{-1}$

Throughout R, S are rings with unity and modules are unital.

- 1. Let I be a non-empty set and let $\{P_i\}_{i \in I}$ be an indexed family of left *R*-modules. A product of the family is a pair $(\{\pi_i\}_{i \in I}, P)$, where
- (P.1) P is a left R-module and $\pi_i : P \longrightarrow P_i$ is a homomorphism of left R-modules for all $i \in I$, and
- (P.2) If $(\{\pi'_i\}_{i\in I}, P')$ is a pair which satisfies (P.1) then there is a unique *R*-module homomorphism $\Phi: P' \longrightarrow P$ which satisfies $\pi_i \circ \Phi = \pi'_i$ for all $i \in I$.

Prove the following theorem:

Theorem 1 Let R be a ring with unity, let I be a non-empty set, and let $\{P_i\}_{i \in I}$ be an indexed family of left R-modules.

- (1) There is a product of the family $\{P_i\}_{i \in I}$.
- (2) Suppose that $(\{\pi_i\}_{i\in I}, P)$ and $(\{\pi'_i\}_{i\in I}, P')$ are products of the family $\{P_i\}_{i\in I}$. Then there is a unique isomorphism of left R-modules Φ : $P' \longrightarrow P$ which satisfies $\pi_i \circ \Phi = \pi'_i$ for all $i \in I$.

[Hint: Let P be the set of all functions $f : I \longrightarrow \bigcup_{i \in I} P_i$ which satisfy $f(i) \in P_i$ for all $i \in I$. Show that P is a left R-module under the operations

$$(f+g)(i) = f(i) + g(i)$$

¹Slightly revised 01/24/07.

and

$$(r \cdot f)(i) = r \cdot (f(i))$$

for all $f, g \in P$ and $i \in I$. Consider $\pi_i : P \longrightarrow P_i$ defined by $\pi_i(f) = f(i)$ for all $f \in P$ and $i \in I$.

- 2. Let I be a non-empty set. A free R-module on I is a pair (i, F), where
- (F.1) F is a left R-module and $i: I \longrightarrow F$ is a set map, and
- (F.2) if (i', F') is a pair which satisfies (F.1) then there is a unique *R*-module homomorphism $\Phi: F \longrightarrow F'$ which satisfies $\Phi \circ i = i'$.

Prove the following theorem:

Theorem 2 Let R be a ring with unity and let I be a non-empty set.

- (1) There is a free left R-module (i, F) on I.
- (2) Suppose that (i, F) and (i', F') are free left R-modules on I. Then there is a unique isomorphism of left R-modules Φ : F → F' which satisfies Φ ∘ i = i'.

Suppose that (i, F) is a free left *R*-module.

- (3) Im i generates F as a left R-module.
- (4) i is injective and $\{i(\ell)\}_{\ell \in I}$ is a basis for F.

[Hint: For part (1), let F be the subset of the product P of the family $\{R_i\}_{i\in I}$, where $R_i = R$ for all $i \in I$, of Exercise 1 consisting of all functions with finite (which includes empty) support. For $f \in P$ the support of f is defined by

$$\operatorname{supp} f = \{ i \in I \mid f(i) \neq 0 \}.$$

]

3. Suppose that $f : R \longrightarrow S$ is a function and for $r \in R$ and $s \in S$ define $r \cdot s = f(r)s$.

(a) Show that f is a homomorphism of rings with unity and Im f is in the center of S if and only if S is a left R-module and

$$r \cdot (ss') = (r \cdot s)s' = s(r \cdot s') \tag{1}$$

for all $r \in R$ and $s, s' \in S$.

(b) Suppose that S has a left R-module structure (S, \bullet) which satisfies (1). Define $F : R \longrightarrow S$ by $F(r) = r \bullet 1$ for all $r \in R$. Show that F is a homomorphism of rings with unity and Im F is in the center of S.

The ring S is called an R-algebra if $_RS$ and (1) is satisfied. The exercise shows there are two ways of describing an R-algebra.

- 4. Let **Z** be the ring of integers and **Q** be the field of rational numbers.
 - (a) Let $i: 2\mathbb{Z} \longrightarrow \mathbb{Z}$ be the inclusion. Show that $i \otimes \mathrm{Id} : 2\mathbb{Z} \otimes_{\mathbb{Z}} (\mathbb{Z}/2\mathbb{Z}) \longrightarrow \mathbb{Z} \otimes_{\mathbb{Z}} (\mathbb{Z}/2\mathbb{Z})$ is not injective.
 - (b) Show that $\mathbf{Q} \otimes_{\mathbf{Z}} A = (0)$ for all finite abelian groups A.
 - (c) Suppose that $f : M_R \longrightarrow M'_R$ and $g : {}_RN \longrightarrow {}_RN'$ are surjective maps of *R*-modules. Show that the homomorphism of abelian groups $f \otimes g : M \otimes_R N \longrightarrow M' \otimes_R N'$ is a surjective.