
MATH 531 Written Homework 1 Solution Radford 10/17/07

1. (20 points)

(a) (3) First note that a2 = 0 for all a ∈ A implies ab = −ba for all a, b ∈ A as

0 = (a + b)2 = a2 + ab + ba + b2 = ab + ba.

Thus

J(a, a, b) = a(ab) + a(ba) + b(aa) = a(ab) + a(−ab) + a(0) = a(ab)− a(ab) + 0 = 0

for all a, b ∈ A.

(b) (4) Let a, b, c ∈ A. Then rearranging the terms of the first sum

a(cb) + c(ba) + b(ac) = b(ac) + a(cb) + c(ba) = c(ba) + b(ac) + a(cb)

shows that J(a, c, b) = J(b, a, c) = J(c, b, a). As

−J(a, b, c) = −a(bc)− b(ca)− c(ab) = a(−bc) + b(−ca) + c(−ab) = a(cb) + b(ac) + c(ba)

all four expressions are equal.

(c) (3) You may assume that if J(a, b, c) = 0 for all a, b, c in some spanning set then J = 0.
Thus A is a Lie algebra if and only if J(ai, aj, ak) = 0 for all 1 ≤ i, j, k ≤ n. Suppose
J(ai, aj, ak) = 0. By part (b) this equation holds for any rearrangement of the inputs.
Thus by part (a) this equation holds if there is duplicates among the inputs. Therefore
J = 0 if and only if J(ai, aj, ak) = 0 holds when 1 ≤ i < j < k ≤ n.

(d) (3) B is a 2-dimensional algebra over F with basis {a, b} and multiplication table

a b
a 0 c
b -c 0

,

where c ∈ B. Once we show that x2 = 0 for all x ∈ B, it follows that B is a Lie algebra
since the condition of part (c) is vacuously satisfied. The next lemma applies to parts (d)
and (e).

Lemma 1 Suppose that B is an algebra over F spanned by {a1, . . . , an} which satisfies
a2

i = 0 for all 1 ≤ i ≤ n and aiaj = −ajai for all 1 ≤ i, j ≤ n. Then a2 = 0 for all a ∈ B.

Proof: Let a ∈ B. Then a =
∑n

i=1 αiai where αi ∈ F . Thus

a2 =

(
n∑

i=1

αiai

) 


n∑

j=1

αjaj




1



=
n∑

i=1


(αiai)(

n∑

j=1

αjaj)




=
n∑

i=1

n∑

j=1

(αiai)(αjaj)

=
n∑

i=1

n∑

j=1

(αiαj)aiaj

=
n∑

i=1

α2
i a

2
i +

∑

1≤i<j≤n

αiαjaiaj +
∑

1≤i>j≤n

αiαjaiaj

=
∑

1≤i<j≤n

(αiαj)(aiaj + ajai)

= 0.
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(e) (3) A 3-dimensional algebra B over F with basis {x, y, z} and multiplication table

x y z
x 0 cz by
y -cz 0 ax
z -by -ax 0

,

where a, b, c ∈ F is a Lie algebra by the lemma and part (c) since

J(x, y, z) = x(yz)+y(zx)+z(xy) = x(ax)+y(−by)+z(cz) = ax2−by2+cz2 = a0−b0+c0 = 0.

(f) (4) R3 with the cross product is a Lie algebra. [Recall that




a
b
c


×




a′

b′

c′


 =

∣∣∣∣∣∣∣

ı  k
a b c
a′ b′ c′

∣∣∣∣∣∣∣
,

where

ı =




1
0
0


 ,  =




0
1
0


 , and k =




0
0
1


 .]

Using the fact that the determinant function is linear in each row, and has the value 0
when two rows are the same, it follows that R3 is an algebra with the cross product over
R such that v×v = 0 for all v ∈ R3. In particular u×v = −v×u for all u,v ∈ R3. (See
part (a)). Since

i×j = k, i×k = −j, j×k = i,

R3 is a Lie algebra by part (e).
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2. (20 points) Let n ≥ 2 and assume that the characteristic of F is not 2.

(a) (6) For 1 ≤ i < j ≤ n let Li,j be the span of x = ei j, y = ej i, and h = ei j − ej i. Recall
that ek `er s = δ` rek s. Thus [x y] = h, [h x] = 2x, and [h y] = −2y. Therefore Li,j is a Lie
subalgebra of sl(n, F ) with multiplication table

h x y
h 0 2x -2y
x -2x 0 h
y 2y -h 0

which is that of sl(2, F ) when n = 2. We have shown that Li,j ' sl(2, F ).
Now sl(n, F ) has basis consisting of the ei j’s, 1 ≤ i, j ≤ n, where i 6= j, and the

differences ei i − e1 1. (Some detail required.) Thus sl(n, F ) =
∑

1≤i<j≤n Li,j.

(b) (6) By part (a) L = sl(n, F ) = L1+ · · ·+Lr where Li ' sl(2, F ). Now [sl(2, F ) sl(2, F )]
is spanned by {2x,−2y, h} by the table from part (a). Since the characteristic of F is not
2, this set is independent. Therefore [sl(2, F ) sl(2, F )] = [sl(2, F )]; hence [Li Li] = Li.
From this

[L L] = [L1 + · · ·+ Lr L1 + · · ·+ Lr] ⊇ [L1 L1] + · · ·+ [Lr Lr] = L1 + · · ·+ Lr = L

follows and consequently [L L] = L.

(c) (8) First of all, let D : A −→ A be a derivation of any algebra. For a, b ∈ A the
calculation

D2(ab) = D(D(ab)) = D(D(a)b + aD(b)) = (D2(a)b + D(a)D(b)) + (D(a)D(b) + aD2(b))

shows that D2 is a derivation of A if and only if 2D(a)D(b) = 0 for all a, b ∈ A.
Let h = e1 1 − e2 2, x = e1 2, y = e2 1, and consider the derivation D = ad h of

sl(n, F ). Then [D(x) D(y)] = [2x − 2y] = −4h. Since the characteristic of F is not 2,
2[D(x) D(y)] = −8h 6= 0. Thus D2 is not a derivation of sl(n, F ).

3. (20 points) Let n ≥ 1. For 1 ≤ r, r′, c, c′ ≤ n let Lr,r′:c,c′ be the span of all ei j ∈ M(n, F )
such that r ≤ i ≤ r′ and c ≤ j ≤ c′.

(a) (5) Consider ei j, ek ` which satisfy r ≤ i, k ≤ r′ and c ≤ j, ` ≤ c′. Since ei jek ` = δj,kei ` it
follows that Lr,r′:c,c′ is closed under matrix multiplication. Thus Lr,r′:c,c′ is a Lie subalgebra
of gl(n, F ).

L = L1,1:1,n and ai = e1 i for all 1 ≤ i ≤ n. Then {a1, . . . , an} is a basis for L.

(b) (5) [ai aj] = e1 ie1 j − e1 je1 i = δi,1e1 j − δj,1e1 i; thus

[ai aj] = δi,1aj − δj,1ai.

In particular

[a1 aj] = aj for 1 < j ≤ n and [ai aj] = 0 for all 1 < i ≤ j ≤ n. (1)
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(c) (5) Note Z(L) ⊆ CL(Fa1) ⊆ NL(Fa1). Let a = α1a1 + · · ·+ αnan ∈ L. Then

[a1 a] =
n∑

j=1

αj[a1 aj] =
n∑

j=2

αjaj

which means [a1 a] ∈ Fa1 if and only if α2 = · · · = αn = 0. Therefore NL(Fa1) = Fa1

which means CL(Fa1) = Fa1 as well since a1 ∈ CL(Fa1) ⊆ NL(Fa1) = Fa1.
If n = 1 then Z(L) = CL(Fa1) = Fa1 since L = Fa1 is abelian. Now Z(L) ⊆ CL(Fa1) =

Fa1; so when n > 1 the calculation [a1 a2] = a2 means that Z(L) = (0).

(d) (5) If n = 1 then L1 = L(1) = (0). Suppose n > 1. By (1) L1 = L(1) is the span
of {a2, . . . , an}. By (1) we conclude that L(2) = [L(1) L(1)] = (0) and L2 = [L L1] = L1.
Therefore L2 = L3 = . . . .

4. (20 points) Suppose that V is a finite-dimensional vector space over F . Suppose that
{vi}1≤i≤n is a basis for V . Define {Ei j}1≤i,j≤n ∈ End(V ) by Ei j(vk) = δj,kvi. Then for
1 ≤ i, j, k, `,m ≤ n the calculation

Ei j◦Ek `(vm) = Ei j(Ek `(vm)) = Ei j(δ`,m(vk)) = δ`,mδj,kvi = δj,kEi,`(vm)

shows that Ei j◦Ek ` = δj,kEi,`.
To show that {Ei j}1≤i,j≤n is a basis for End(V ) we need only establish independence.

Suppose that
∑n

i,j=1 αi jEi j = 0, where αi,j ∈ F . For fixed 1 ≤ m ≤ n, evaluation of both
sides of the equation at vm yields

∑n
i=1 αi,mvi = 0. Therefore αi,m = 0 for all 1 ≤ i ≤ n.

(5)
Now suppose that {v1, . . . , vn} is a basis of eigenvectors for a. Then there are λ1, . . . , λn ∈

F with a(vi) = λivi for all 1 ≤ i ≤ n. Since

(
n∑

i=1

λiEi i

)
(vm) =

n∑

i=1

λiEi i(vm) = λmvm = a(vm);

that is the sum of operators and a agree on a basis, a =
∑n

i=1 λiEi i. (10) Now

ad a(Ek `) = [aEk `] =
n∑

i=1

λi(Ei i◦Ek ` − Ek `◦Ei i) = (λk − λ`)Ek `

shows that Ek ` is an eigenvector for ad a. (5)

5. (20 points) Let s ∈ M(n, F ) and set Ls = {x ∈ M(n, F ) |xts = −sx}.
(a) (5) Note 0 ∈ Ls; thus Ls 6= ∅. Let x, y,∈ Ls and α ∈ F . The calculation

(x + αy)ts = (xt + αyt)s = xts + αyts = −sx + α(−sy) = −s(x + αy)
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shows that Ls is a subspace of M(n, F ) and the calculation

[x y]ts = (xy − yx)ts

= (ytxt − xtyt)s

= yt(xts)− xt(yts)

= yt(−sx)− xt(−sy)

= −(yts)x + (xts)y

= −(−sy)x + (−sx)y

= −s(xy − xy)

= −s[x y]

shows that [x y] ∈ Ls. Therefore Ls is a Lie subalgebra of gl(n, F ).

(b) (5) Suppose that the characteristic of F is not 2 and s is invertible. Let x ∈ Ls. Then
xts = −sx or equivalently xt = −sxs−1. Thus

Tr(x) = Tr(xt) = −Tr(sxs−1) = −Tr(s−1sx) = −Tr(x)

which shows that 2Tr(x) = 0. Since 2 is a unit of F it follows that Tr(x) = 0. Therefore
x ∈ sl(n, F ). We have shown Ls ⊆ sl(n, F ).

(c) (5) Suppose that u ∈ M(n, F ) is invertible and u−1 = ut. Generally if v ∈ M(n, F )
is invertible, fv is an algebra automorphism of M(n, F ), where fv(x) = vxv−1 for all x ∈
M(n, F ). Note that f−1

v = fv−1 . (Details needed.) Thus fv is a Lie algebra automorphism
of gl(n, F ). Observe that

f(x)t = (uxu−1)t = (u−1)txtut = (ut)−1xtut = (u−1)−1xtut = uxtu−1 = f(xt)

for all x ∈ M (n, F ).
Let x ∈ gl(n, F ). Then x ∈ Ls if and only if xts = −sx if and only if fu(x

ts) = −fu(sx)
if and only if fu(x)tfu(s) = −fu(s)fu(x) if and only if fu(x) ∈ Lfu(s) = Lusu−1 . Since
fu is bijective, we have shown that the restriction fu|Ls : Ls −→ Lusu−1 is a Lie algebra
isomorphism.

(d) (5) If n = 1 then (0) = sl(1, F ) = L(1). Assume n ≥ 2. Write s =
∑n

i j=1 si jei j and let
1 ≤ k, ` ≤ n be distinct. Assume sl(n, F ) = Ls. Since ek ` ∈ sl(n, F ) we have et

k `s = −sek `,
that is e` ks = −sek `, which is equivalent to

n∑

j=1

sk je` j = −
n∑

i=1

si kei `.

Now if j 6= ` there is no term on the right-hand side involving e` j. Therefore sk j = 0.
Suppose n ≥ 3. Then for all 1 ≤ k, j ≤ n there is an 1 ≤ ` ≤ n such that j, k 6= `.

Therefore sk j = 0 which means s = 0. As L0 = gl(n, F ) 6= sl(n, F ), we have a contradiction.
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Therefore n = 2. Since {k, `} = {1, 2}, the preceding equation is

sk ke` k + sk `e` ` = −(sk kek ` + s` ke` `),

or equivalently sk k = s` ` = 0 and sk ` = −s` k. Since s 6= 0 we may assume

S

(
0 1

−1 0

)
= e1 2 − e2 1.

It is an easy exercise to check that sl(2, F ) = Ls.

Comment: We have shown that sl(2, F ) = C1; see page 2 of Humphries.
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