In the following exercises F is a field and all algebras are over F. We follow the notation of the text and that used in class.

- 1. Let A be a Lie algebra over F, let S be a subspace S of L, and define $S^{(0)}$, $S^{(1)}$, $S^{(2)}$, ... inductively by $S^{(0)} = S$ and $S^{(i+1)} = [S^{(i)} S^{(i)}]$ for $i \ge 0$.
 - (a) Show that $(S^{(i)})^{(j)} = S^{(i+j)}$ for all $i, j \ge 0$.
 - (b) Suppose that T is also a subspace of L and $S \subseteq T$. Show that $S^{(i)} \subseteq T^{(i)}$ for all $i \ge 0$.
 - (c) Let $f: L \longrightarrow L'$ be a map of Lie algebras. Show that $f(S^{(i)}) = f(S)^{(i)}$ for all $i \ge 0$.
 - (d) If S is an ideal of L show that $S^{(i)}$ is an ideal of L for all $i \ge 0$.
 - (e) If S is a subalgebra of L show that $S^{(i)}$ is a subalgebra of L for all $i \ge 0$.

2. A graded algebra over F is an algebra A over F with a designated direct sum decomposition of subspaces $A = \bigoplus_{i=0}^{\infty} A(i)$ such that $A(i)A(j) \subseteq A(i+j)$ for all $i, j \ge 0$. Let $I = \bigoplus_{i=0}^{\infty} I(i)$ has a graded Lie algebra over F and set $I = I(i) \oplus I(i+1) \oplus I(i+2) \oplus I(i+2)$ for

 $L = \bigoplus_{i=0}^{\infty} L(i)$ be a graded Lie algebra over F and set $L_i = L(i) \oplus L(i+1) \oplus L(i+2) \oplus \cdots$ for all $i \ge 0$.

- (a) Show that $L = L_0 \supseteq L_1 \supseteq L_2 \supset \cdots$ is a descending chain of ideals of L which satisfies $[L_i L_j] \subseteq L_{i+j}$ for all $i, j \ge 0$.
- (b) Suppose that L(0) is a abelian. Show that $L^{(i)} \subseteq L_{2^{i-1}}$ for all $i \ge 1$.

Suppose that L(0) is abelian and $L(n) = L(n+1) = \cdots = (0)$ for some $n \ge 0$.

- (c) Show that L is solvable.
- (d) Show that [L L] is nilpotent.
- (e) Suppose that [L(0) L(1)] = L(1) and is not zero. Show that L is not nilpotent.

3. We discuss two applications of Exercise 2. First, let $n \ge 1$, L = t(n, F), and let L(i) be the span of the $e_{\ell \ell'}$'s, where $1 \le \ell, \ell' \le n$ and $\ell' = \ell + i$.

(a) Show that the L(i)'s give L = t(n, F) has the structure of graded Lie algebra, L(0) is abelian, $L(n) = L(n+1) = \cdots = (0)$, and [L(0) L(1)] = L(1).

(b) Use Exercise 2 to conclude that L is solvable, [L L] is nilpotent, and L is not nilpotent.

Now let L be the Lie algebra with basis $\{x, y\}$ determined by [x y] = y.

- (c) Show that L has the structure of a graded Lie algebra $L = L(0) \oplus L(1) \oplus \cdots$ such that L(0) is abelian, $L(2) = L(3) = \cdots = (0)$, and [L(0) L(1)] = L(1).
- (d) Use Exercise 2 to conclude that L is solvable, [L L] is nilpotent, and L is not nilpotent. [Note: The ideal I = Fx and the quotient L/I are nilpotent but L is not.]
- 4. Let L be a Lie algebra over F. Show that the following are equivalent:
 - (a) There exists a descending sequence of subalgebras

$$L = L_0 \supseteq L_1 \supseteq L_2 \supseteq \cdots \supseteq L_n = (0)$$

for some $n \ge 0$ such that L_{i+1} is an ideal of L_i and the quotient L_i/L_{i+1} is abelian for all $0 \le i < n$.

- (b) L is solvable.
- 5. Let L be a finite-dimensional nilpotent Lie algebra over F.
 - (a) Show that L has a flag of ideals.
 - (b) Suppose that I is an ideal of L. Show that there is an increasing sequence of ideals

$$I = I_0 \subseteq I_1 \subseteq \dots \subseteq I_r = L$$

for some $r \ge 0$ such that $\lim I_{i+1} = \lim I_i + 1$ for all $0 \le i < r$.