1. (20 points)

(a) (3) First note that $a^{2}=0$ for all $a \in A$ implies $a b=-b a$ for all $a, b \in A$ as

$$
0=(a+b)^{2}=a^{2}+a b+b a+b^{2}=a b+b a .
$$

Thus

$$
J(a, a, b)=a(a b)+a(b a)+b(a a)=a(a b)+a(-a b)+a(0)=a(a b)-a(a b)+0=0
$$

for all $a, b \in A$.
(b) (4) Let $a, b, c \in A$. Then rearranging the terms of the first sum

$$
a(c b)+c(b a)+b(a c)=b(a c)+a(c b)+c(b a)=c(b a)+b(a c)+a(c b)
$$

shows that $J(a, c, b)=J(b, a, c)=J(c, b, a)$. As

$$
-J(a, b, c)=-a(b c)-b(c a)-c(a b)=a(-b c)+b(-c a)+c(-a b)=a(c b)+b(a c)+c(b a)
$$

all four expressions are equal.
(c) (3) You may assume that if $J(a, b, c)=0$ for all a, b, c in some spanning set then $J=0$. Thus A is a Lie algebra if and only if $J\left(a_{i}, a_{j}, a_{k}\right)=0$ for all $1 \leq i, j, k \leq n$. Suppose $J\left(a_{i}, a_{j}, a_{k}\right)=0$. By part (b) this equation holds for any rearrangement of the inputs. Thus by part (a) this equation holds if there is duplicates among the inputs. Therefore $J=0$ if and only if $J\left(a_{i}, a_{j}, a_{k}\right)=0$ holds when $1 \leq i<j<k \leq n$.
(d) (3) B is a 2-dimensional algebra over F with basis $\{a, b\}$ and multiplication table

$$
\begin{array}{c|rr}
& \mathrm{a} & \mathrm{~b} \\
\hline \mathrm{a} & 0 & \mathrm{c} \\
\mathrm{~b} & -\mathrm{c} & 0
\end{array},
$$

where $c \in B$. Once we show that $x^{2}=0$ for all $x \in B$, it follows that B is a Lie algebra since the condition of part (c) is vacuously satisfied. The next lemma applies to parts (d) and (e).

Lemma 1 Suppose that B is an algebra over F spanned by $\left\{a_{1}, \ldots, a_{n}\right\}$ which satisfies $a_{i}^{2}=0$ for all $1 \leq i \leq n$ and $a_{i} a_{j}=-a_{j} a_{i}$ for all $1 \leq i, j \leq n$. Then $a^{2}=0$ for all $a \in B$.

Proof: Let $a \in B$. Then $a=\sum_{i=1}^{n} \alpha_{i} a_{i}$ where $\alpha_{i} \in F$. Thus

$$
a^{2}=\left(\sum_{i=1}^{n} \alpha_{i} a_{i}\right)\left(\sum_{j=1}^{n} \alpha_{j} a_{j}\right)
$$

$$
\begin{aligned}
& =\sum_{i=1}^{n}\left(\left(\alpha_{i} a_{i}\right)\left(\sum_{j=1}^{n} \alpha_{j} a_{j}\right)\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n}\left(\alpha_{i} a_{i}\right)\left(\alpha_{j} a_{j}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n}\left(\alpha_{i} \alpha_{j}\right) a_{i} a_{j} \\
& =\sum_{i=1}^{n} \alpha_{i}^{2} a_{i}^{2}+\sum_{1 \leq i<j \leq n} \alpha_{i} \alpha_{j} a_{i} a_{j}+\sum_{1 \leq i>j \leq n} \alpha_{i} \alpha_{j} a_{i} a_{j} \\
& =\sum_{1 \leq i<j \leq n}\left(\alpha_{i} \alpha_{j}\right)\left(a_{i} a_{j}+a_{j} a_{i}\right) \\
& =0 .
\end{aligned}
$$

(e) (3) A 3-dimensional algebra B over F with basis $\{x, y, z\}$ and multiplication table

	x	y	z
x	0	cz	by
y	-cz	0	ax
z	-by	-ax	0

where $a, b, c \in F$ is a Lie algebra by the lemma and part (c) since $J(x, y, z)=x(y z)+y(z x)+z(x y)=x(a x)+y(-b y)+z(c z)=a x^{2}-b y^{2}+c z^{2}=a 0-b 0+c 0=0$.
(f) (4) R^{3} with the cross product is a Lie algebra. [Recall that

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \times\left(\begin{array}{c}
a^{\prime} \\
b^{\prime} \\
c^{\prime}
\end{array}\right)=\left|\begin{array}{ccc}
\boldsymbol{\imath} & \boldsymbol{\jmath} & \boldsymbol{k} \\
a & b & c \\
a^{\prime} & b^{\prime} & c^{\prime}
\end{array}\right|
$$

where

$$
\left.\boldsymbol{\imath}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad \boldsymbol{\jmath}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad \text { and } \quad \boldsymbol{k}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) .\right]
$$

Using the fact that the determinant function is linear in each row, and has the value 0 when two rows are the same, it follows that \mathbf{R}^{3} is an algebra with the cross product over \mathbf{R} such that $\mathbf{v} \times \mathbf{v}=\mathbf{0}$ for all $\mathbf{v} \in \mathbf{R}^{3}$. In particular $\mathbf{u} \times \mathbf{v}=-\mathbf{v} \times \mathbf{u}$ for all $\mathbf{u}, \mathbf{v} \in \mathbf{R}^{3}$. (See part (a)). Since

$$
\mathbf{i} \times \mathbf{j}=\mathbf{k}, \quad \mathbf{i} \times \mathbf{k}=-\mathbf{j}, \quad \mathbf{j} \times \mathbf{k}=\mathbf{i},
$$

\mathbf{R}^{3} is a Lie algebra by part (e).
2. (20 points) Let $n \geq 2$ and assume that the characteristic of F is not 2 .
(a) (6) For $1 \leq i<j \leq n$ let $L_{i, j}$ be the span of $x=e_{i j}, y=e_{j i}$, and $h=e_{i j}-e_{j i}$. Recall that $e_{k \ell} e_{r s}=\delta_{\ell r} e_{k s}$. Thus $[x y]=h,[h x]=2 x$, and $[h y]=-2 y$. Therefore $L_{i, j}$ is a Lie subalgebra of $s l(n, F)$ with multiplication table

	h	x	y
h	0	2 x	-2 y
x	-2 x	0	h
y	2 y	-h	0

which is that of $s l(2, F)$ when $n=2$. We have shown that $L_{i, j} \simeq s l(2, F)$.
Now $s l(n, F)$ has basis consisting of the $e_{i j}$'s, $1 \leq i, j \leq n$, where $i \neq j$, and the differences $e_{i i}-e_{11}$. (Some detail required.) Thus $s l(n, F)=\sum_{1 \leq i<j \leq n} L_{i, j}$.
(b) (6) By part (a) $L=s l(n, F)=L_{1}+\cdots+L_{r}$ where $L_{i} \simeq s l(2, F)$. Now $[s l(2, F) s l(2, F)]$ is spanned by $\{2 x,-2 y, h\}$ by the table from part (a). Since the characteristic of F is not 2, this set is independent. Therefore $[s l(2, F) s l(2, F)]=[s l(2, F)]$; hence $\left[L_{i} L_{i}\right]=L_{i}$. From this

$$
[L L]=\left[L_{1}+\cdots+L_{r} L_{1}+\cdots+L_{r}\right] \supseteq\left[L_{1} L_{1}\right]+\cdots+\left[L_{r} L_{r}\right]=L_{1}+\cdots+L_{r}=L
$$

follows and consequently $[L L]=L$.
(c) (8) First of all, let $D: A \longrightarrow A$ be a derivation of any algebra. For $a, b \in A$ the calculation
$D^{2}(a b)=D(D(a b))=D(D(a) b+a D(b))=\left(D^{2}(a) b+D(a) D(b)\right)+\left(D(a) D(b)+a D^{2}(b)\right)$
shows that D^{2} is a derivation of A if and only if $2 D(a) D(b)=0$ for all $a, b \in A$.
Let $h=e_{11}-e_{22}, x=e_{12}, y=e_{21}$, and consider the derivation $D=$ ad h of $\operatorname{sl}(n, F)$. Then $[D(x) D(y)]=[2 x-2 y]=-4 h$. Since the characteristic of F is not 2, $2[D(x) D(y)]=-8 h \neq 0$. Thus D^{2} is not a derivation of $s l(n, F)$.
3. (20 points) Let $n \geq 1$. For $1 \leq r, r^{\prime}, c, c^{\prime} \leq n$ let $L_{r, r^{\prime}: c, c^{\prime}}$ be the span of all $e_{i j} \in \mathrm{M}(n, F)$ such that $r \leq i \leq r^{\prime}$ and $c \leq j \leq c^{\prime}$.
(a) (5) Consider $e_{i j}, e_{k \ell}$ which satisfy $r \leq i, k \leq r^{\prime}$ and $c \leq j, \ell \leq c^{\prime}$. Since $e_{i j} e_{k \ell}=\delta_{j, k} e_{i \ell}$ it follows that $L_{r, r^{\prime}: c, c^{\prime}}$ is closed under matrix multiplication. Thus $L_{r, r^{\prime}: c, c^{\prime}}$ is a Lie subalgebra of $g l(n, F)$.
$L=L_{1,1: 1, n}$ and $a_{i}=e_{1 i}$ for all $1 \leq i \leq n$. Then $\left\{a_{1}, \ldots, a_{n}\right\}$ is a basis for L.
(b) (5) $\left[a_{i} a_{j}\right]=e_{1 i} e_{1 j}-e_{1 j} e_{1 i}=\delta_{i, 1} e_{1 j}-\delta_{j, 1} e_{1 i}$; thus

$$
\left[a_{i} a_{j}\right]=\delta_{i, 1} a_{j}-\delta_{j, 1} a_{i} .
$$

In particular

$$
\begin{equation*}
\left[a_{1} a_{j}\right]=a_{j} \text { for } 1<j \leq n \text { and }\left[a_{i} a_{j}\right]=0 \text { for all } 1<i \leq j \leq n . \tag{1}
\end{equation*}
$$

(c) (5) Note $\mathrm{Z}(L) \subseteq \mathrm{C}_{L}\left(F a_{1}\right) \subseteq \mathrm{N}_{L}\left(F a_{1}\right)$. Let $a=\alpha_{1} a_{1}+\cdots+\alpha_{n} a_{n} \in L$. Then

$$
\left[a_{1} a\right]=\sum_{j=1}^{n} \alpha_{j}\left[a_{1} a_{j}\right]=\sum_{j=2}^{n} \alpha_{j} a_{j}
$$

which means $\left[a_{1} a\right] \in F a_{1}$ if and only if $\alpha_{2}=\cdots=\alpha_{n}=0$. Therefore $\mathrm{N}_{L}\left(F a_{1}\right)=F a_{1}$ which means $\mathrm{C}_{L}\left(F a_{1}\right)=F a_{1}$ as well since $a_{1} \in \mathrm{C}_{L}\left(F a_{1}\right) \subseteq \mathrm{N}_{L}\left(F a_{1}\right)=F a_{1}$.

If $n=1$ then $\mathrm{Z}(L)=\mathrm{C}_{L}\left(F a_{1}\right)=F a_{1}$ since $L=F a_{1}$ is abelian. Now $\mathrm{Z}(L) \subseteq \mathrm{C}_{L}\left(F a_{1}\right)=$ $F a_{1}$; so when $n>1$ the calculation $\left[a_{1} a_{2}\right]=a_{2}$ means that $\mathrm{Z}(L)=(0)$.
(d) (5) If $n=1$ then $L^{1}=L^{(1)}=(0)$. Suppose $n>1$. By (1) $L^{1}=L^{(1)}$ is the span of $\left\{a_{2}, \ldots, a_{n}\right\}$. By (1) we conclude that $L^{(2)}=\left[L^{(1)} L^{(1)}\right]=(0)$ and $L^{2}=\left[L L^{1}\right]=L^{1}$. Therefore $L^{2}=L^{3}=\ldots$.
4. (20 points) Suppose that V is a finite-dimensional vector space over F. Suppose that $\left\{v_{i}\right\}_{1 \leq i \leq n}$ is a basis for V. Define $\left\{E_{i j}\right\}_{1 \leq i, j \leq n} \in \operatorname{End}(V)$ by $E_{i j}\left(v_{k}\right)=\delta_{j, k} v_{i}$. Then for $1 \leq i, j, k, \ell, m \leq n$ the calculation

$$
E_{i j} \circ E_{k \ell}\left(v_{m}\right)=E_{i j}\left(E_{k \ell}\left(v_{m}\right)\right)=E_{i j}\left(\delta_{\ell, m}\left(v_{k}\right)\right)=\delta_{\ell, m} \delta_{j, k} v_{i}=\delta_{j, k} E_{i, \ell}\left(v_{m}\right)
$$

shows that $E_{i j} \circ E_{k \ell}=\delta_{j, k} E_{i, \ell}$.
To show that $\left\{E_{i j}\right\}_{1 \leq i, j \leq n}$ is a basis for $\operatorname{End}(V)$ we need only establish independence. Suppose that $\sum_{i, j=1}^{n} \alpha_{i j} E_{i j}=0$, where $\alpha_{i, j} \in F$. For fixed $1 \leq m \leq n$, evaluation of both sides of the equation at v_{m} yields $\sum_{i=1}^{n} \alpha_{i, m} v_{i}=0$. Therefore $\alpha_{i, m}=0$ for all $1 \leq i \leq n$. (5)

Now suppose that $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of eigenvectors for a. Then there are $\lambda_{1}, \ldots, \lambda_{n} \in$ F with $a\left(v_{i}\right)=\lambda_{i} v_{i}$ for all $1 \leq i \leq n$. Since

$$
\left(\sum_{i=1}^{n} \lambda_{i} E_{i i}\right)\left(v_{m}\right)=\sum_{i=1}^{n} \lambda_{i} E_{i i}\left(v_{m}\right)=\lambda_{m} v_{m}=a\left(v_{m}\right) ;
$$

that is the sum of operators and a agree on a basis, $a=\sum_{i=1}^{n} \lambda_{i} E_{i i}$. (10) Now

$$
\operatorname{ad} a\left(E_{k \ell}\right)=\left[a E_{k \ell}\right]=\sum_{i=1}^{n} \lambda_{i}\left(E_{i i} \circ E_{k \ell}-E_{k \ell} \circ E_{i i}\right)=\left(\lambda_{k}-\lambda_{\ell}\right) E_{k \ell}
$$

shows that $E_{k \ell}$ is an eigenvector for ad a. (5)
5. (20 points) Let $s \in \mathrm{M}(n, F)$ and set $\mathcal{L}_{s}=\left\{x \in \mathrm{M}(n, F) \mid x^{t} s=-s x\right\}$.
(a) (5) Note $0 \in \mathcal{L}_{s}$; thus $\mathcal{L}_{s} \neq \emptyset$. Let $x, y, \in \mathcal{L}_{s}$ and $\alpha \in F$. The calculation

$$
(x+\alpha y)^{t} s=\left(x^{t}+\alpha y^{t}\right) s=x^{t} s+\alpha y^{t} s=-s x+\alpha(-s y)=-s(x+\alpha y)
$$

shows that \mathcal{L}_{s} is a subspace of $\mathrm{M}(n, F)$ and the calculation

$$
\begin{aligned}
{\left[\begin{array}{ll}
x & y
\end{array}\right]^{t} s } & =(x y-y x)^{t} s \\
& =\left(y^{t} x^{t}-x^{t} y^{t}\right) s \\
& =y^{t}\left(x^{t} s\right)-x^{t}\left(y^{t} s\right) \\
& =y^{t}(-s x)-x^{t}(-s y) \\
& =-\left(y^{t} s\right) x+\left(x^{t} s\right) y \\
& =-(-s y) x+(-s x) y \\
& =-s(x y-x y) \\
& =-s[x y]
\end{aligned}
$$

shows that $[x y] \in \mathcal{L}_{s}$. Therefore \mathcal{L}_{s} is a Lie subalgebra of $g l(n, F)$.
(b) (5) Suppose that the characteristic of F is not 2 and s is invertible. Let $x \in \mathcal{L}_{s}$. Then $x^{t} s=-s x$ or equivalently $x^{t}=-s x s^{-1}$. Thus

$$
\operatorname{Tr}(x)=\operatorname{Tr}\left(x^{t}\right)=-\operatorname{Tr}\left(s x s^{-1}\right)=-\operatorname{Tr}\left(s^{-1} s x\right)=-\operatorname{Tr}(x)
$$

which shows that $2 \operatorname{Tr}(x)=0$. Since 2 is a unit of F it follows that $\operatorname{Tr}(x)=0$. Therefore $x \in \operatorname{sl}(n, F)$. We have shown $\mathcal{L}_{s} \subseteq \operatorname{sl}(n, F)$.
(c) (5) Suppose that $u \in \mathrm{M}(n, F)$ is invertible and $u^{-1}=u^{t}$. Generally if $v \in \mathrm{M}(n, F)$ is invertible, f_{v} is an algebra automorphism of $\mathrm{M}(n, F)$, where $f_{v}(x)=v x v^{-1}$ for all $x \in$ $\mathrm{M}(n, F)$. Note that $f_{v}^{-1}=f_{v^{-1}}$. (Details needed.) Thus f_{v} is a Lie algebra automorphism of $g l(n, F)$. Observe that

$$
f(x)^{t}=\left(u x u^{-1}\right)^{t}=\left(u^{-1}\right)^{t} x^{t} u^{t}=\left(u^{t}\right)^{-1} x^{t} u^{t}=\left(u^{-1}\right)^{-1} x^{t} u^{t}=u x^{t} u^{-1}=f\left(x^{t}\right)
$$

for all $x \in M(n, F)$.
Let $x \in g l(n, F)$. Then $x \in \mathcal{L}_{s}$ if and only if $x^{t} s=-s x$ if and only if $f_{u}\left(x^{t} s\right)=-f_{u}(s x)$ if and only if $f_{u}(x)^{t} f_{u}(s)=-f_{u}(s) f_{u}(x)$ if and only if $f_{u}(x) \in \mathcal{L}_{f_{u}(s)}=\mathcal{L}_{u s u^{-1}}$. Since f_{u} is bijective, we have shown that the restriction $f_{u} \mid \mathcal{L}_{s}: \mathcal{L}_{s} \longrightarrow \mathcal{L}_{u s u^{-1}}$ is a Lie algebra isomorphism.
(d) (5) If $n=1$ then $(0)=s l(1, F)=\mathcal{L}_{(1)}$. Assume $n \geq 2$. Write $s=\sum_{i j=1}^{n} s_{i j} e_{i j}$ and let $1 \leq k, \ell \leq n$ be distinct. Assume $s l(n, F)=\mathcal{L}_{s}$. Since $e_{k \ell} \in s l(n, F)$ we have $e_{k \ell}^{t} s=-s e_{k \ell}$, that is $e_{\ell k} s=-s e_{k \ell}$, which is equivalent to

$$
\sum_{j=1}^{n} s_{k j} e_{\ell j}=-\sum_{i=1}^{n} s_{i k} e_{i \ell}
$$

Now if $j \neq \ell$ there is no term on the right-hand side involving $e_{\ell j}$. Therefore $s_{k j}=0$.
Suppose $n \geq 3$. Then for all $1 \leq k, j \leq n$ there is an $1 \leq \ell \leq n$ such that $j, k \neq \ell$. Therefore $s_{k j}=0$ which means $s=0$. As $\mathcal{L}_{0}=g l(n, F) \neq s l(n, F)$, we have a contradiction.

Therefore $n=2$. Since $\{k, \ell\}=\{1,2\}$, the preceding equation is

$$
s_{k k} e_{\ell k}+s_{k \ell} e_{\ell \ell}=-\left(s_{k k} e_{k \ell}+s_{\ell k} e_{\ell \ell}\right),
$$

or equivalently $s_{k k}=s_{\ell \ell}=0$ and $s_{k \ell}=-s_{\ell k}$. Since $s \neq 0$ we may assume

$$
S\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)=e_{12}-e_{21} .
$$

It is an easy exercise to check that $s l(2, F)=\mathcal{L}_{s}$.
Comment: We have shown that $s l(2, F)=C_{1}$; see page 2 of Humphries.

