
MATH 531 Written Homework 2 Solution Radford 10/18/07

1. (20 points) A is a Lie algebra over F , S is a subspace of L, S(0), S(1), S(2), . . . defined
inductively by S(0) = S and S(i+1) = [S(i) S(i)] for i ≥ 0.

(a) (4) (S(i))(j) = S(i+j) for all i, j ≥ 0; proof for fixed i by induction on j. (S(i))(0) =
S(i) = S(i+0). Thus the formula holds for j = 0.

Suppose j ≥ 0 and the formula holds for j. Then (S(i))(j+1) = [(S(i))(j) (S(i))(j)] =
[S(i+j) S(i+j)] = S(i+j+1). Thus (S(i))(j) = S(i+j) for all i, j ≥ 0.

(b) (4) S ⊆ T , the latter a subspace of L. Then S(i) ⊆ T (i) for all i ≥ 0 by induction on i.
The formula holds for i = 0 since S(0) = S ⊆ T = T (0).

Suppose i ≥ 0 and the formula holds. Then S(i+1) = [S(i) S(i)] ⊆ [T (i) T (i)] = T (i+1).
Thus S(i) ⊆ T (i) for all i ≥ 0.

(c) (4) f : L −→ L′ is a map of Lie algebras. Then f(S(i)) = f(S)(i) for all i ≥ 0 by
induction on i. Since f(S(0)) = f(S) = f(S)(0) the formula holds for i = 0.

Suppose i ≥ 0 and the formula holds. Then f(S(i+1)) = f([S(i) S(i)]) = [f(S(i)) f(S(i))] =
[f(S)(i) f(S)(i)] = f(S)(i+1). Thus f(S(i)) = f(S)(i) for all i ≥ 0.

(d) (4) Since S is an ideal of L, S(0) = S is an ideal of L. Suppose i ≥ 0 and S(i) is an
ideal of L. Since the product of ideals of L is an ideal of L, S(i+1) = [S(i) S(i)] is an ideal
of L. Thus S(i) is an ideal of L for all i ≥ 0 by induction on i.

(e) (4) Since S is a subalgebra of L, S(i) is an ideal of S, hence a subalgebra of S, for all
i ≥ 0, by part (d).

2. (20 points) L =
∞⊕

i=0

L(i) is a graded Lie algebra over F , Li = L(i)⊕L(i+1)⊕L(i+2)⊕ · · ·
for all i ≥ 0. Since [L(0) L(0)] ⊆ L(0 + 0) = L(0) it follows that L(0) is a Lie subalgebra
of L. We use an algebra of sets which would be good to justify in detail.

(a) (4) Li = L(i)⊕Li+1; thus Li ⊇ Li+1 for all i ≥ 0 which means L = L0 ⊇ L1 ⊇ L2 ⊃ · · ·
is a descending chain of subspaces of L. For i, j ≥ 0 note

[Li Lj] = [
∞∑

k=i

L(k)
∞∑

`=j

L(`)] =
∞∑

k=i

∞∑

`=j

[L(k) L(`)] ⊆
∞∑

k=i

∞∑

`=j

L(k + `) ⊆ ∑

r≥i+j

L(r) ⊆ Li+j.

In particular [L Li] = [L0 Li] ⊆ L0+i = Li which means that Li is an ideal of L.

(b) (4) L(0) is abelian. L(i) ⊆ L2i−1 for all i ≥ 1 by induction on i. Since L(0) is abelian
and L1 is an ideal of L, the calculation

L(1) = [L L] = [L(0) + L1 L(0) + L1] = [L(0) L(0)] + [L(0) L1] + [L1 L(0)] + [L1 L1]

⊆ [L(0) L(0)] + L1 = (0) + L1 = L21−1

shows that the formula is true for i = 1.

1



Suppose i ≥ 1 and the formula holds. Then L(i+1) = [L(i) L(i)] ⊆ [L2i−1 L2i−1 ] ⊆
L2i−1+2i−1 = L2i . Therefore the formula holds for all i ≥ 1.

Suppose that L(0) is abelian and L(n) = L(n + 1) = · · · = (0) for some n ≥ 0.

(c) (4) Then Ln = Ln+1 = · · · = (0). As 2n ≥ n for all n ≥ 0 we have L(n+1) ⊆ L2n = (0)
by part (b). Thus L is solvable.

(d) (4) K = [L L] is nilpotent. For K0 = K = L(1) ⊆ L1 by part (b). Suppose i ≥ 0
and Ki ⊆ Li+1. Then K i+1 = [K K i] ⊆ [L1 Li+1] ⊆ Li+2. Thus K i ⊆ Li+1 or all i ≥ 0.
Consequently Kn ⊆ Ln+1 = (0) which means that K = [L L] is nilpotent.

(e) (4) Suppose that [L(0) L(1)] = L(1) and is not zero. Now L0 = L ⊇ L(1). Suppose
that i ≥ 0 and Li ⊇ L(1). Then Li+1 = [L Li] ⊇ [L(0) L(1)] = L(1). Therefore Li ⊇ L(1)
for all i ≥ 0 by induction on i. As L(1) 6= (0), Li 6= (0) for all i ≥ 0 which means that L is
not nilpotent.

3. (20 points) First:

Let n ≥ 1, L = t(n, F ), and let L(i) be the span of the e` `′ ’s, where 1 ≤ `, `′ ≤ n and
`′ = ` + i.

(a) (7) Since the ei j’s, where 1 ≤ i ≤ j ≤ n, form a basis for L, and there is a partitioning
of this basis whose cells form bases for distinct L(i)’s, L = t(n, F ) =

⊕∞
i=0L(i) is the direct

sum of subspaces. Note that L(i) 6= (0) if and only if 0 ≤ i ≤ n− 1.
Let 0 ≤ i, j ≤ n − 1 and consider typical basis elements e` `+i, e`′ `′+j for L(i), L(j)

respectively. Since e` `+ie`′ `′+j = δ`+i `′e` `′+j it follows that this product is not zero if and
only if `+ i = `′, in which case `′+ j = `+(i+ j) and e` `+ie`′ `′+j = e` `+(i+j) ∈ L(i+ j). We
have shown that with matrix multiplication L(i)L(j) ⊆ L(i + j). Therefore the associative
bracket [L(i) L(j)] ⊆ L(i + j).

Suppose n > 1. For 1 ≤ i ≤ n−1 the calculation [ei i ei i+1] = ei iei i+1−ei i+1ei i = ei i+1

shows that [L(0) L(1)] = L(1). Observe L(1) 6= (0).
For distinct 1 ≤ i, j ≤ n the calculation [ei i ej j] = ei iej j − ei iej j = 0 shows that L(0)

is abelian.
When n = 1 we have L(0) = Fe1 1 is therefore abelian and L(0) = (0); hence [L(0) L(1)] =

(0) = L(1).

(b) (3) Use Exercise 2 to conclude that L is solvable, [LL] is nilpotent, and L is not
nilpotent. True only when n > 1.

Now let L be the Lie algebra with basis {x, y} determined by [x y] = y.

(c) (7) Set L(0) = Fx, L(1) = Fy, and L(i) = (0) for all 1 < i. Then L = L(0)⊕L(1) =
L(0)⊕L(1)⊕L(2)⊕ · · ·. Since [L(0) L(0)] = (0) ⊆ L(0 + 0), [L(1) L(0)] = [L(0) L(1)] =
[Fx Fy] = Fy = L(1), and [L(i) L(j)] = (0) ⊆ L(i + j) when i + j > 1, it follows that L
has the structure of a graded Lie algebra and L(0) is abelian.

(d) (3) By Exercise 2, L is solvable, [LL] is nilpotent, and L is not nilpotent.

4. (20 points) Let L be a Lie algebra over F . Show that the following are equivalent:
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(a) There exists a descending sequence of subalgebras

L = L0 ⊇ L1 ⊇ L2 ⊇ · · · ⊇ Ln = (0)

for some n ≥ 0 such that Li+1 is an ideal of Li and the quotient Li/Li+1 is abelian
for all 0 ≤ i < n.

(b) L is solvable.

(a) implies (b) (12) L(0) = L = L0. Suppose that 0 ≤ i and L(i) ⊆ Li. Since Li/Li+1

is abelian [L(i) L(i)] + Li+1 = [L(i) + Li+1 L(i) + Li+1] ⊆ [Li + Li+1 Li + Li+1] = (0)
shows L(i+1) = [L(i) L(i)] ⊆ Li+1. By induction L(i) ⊆ Li for all i ≥ 0. In particular
L(n) ⊆ Ln = (0) and L is solvable.

(b) implies (a) (8) L = L(0) ⊇ L(1) ⊇ L(2) ⊇ · · · is a decreasing sequence of ideals and the
quotient L(i)/L(i+1 is abelian as a result of the coset calculation

[L(i) + L(i+1) L(i) + L(i+1)] = [L(i) L(i)] + L(i+1) = L(i+1) + L(i+1) = (0 + L(i+1)) = (0).

5. (20 points) Let L be a finite-dimensional nilpotent Lie algebra over F .

(a) (10) L is solvable and thus has a flag of ideals (0) = L0 ⊆ L1 ⊆ · · · ⊆ Ln = L by
Corollary B, page 12 of the text.

Comment: We have just applied a 32-pound sledge hammer to solve this problem which
needs only a delicate tap. Suppose that Li ⊇ Li+1 is a proper inclusion (which must be
the case if Li 6= (0)). Let V be a subspace of L such that Li+1 ⊆ V ⊆ Li. The calculation
[L V ] ⊆ [L Li] = Li+1 ⊆ V shows that V is an ideal of L. Choose a basis B for Li+1 and
let B∪{x1, . . . , xs} be an extension of B to a basis for Li. (Note: B = ∅ if Li+1 = (0).) Let
m = Dim Li+1 and define Lm+` = span(B∪{x1, . . . , x`}) for 1 ≤ ` ≤ s. (Thus Lm+s = Li

and m + s = Dim Li.) Then (0) = L0, L1, L2, . . . is the desired flag.

(b) (10) I is an ideal of L and the projection π : L −→ L/I is a surjective Lie algebra
map. Since L = L/I is nilpotent by part (a) of §3.2 Proposition. Thus there is a flag of
ideals (0) = L0 ⊆ L1 ⊆ L2 · · · ⊆ Lr = L by part (a). Now Ii = π−1(Li) is an ideal of L
for all 0 ≤ i ≤ r and I = Ker π = I0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ Ir = L. Since π is surjective, the
restriction π|Ii : Ii −→ π(Ii) = Li is surjective. Thus by the Rank-Nullity Theorem

Dim Ii+1 = Dim Im π|Ii+1+Dim Ker π|Ii = DimLi+1+Dim I = (DimLi+1)+Dim I = Dim Ii+1

for all 0 ≤ i < r.

Comment: Appealing to part (a), let I ′i = Li + I for all 0 ≤ i ≤ n. Since the sum of
ideals is an ideal, I ′0 = L0 + I = (0) + I = I ⊆ I ′1 ⊆ · · · ⊆ I ′n = Ln + I = L + I = L is
a chain of ideals of L. Let 0 ≤ i < n. Then Li+1 = Li⊕Fv for some v ∈ L. Therefore
I ′i+1 = Ii +Fv which means that I ′i+1 = I ′i or Dim I ′i+1 = Dim I ′i +1. Evidently the distinct
terms of I = I ′0, I

′
1, . . . , I

′
n = L form the desired sequence.
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