In the following exercises F is a field and \boldsymbol{R} is the field of real numbers. We follow the notation of the text and that used in class.

1. Let A be an algebra over F which satisfies $a^{2}=0$ for all $a \in A$. Let $J: A \times A \times A \longrightarrow A$ be the function defined by

$$
J(a, b, c)=a(b c)+b(c a)+c(a b)
$$

for all $a, b, c \in A$.
(a) Show that $J(a, a, b)=0$ for all $a, b \in A$.
(b) Show that $J(a, c, b)=J(b, a, c)=J(c, b, a)=-J(a, b, c)$ for all $a, b, c \in A$. (Thus if $J(a, b, c)=0$ then $J(x, y, z)=0$ for any rearrangement x, y, z of a, b, c since the equation holds for rearrangements which are transpositions.)
(c) Suppose that A is finite-dimensional and $\left\{a_{1}, \ldots, a_{n}\right\}$ is a basis for A. Show that A is a Lie algebra if and only if $J\left(a_{i}, a_{j}, a_{k}\right)=0$ for all $1 \leq i<j<k \leq n$. (You may assume that if $J(a, b, c)=0$ for all a, b, c in some spanning set then $J=0$.)
(d) Use part (b) to show that a 2-dimensional algebra ${ }^{* * *} \mathbf{B}^{* * *}$ over F with basis $\{a, b\}$ and multiplication table

	a	b
a	0	c
b	-c	0

where $c \in A$, is a Lie algebra.
(e) Show that a 3-dimensional algebra ${ }^{* * *} \mathbf{B}^{* * *}$ over F with basis $\{x, y, z\}$ and multiplication table

	x	y	z
x	0	cz	by
y	-cz	0	ax
z	-by	-ax	0

where $a, b, c \in F$, is a Lie algebra.
(f) Show that \mathbf{R}^{3} with the cross product is a Lie algebra. [Hint: Recall that

$$
\left(\begin{array}{c}
a \\
b \\
c
\end{array}\right) \times\left(\begin{array}{c}
a^{\prime} \\
b^{\prime} \\
c^{\prime}
\end{array}\right)=\left|\begin{array}{ccc}
\boldsymbol{\imath} & \boldsymbol{\jmath} & \boldsymbol{k} \\
a & b & c \\
a^{\prime} & b^{\prime} & c^{\prime}
\end{array}\right|,
$$

where

$$
\left.\boldsymbol{\imath}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad \boldsymbol{\jmath}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad \text { and } \quad \boldsymbol{k}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) .\right]
$$

2. Let $n \geq 2^{* * *}$ and the characteristic of F is not two. ${ }^{* * *}$

(a) Show that $s l(n, F)=L_{1}+\cdots+L_{r}$, where $L_{i} \simeq s l(2, F)$ for all $1 \leq i \leq r$. [Hint: Consider the Lie subalgebra of $s l(n, F)$ generated by $e_{i j}$ and $e_{j i}$, where $1 \leq i<j \leq n$.]
(b) Show that $[L L]=L$, where $L=s l(n, F)$. [Hint: Show that part (b) reduces to the case $n=2$.]
(c) Find a derivation D of $\operatorname{sl}(n, F)$ such that D^{2} is not a derivation. [Hint: Find a necessary and sufficient condition for D^{2} to be a derivation, where D is a derivation of an algebra A over F.]
3. Let $n \geq 1$. For $1 \leq r, r^{\prime}, c, c^{\prime} \leq n$ let $L_{r, r^{\prime}: c, c^{\prime}}$ be the span of all $e_{i j} \in \mathrm{M}(n, F)$ such that $r \leq i \leq r^{\prime}$ and $c \leq j \leq c^{\prime}$.
(a) Show that $L_{r, r^{\prime}: c, c^{\prime}}$ is a Lie subalgebra of $g l(n, F)$.

Let $L=L_{1,1: 1, n}$ and $a_{i}=e_{1 i}$ for all $1 \leq i \leq n$. Then $\left\{a_{1}, \ldots, a_{n}\right\}$ is a basis for L.
(b) Find $\left[a_{i} a_{j}\right]$ in terms of this basis for all $1 \leq i, j \leq n$.
(c) Determine $\mathrm{Z}(L), \mathrm{N}_{L}\left(F a_{1}\right)$, and $\mathrm{C}_{L}\left(F a_{1}\right)$.
(d) Determine the terms of the derived series and the lower central series of L.
4. Suppose that V is a finite-dimensional vector space over F and a is a diagonalizable endomorphism of V. Show that ad a is a diagonalizable endomorphism of $\operatorname{End}(V)$. [Hint: We take for the definition of diagonalizable " V has a basis of eigenvectors for a ". Suppose that $\left\{v_{i}\right\}_{1 \leq i \leq n}$ is a basis for V. Show that $\left\{E_{i j}\right\}_{1 \leq i, j \leq n}$ is a basis for $\operatorname{End}(V)$, where $E_{i j}\left(v_{k}\right)=\delta_{j, k} v_{i}$, and find a formula for $E_{i j} \circ E_{k \ell}$.]
5. Let $s \in \mathrm{M}(n, F)$ and set $\mathcal{L}_{s}=\left\{x \in \mathrm{M}(n, F) \mid x^{t} s=-s x\right\}$.
(a) Show that \mathcal{L}_{s} is a Lie subalgebra of $g l(n, F)$.
(b) Suppose that the characteristic of F is not 2 and s is invertible. Show that \mathcal{L}_{s} is a Lie subalgebra of $s l(n, F)$.
(c) Suppose that $u \in \mathrm{M}(n, F)$ is invertible and $u^{-1}=u^{t}$. (This is to say that u is orthogonal when $F=\mathbf{R}$.) Show that $\mathcal{L}_{s} \simeq \mathcal{L}_{u s u^{-1}}$ as Lie algebras.
(d) For which positive integers n is it the case that $s l(n, F)=\mathcal{L}_{s}$ for some s ? [Hint: Write $s=\sum_{1 \leq i, j \leq n} s_{i j} e_{i j}$ where $s_{i j} \in F$.]

