1. (20 points) A is a Lie algebra over F, S is a subspace of $L, S^{(0)}, S^{(1)}, S^{(2)}, \ldots$ defined inductively by $S^{(0)}=S$ and $S^{(i+1)}=\left[S^{(i)} S^{(i)}\right]$ for $i \geq 0$.
(a) (4) $\left(S^{(i)}\right)^{(j)}=S^{(i+j)}$ for all $i, j \geq 0$; proof for fixed i by induction on $j \cdot\left(S^{(i)}\right)^{(0)}=$ $S^{(i)}=S^{(i+0)}$. Thus the formula holds for $j=0$.

Suppose $j \geq 0$ and the formula holds for j. Then $\left(S^{(i)}\right)^{(j+1)}=\left[\left(S^{(i)}\right)^{(j)}\left(S^{(i)}\right)^{(j)}\right]=$ $\left[S^{(i+j)} S^{(i+j)}\right]=S^{(i+j+1)}$. Thus $\left(S^{(i)}\right)^{(j)}=S^{(i+j)}$ for all $i, j \geq 0$.
(b) (4) $S \subseteq T$, the latter a subspace of L. Then $S^{(i)} \subseteq T^{(i)}$ for all $i \geq 0$ by induction on i. The formula holds for $i=0$ since $S^{(0)}=S \subseteq T=T^{(0)}$.

Suppose $i \geq 0$ and the formula holds. Then $S^{(i+1)}=\left[\begin{array}{ll}S^{(i)} & S^{(i)}\end{array}\right] \subseteq\left[\begin{array}{ll}T^{(i)} & T^{(i)}\end{array}\right]=T^{(i+1)}$. Thus $S^{(i)} \subseteq T^{(i)}$ for all $i \geq 0$.
(c) (4) $f: L \longrightarrow L^{\prime}$ is a map of Lie algebras. Then $f\left(S^{(i)}\right)=f(S)^{(i)}$ for all $i \geq 0$ by induction on i. Since $f\left(S^{(0)}\right)=f(S)=f(S)^{(0)}$ the formula holds for $i=0$.

Suppose $i \geq 0$ and the formula holds. Then $f\left(S^{(i+1)}\right)=f\left(\left[S^{(i)} S^{(i)}\right]\right)=\left[f\left(S^{(i)}\right) f\left(S^{(i)}\right)\right]=$ $\left[f(S)^{(i)} f(S)^{(i)}\right]=f(S)^{(i+1)}$. Thus $f\left(S^{(i)}\right)=f(S)^{(i)}$ for all $i \geq 0$.
(d) (4) Since S is an ideal of $L, S^{(0)}=S$ is an ideal of L. Suppose $i \geq 0$ and $S^{(i)}$ is an ideal of L. Since the product of ideals of L is an ideal of $L, S^{(i+1)}=\left[S^{(i)} S^{(i)}\right]$ is an ideal of L. Thus $S^{(i)}$ is an ideal of L for all $i \geq 0$ by induction on i.
(e) (4) Since S is a subalgebra of $L, S^{(i)}$ is an ideal of S, hence a subalgebra of S, for all $i \geq 0$, by part (d).
2. (20 points) $L=\bigoplus_{i=0}^{\infty} L(i)$ is a graded Lie algebra over $F, L_{i}=L(i) \oplus L(i+1) \oplus L(i+2) \oplus \cdots$ for all $i \geq 0$. Since $[L(0) L(0)] \subseteq L(0+0)=L(0)$ it follows that $L(0)$ is a Lie subalgebra of L. We use an algebra of sets which would be good to justify in detail.
(a) (4) $L_{i}=L(i) \oplus L_{i+1}$; thus $L_{i} \supseteq L_{i+1}$ for all $i \geq 0$ which means $L=L_{0} \supseteq L_{1} \supseteq L_{2} \supset \cdots$ is a descending chain of subspaces of L. For $i, j \geq 0$ note

$$
\left[\begin{array}{ll}
L_{i} & L_{j}
\end{array}\right]=\left[\sum_{k=i}^{\infty} L(k) \sum_{\ell=j}^{\infty} L(\ell)\right]=\sum_{k=i}^{\infty} \sum_{\ell=j}^{\infty}[L(k) L(\ell)] \subseteq \sum_{k=i}^{\infty} \sum_{\ell=j}^{\infty} L(k+\ell) \subseteq \sum_{r \geq i+j} L(r) \subseteq L_{i+j} .
$$

In particular $\left[\begin{array}{ll}L & L_{i}\end{array}\right]=\left[\begin{array}{ll}L_{0} & L_{i}\end{array}\right] \subseteq L_{0+i}=L_{i}$ which means that L_{i} is an ideal of L.
(b) (4) $L(0)$ is abelian. $L^{(i)} \subseteq L_{2^{i-1}}$ for all $i \geq 1$ by induction on i. Since $L(0)$ is abelian and L_{1} is an ideal of L, the calculation

$$
\begin{gathered}
L^{(1)}=\left[\begin{array}{ll}
L & L
\end{array}\right]=\left[\begin{array}{ll}
L(0)+ & L_{1} \\
L(0)+L_{1}
\end{array}\right]=\left[\begin{array}{ll}
L(0) & L(0)
\end{array}\right]+\left[\begin{array}{ll}
L(0) & L_{1}
\end{array}\right]+\left[\begin{array}{ll}
L_{1} & L(0)
\end{array}\right]+\left[\begin{array}{ll}
L_{1} & L_{1}
\end{array}\right] \\
\subseteq\left[\begin{array}{ll}
L(0) & L(0)
\end{array}\right]+L_{1}=(0)+L_{1}=L_{2^{1-1}}
\end{gathered}
$$

shows that the formula is true for $i=1$.

Suppose $i \geq 1$ and the formula holds. Then $L^{(i+1)}=\left[\begin{array}{lll}L^{(i)} & L^{(i)}\end{array}\right] \subseteq\left[\begin{array}{ll}L_{2^{i-1}} & L_{2^{i-1}}\end{array}\right] \subseteq$ $L_{2^{i-1}+2^{i-1}}=L_{2^{i}}$. Therefore the formula holds for all $i \geq 1$.
Suppose that $L(0)$ is abelian and $L(n)=L(n+1)=\cdots=(0)$ for some $n \geq 0$.
(c) (4) Then $L_{n}=L_{n+1}=\cdots=(0)$. As $2^{n} \geq n$ for all $n \geq 0$ we have $L^{(n+1)} \subseteq L_{2^{n}}=(0)$ by part (b). Thus L is solvable.
(d) (4) $K=\left[\begin{array}{ll}L & L\end{array}\right]$ is nilpotent. For $K^{0}=K=L^{(1)} \subseteq L_{1}$ by part (b). Suppose $i \geq 0$ and $K^{i} \subseteq L_{i+1}$. Then $K^{i+1}=\left[\begin{array}{ll}K & K^{i}\end{array}\right] \subseteq\left[\begin{array}{ll}L_{1} & L_{i+1}\end{array}\right] \subseteq L_{i+2}$. Thus $K^{i} \subseteq L_{i+1}$ or all $i \geq 0$. Consequently $K^{n} \subseteq L_{n+1}=(0)$ which means that $K=\left[\begin{array}{ll}L & L\end{array}\right]$ is nilpotent.
(e) (4) Suppose that $[L(0) L(1)]=L(1)$ and is not zero. Now $L^{0}=L \supseteq L(1)$. Suppose that $i \geq 0$ and $L^{i} \supseteq L(1)$. Then $L^{i+1}=\left[\begin{array}{ll}L & L^{i}\end{array} \supseteq[L(0) L(1)]=L(1)\right.$. Therefore $L^{i} \supseteq L(1)$ for all $i \geq 0$ by induction on i. As $L(1) \neq(0), L^{i} \neq(0)$ for all $i \geq 0$ which means that L is not nilpotent.

3. (20 points) First:

Let $n \geq 1, L=t(n, F)$, and let $L(i)$ be the span of the $e_{\ell \ell^{\prime}}$'s, where $1 \leq \ell, \ell^{\prime} \leq n$ and $\ell^{\prime}=\ell+i$.
(a) (7) Since the $e_{i j}$'s, where $1 \leq i \leq j \leq n$, form a basis for L, and there is a partitioning of this basis whose cells form bases for distinct $L(i)$'s, $L=t(n, F)=\bigoplus_{i=0}^{\infty} L(i)$ is the direct sum of subspaces. Note that $L(i) \neq(0)$ if and only if $0 \leq i \leq n-1$.

Let $0 \leq i, j \leq n-1$ and consider typical basis elements $e_{\ell \ell+i}, e_{\ell^{\prime} \ell^{\prime}+j}$ for $L(i), L(j)$ respectively. Since $e_{\ell \ell+i} e_{\ell^{\prime} \ell^{\prime}+j}=\delta_{\ell+i \ell^{\prime}} e_{\ell \ell^{\prime}+j}$ it follows that this product is not zero if and only if $\ell+i=\ell^{\prime}$, in which case $\ell^{\prime}+j=\ell+(i+j)$ and $e_{\ell \ell+i} e_{\ell^{\prime} \ell^{\prime}+j}=e_{\ell \ell+(i+j)} \in L(i+j)$. We have shown that with matrix multiplication $L(i) L(j) \subseteq L(i+j)$. Therefore the associative bracket $[L(i) L(j)] \subseteq L(i+j)$.

Suppose $n>1$. For $1 \leq i \leq n-1$ the calculation $\left[\begin{array}{ll}e_{i i} & \left.e_{i i+1}\right]=e_{i i} e_{i i+1}-e_{i i+1} e_{i i}=e_{i i+1}, ~\end{array}\right.$ shows that $[L(0) \quad L(1)]=L(1)$. Observe $L(1) \neq(0)$.

For distinct $1 \leq i, j \leq n$ the calculation $\left[\begin{array}{ll}e_{i i} & e_{j j}\end{array}\right]=e_{i i} e_{j j}-e_{i i} e_{j j}=0$ shows that $L(0)$ is abelian.

When $n=1$ we have $L(0)=F e_{11}$ is therefore abelian and $L(0)=(0)$; hence $[L(0) L(1)]=$ (0) $=L(1)$.
(b) (3) Use Exercise 2 to conclude that L is solvable, $[L L]$ is nilpotent, and L is not nilpotent. True only when $n>1$.

Now let L be the Lie algebra with basis $\{x, y\}$ determined by $[x y]=y$.
(c) (7) Set $L(0)=F x, L(1)=F y$, and $L(i)=(0)$ for all $1<i$. Then $L=L(0) \oplus L(1)=$ $L(0) \oplus L(1) \oplus L(2) \oplus \cdots$. Since $[L(0) \quad L(0)]=(0) \subseteq L(0+0),[L(1) \quad L(0)]=[L(0) \quad L(1)]=$ [Fx $F y$] $=F y=L(1)$, and $[L(i) L(j)]=(0) \subseteq L(i+j)$ when $i+j>1$, it follows that L has the structure of a graded Lie algebra and $L(0)$ is abelian.
(d) (3) By Exercise 2, L is solvable, $[L L]$ is nilpotent, and L is not nilpotent.
4. (20 points) Let L be a Lie algebra over F. Show that the following are equivalent:
(a) There exists a descending sequence of subalgebras

$$
L=L_{0} \supseteq L_{1} \supseteq L_{2} \supseteq \cdots \supseteq L_{n}=(0)
$$

for some $n \geq 0$ such that L_{i+1} is an ideal of L_{i} and the quotient L_{i} / L_{i+1} is abelian for all $0 \leq i<n$.
(b) L is solvable.
(a) implies (b) (12) $L^{(0)}=L=L_{0}$. Suppose that $0 \leq i$ and $L^{(i)} \subseteq L_{i}$. Since L_{i} / L_{i+1} is abelian $\left[\begin{array}{ll}L^{(i)} & L^{(i)}\end{array}\right]+L_{i+1}=\left[\begin{array}{lll}L^{(i)}+L_{i+1} & L^{(i)}+L_{i+1}\end{array}\right] \subseteq\left[\begin{array}{ll}L_{i}+L_{i+1} & L_{i}+L_{i+1}\end{array}\right]=(\mathbf{0})$ shows $L^{(i+1)}=\left[\begin{array}{ll}L^{(i)} & L^{(i)}\end{array}\right] \subseteq L_{i+1}$. By induction $L^{(i)} \subseteq L_{i}$ for all $i \geq 0$. In particular $L^{(n)} \subseteq L_{n}=(0)$ and L is solvable.
(b) implies (a) (8) $L=L^{(0)} \supseteq L^{(1)} \supseteq L^{(2)} \supseteq \cdots$ is a decreasing sequence of ideals and the quotient $L^{(i)} / L^{(i+1}$ is abelian as a result of the coset calculation

$$
\left[L^{(i)}+L^{(i+1)} L^{(i)}+L^{(i+1)}\right]=\left[\begin{array}{ll}
L^{(i)} & L^{(i)}
\end{array}\right]+L^{(i+1)}=L^{(i+1)}+L^{(i+1)}=\left(0+L^{(i+1)}\right)=(\mathbf{0}) .
$$

5. ($\mathbf{2 0}$ points) Let L be a finite-dimensional nilpotent Lie algebra over F.
(a) (10) L is solvable and thus has a flag of ideals (0) $=L_{0} \subseteq L_{1} \subseteq \cdots \subseteq L_{n}=L$ by Corollary B, page 12 of the text.

Comment: We have just applied a 32-pound sledge hammer to solve this problem which needs only a delicate tap. Suppose that $L^{i} \supseteq L^{i+1}$ is a proper inclusion (which must be the case if $\left.L^{i} \neq(0)\right)$. Let V be a subspace of L such that $L^{i+1} \subseteq V \subseteq L^{i}$. The calculation $\left[\begin{array}{ll}L & V\end{array}\right] \subseteq\left[\begin{array}{ll}L & L^{i}\end{array}\right]=L^{i+1} \subseteq V$ shows that V is an ideal of L. Choose a basis \mathcal{B} for L^{i+1} and let $\mathcal{B} \cup\left\{x_{1}, \ldots, x_{s}\right\}$ be an extension of \mathcal{B} to a basis for L^{i}. (Note: $\mathcal{B}=\emptyset$ if $L^{i+1}=(0)$.) Let $m=\operatorname{Dim} L^{i+1}$ and define $L_{m+\ell}=\operatorname{span}\left(\mathcal{B} \cup\left\{x_{1}, \ldots, x_{\ell}\right\}\right)$ for $1 \leq \ell \leq s$. (Thus $L_{m+s}=L^{i}$ and $m+s=\operatorname{Dim} L^{i}$.) Then $(0)=L_{0}, L_{1}, L_{2}, \ldots$ is the desired flag.
(b) (10) I is an ideal of L and the projection $\pi: L \longrightarrow L / I$ is a surjective Lie algebra map. Since $\mathcal{L}=L / I$ is nilpotent by part (a) of $\S 3.2$ Proposition. Thus there is a flag of ideals $(0)=\mathcal{L}_{0} \subseteq \mathcal{L}_{1} \subseteq \mathcal{L}_{2} \cdots \subseteq \mathcal{L}_{r}=\mathcal{L}$ by part (a). Now $I_{i}=\pi^{-1}\left(\mathcal{L}_{i}\right)$ is an ideal of L for all $0 \leq i \leq r$ and $I=\operatorname{Ker} \pi=I_{0} \subseteq I_{1} \subseteq I_{2} \subseteq \cdots \subseteq I_{r}=L$. Since π is surjective, the restriction $\pi \mid I_{i}: I_{i} \longrightarrow \pi\left(I_{i}\right)=\mathcal{L}_{i}$ is surjective. Thus by the Rank-Nullity Theorem
$\operatorname{Dim} I_{i+1}=\operatorname{Dim} \operatorname{Im} \pi\left|I_{i+1}+\operatorname{Dim} \operatorname{Ker} \pi\right| I_{i}=\operatorname{Dim} \mathcal{L}_{i+1}+\operatorname{Dim} I=\left(\operatorname{Dim} \mathcal{L}_{i}+1\right)+\operatorname{Dim} I=\operatorname{Dim} I_{i}+1$ for all $0 \leq i<r$.

Comment: Appealing to part (a), let $I_{i}^{\prime}=L_{i}+I$ for all $0 \leq i \leq n$. Since the sum of ideals is an ideal, $I_{0}^{\prime}=L_{0}+I=(0)+I=I \subseteq I_{1}^{\prime} \subseteq \cdots \subseteq I_{n}^{\prime}=L_{n}+I=L+I=L$ is a chain of ideals of L. Let $0 \leq i<n$. Then $L_{i+1}=L_{i} \oplus F v$ for some $v \in L$. Therefore $I_{i+1}^{\prime}=I_{i}+F v$ which means that $I_{i+1}^{\prime}=I_{i}^{\prime}$ or $\operatorname{Dim} I_{i+1}^{\prime}=\operatorname{Dim} I_{i}^{\prime}+1$. Evidently the distinct terms of $I=I_{0}^{\prime}, I_{1}^{\prime}, \ldots, I_{n}^{\prime}=L$ form the desired sequence.

