MATH 531 Written Homework 3 Radford DUE FRIDAY 10/26/07

In the following exercises F is a field. We follow the notation of the text and that used in class.

1. Let L_1, \ldots, L_r be Lie algebras over the field F, let $L = L_1 \oplus \cdots \oplus L_r$ be their vector space direct sum, and for each $1 \leq i \leq r$ let $\pi_i : L \longrightarrow L_i$ be the linear map defined by $\pi(\ell_1 \oplus \cdots \oplus \ell_r) = \ell_i$.

(a) Show that L is a Lie algebra over F, where

$$[\ell_1 \oplus \cdots \oplus \ell_r \, \ell'_1 \oplus \cdots \oplus \ell'_r] = [\ell_1 \, \ell'_1] \oplus \cdots \oplus [\ell_r \, \ell'_r].$$

You may assume that this product gives L an algebra structure over F.

- (b) Show that $\pi_i : L \longrightarrow L_i$ is a map of Lie algebras for all $1 \le i \le r$.
- (c) Suppose that L' is a Lie algebra over F and $\pi'_i : L' \longrightarrow L_i$ is a Lie algebra for all $1 \leq i \leq r$. Show that there is one and only one map of Lie algebras $\pi : L' \longrightarrow L$ which satisfies $\pi_i \circ \pi = \pi'_i$ for all $1 \leq i \leq r$. (Thus the system $(L, \{\pi_i\}_{1 \leq i \leq r})$ is product in the category of Lie algebras and Lie algebra maps.)

2. Let L be a finite-dimensional Lie algebra over F and let $\kappa : L \times L \longrightarrow F$ be the killing form of L.

- (a) Find the matrix $\begin{pmatrix} \kappa(x,x) & \kappa(x,y) \\ \kappa(y,x) & \kappa(y,y) \end{pmatrix}$, where *L* is the Lie algebra over *F* with basis $\{x,y\}$ whose multiplication is determined by [xy] = y, and find Rad *L*.
- (b) Find the matrix $\begin{pmatrix} \kappa(x,x) & \kappa(x,y) & \kappa(x,z) \\ \kappa(y,x) & \kappa(y,y) & \kappa(y,z) \\ \kappa(z,x) & \kappa(z,y) & \kappa(z,z) \end{pmatrix}$, where *L* is the Lie algebra over *F* with basis $\{x, y, z\}$ whose multiplication is determined by [x y] = cz, [y z] = ax, and [z x] = by for some $a, b, c \in F$, and find a basis for Rad *L*.

3. Suppose that the characteristic of F is not 2, $n \ge 2$, and regard L = sl(2, F) as a subalgebra of gl(n, F) with the identification $x = e_{12}$, $y = e_{21}$, and $z = e_{11} - e_{22}$. Let L act on V = gl(n, F) by the adjoint action; that is $\ell \cdot v = \lfloor \ell v \rfloor$ for all $\ell \in L$ and $v \in V$.

- (a) Write V as a direct sum of simple L-modules.
- (b) Determine the weight spaces, corresponding weights, and a maximal vector for each summand.

4. Let A = F[x, y] be the algebra over polynomials in indeterminates x and y over F.

(a) Show that:

$$oldsymbol{x} = \ell_x \circ rac{\partial}{\partial y}, \qquad oldsymbol{y} = \ell_y \circ rac{\partial}{\partial x}, \qquad ext{and} \qquad oldsymbol{z} = [oldsymbol{x}, oldsymbol{y}]$$

are derivations of A.

(b) Show that $\{\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}\}$ is linearly independent, that

 $[\boldsymbol{z}, \boldsymbol{x}] = 2\boldsymbol{x},$ and that $[\boldsymbol{z}, \boldsymbol{y}] = -2\boldsymbol{y}.$

Thus the Lie subalgebra L of Der(A) is isomorphic to sl(2, F). [Hint: To establish the first equation, consider effect of the derivations $[\boldsymbol{z}, \boldsymbol{x}]$ and $2\boldsymbol{x}$ on algebra generators x, y.]

Let L act on A according by $D \cdot v = D(v)$ for all $D \in L$ and $v \in V$. For each $n \ge 0$ let V_n be the span of the monomials $X^{\ell}Y^{n-\ell}$, where $0 \le \ell \le n$. Observe that $\text{Dim}V_n = n+1$ and $A = \bigoplus_{n=0}^{\infty} V_n$.

(c) Show that V_n is a simple L = sl(2, F)-module for all $n \ge 0$. Determine the weight spaces, corresponding weights, and a maximal vector for each V_n .