MATH 531 Written Homework 1 Radford DUE FRIDAY 09/14/07 (09/11/07: Revisions in boldface with asterisks.)

In the following exercises F is a field and R is the field of real numbers. We follow the notation of the text and that used in class.

1. Let A be an algebra over F which satisfies $a^2 = 0$ for all $a \in A$. Let $J : A \times A \times A \longrightarrow A$ be the function defined by

$$J(a, b, c) = a(bc) + b(ca) + c(ab)$$

for all $a, b, c \in A$.

- (a) Show that J(a, a, b) = 0 for all $a, b \in A$.
- (b) Show that J(a, c, b) = J(b, a, c) = J(c, b, a) = -J(a, b, c) for all $a, b, c \in A$. (Thus if J(a, b, c) = 0 then J(x, y, z) = 0 for any rearrangement x, y, z of a, b, c since the equation holds for rearrangements which are transpositions.)
- (c) Suppose that A is finite-dimensional and $\{a_1, \ldots, a_n\}$ is a basis for A. Show that A is a Lie algebra if and only if $J(a_i, a_j, a_k) = 0$ for all $1 \le i < j < k \le n$. (You may assume that if J(a, b, c) = 0 for all a, b, c in some spanning set then J = 0.)
- (d) Use part (b) to show that a 2-dimensional algebra $^{***}\mathbf{B}^{***}$ over F with basis $\{a, b\}$ and multiplication table

$$\begin{array}{c|ccc}
 a & b \\
 a & 0 & c \\
 b & -c & 0
\end{array},$$

where $c \in A$, is a Lie algebra.

(e) Show that a 3-dimensional algebra $^{***}\mathbf{B}^{***}$ over F with basis $\{x, y, z\}$ and multiplication table

$$\begin{array}{c|cccc} x & y & z \\ \hline x & 0 & cz & by \\ y & -cz & 0 & ax \\ z & -by & -ax & 0 \end{array}$$

where $a, b, c \in F$, is a Lie algebra.

(f) Show that \mathbb{R}^3 with the cross product is a Lie algebra. [Hint: Recall that

$$\left(\begin{array}{c}a\\b\\c\end{array}\right)\times\left(\begin{array}{c}a'\\b'\\c'\end{array}\right) = \left|\begin{array}{ccc}\boldsymbol{\imath} & \boldsymbol{\jmath} & \boldsymbol{k}\\a & b & c\\a' & b' & c'\end{array}\right|,$$

where

$$\boldsymbol{\imath} = \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \quad \boldsymbol{\jmath} = \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \quad \text{and} \quad \boldsymbol{k} = \begin{pmatrix} 0\\0\\1 \end{pmatrix}.$$

- 2. Let $n \ge 2^{***}$ and the characteristic of F is not two.***
 - (a) Show that $sl(n, F) = L_1 + \cdots + L_r$, where $L_i \simeq sl(2, F)$ for all $1 \le i \le r$. [Hint: Consider the Lie subalgebra of sl(n, F) generated by e_{ij} and e_{ji} , where $1 \le i < j \le n$.]
 - (b) Show that [L L] = L, where L = sl(n, F). [Hint: Show that part (b) reduces to the case n = 2.]
 - (c) Find a derivation D of sl(n, F) such that D^2 is not a derivation. [Hint: Find a necessary and sufficient condition for D^2 to be a derivation, where D is a derivation of an algebra A over F.]

3. Let $n \ge 1$. For $1 \le r, r', c, c' \le n$ let $L_{r,r':c,c'}$ be the span of all $e_{ij} \in \mathcal{M}(n, F)$ such that $r \le i \le r'$ and $c \le j \le c'$.

(a) Show that $L_{r,r':c,c'}$ is a Lie subalgebra of gl(n, F).

Let $L = L_{1,1:1,n}$ and $a_i = e_{1i}$ for all $1 \le i \le n$. Then $\{a_1, \ldots, a_n\}$ is a basis for L.

- (b) Find $[a_i a_j]$ in terms of this basis for all $1 \le i, j \le n$.
- (c) Determine Z(L), $N_L(Fa_1)$, and $C_L(Fa_1)$.
- (d) Determine the terms of the derived series and the lower central series of L.

4. Suppose that V is a finite-dimensional vector space over F and a is a diagonalizable endomorphism of V. Show that ad a is a diagonalizable endomorphism of End(V). [Hint: We take for the definition of diagonalizable "V has a basis of eigenvectors for a". Suppose that $\{v_i\}_{1\leq i\leq n}$ is a basis for V. Show that $\{E_{ij}\}_{1\leq i,j\leq n}$ is a basis for End(V), where $E_{ij}(v_k) = \delta_{j,k}v_i$, and find a formula for $E_{ij} \circ E_{k\ell}$.]

5. Let $s \in M(n, F)$ and set $\mathcal{L}_s = \{x \in M(n, F) \mid x^t s = -sx\}.$

- (a) Show that \mathcal{L}_s is a Lie subalgebra of gl(n, F).
- (b) Suppose that the characteristic of F is not 2 and s is invertible. Show that \mathcal{L}_s is a Lie subalgebra of sl(n, F).
- (c) Suppose that $u \in M(n, F)$ is invertible and $u^{-1} = u^t$. (This is to say that u is orthogonal when $F = \mathbf{R}$.) Show that $\mathcal{L}_s \simeq \mathcal{L}_{usu^{-1}}$ as Lie algebras.
- (d) For which positive integers n is it the case that $sl(n, F) = \mathcal{L}_s$ for some s? [Hint: Write $s = \sum_{1 \le i,j \le n} s_{ij} e_{ij}$ where $s_{ij} \in F$.]