In the following exercises F is a field. We follow the notation of the text and that used in class.

1. Let L_{1}, \ldots, L_{r} be Lie algebras over the field F, let $L=L_{1} \oplus \cdots \oplus L_{r}$ be their vector space direct sum, and for each $1 \leq i \leq r$ let $\pi_{i}: L \longrightarrow L_{i}$ be the linear map defined by $\pi\left(\ell_{1} \oplus \cdots \oplus \ell_{r}\right)=\ell_{i}$.
(a) Show that L is a Lie algebra over F, where

$$
\left[\ell_{1} \oplus \cdots \oplus \ell_{r} \ell_{1}^{\prime} \oplus \cdots \oplus \ell_{r}^{\prime}\right]=\left[\ell_{1} \ell_{1}^{\prime}\right] \oplus \cdots \oplus\left[\ell_{r} \ell_{r}^{\prime}\right] .
$$

You may assume that this product gives L an algebra structure over F.
(b) Show that $\pi_{i}: L \longrightarrow L_{i}$ is a map of Lie algebras for all $1 \leq i \leq r$.
(c) Suppose that L^{\prime} is a Lie algebra over F and $\pi_{i}^{\prime}: L^{\prime} \longrightarrow L_{i}$ is a Lie algebra for all $1 \leq i \leq r$. Show that there is one and only one map of Lie algebras $\pi: L^{\prime} \longrightarrow L$ which satisfies $\pi_{i} \circ \pi=\pi_{i}^{\prime}$ for all $1 \leq i \leq r$. (Thus the system $\left(L,\left\{\pi_{i}\right\}_{1 \leq i \leq r}\right)$ is product in the category of Lie algebras and Lie algebra maps.)
2. Let L be a finite-dimensional Lie algebra over F and let $\kappa: L \times L \longrightarrow F$ be the killing form of L.
(a) Find the matrix $\left(\begin{array}{ll}\kappa(x, x) & \kappa(x, y) \\ \kappa(y, x) & \kappa(y, y)\end{array}\right)$, where L is the Lie algebra over F with basis $\{x, y\}$ whose multiplication is determined by $[x y]=y$, and find $\operatorname{Rad} L$.
(b) Find the matrix $\left(\begin{array}{lll}\kappa(x, x) & \kappa(x, y) & \kappa(x, z) \\ \kappa(y, x) & \kappa(y, y) & \kappa(y, z) \\ \kappa(z, x) & \kappa(z, y) & \kappa(z, z)\end{array}\right)$, where L is the Lie algebra over F with basis $\{x, y, z\}$ whose multiplication is determined by $[x y]=c z,[y z]=a x$, and $[z x]=b y$ for some $a, b, c \in F$, and find a basis for $\operatorname{Rad} L$.
3. Suppose that the characteristic of F is not $2, n \geq 2$, and regard $L=s l(2, F)$ as a subalgebra of $g l(n, F)$ with the identification $x=e_{12}, y=e_{21}$, and $z=e_{11}-e_{22}$. Let L act on $V=g l(n, F)$ by the adjoint action; that is $\ell \cdot v=[\ell v]$ for all $\ell \in L$ and $v \in V$.
(a) Write V as a direct sum of simple L-modules.
(b) Determine the weight spaces, corresponding weights, and a maximal vector for each summand.
4. Let $A=F[x, y]$ be the algebra over polynomials in indeterminates x and y over F.
(a) Show that:

$$
\boldsymbol{x}=\ell_{x} \circ \frac{\partial}{\partial y}, \quad \boldsymbol{y}=\ell_{y} \circ \frac{\partial}{\partial x}, \quad \text { and } \quad \boldsymbol{z}=[\boldsymbol{x}, \boldsymbol{y}]
$$

are derivations of A.
(b) Show that $\{\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}\}$ is linearly independent, that

$$
[\boldsymbol{z}, \boldsymbol{x}]=2 \boldsymbol{x}, \quad \text { and that } \quad[\boldsymbol{z}, \boldsymbol{y}]=-2 \boldsymbol{y} .
$$

Thus the Lie subalgebra L of $\operatorname{Der}(A)$ is isomorphic to $s l(2, F)$. [Hint: To establish the first equation, consider effect of the derivations $[\boldsymbol{z}, \boldsymbol{x}]$ and $2 \boldsymbol{x}$ on algebra generators x, y.]

Let L act on A according by $D \cdot v=D(v)$ for all $D \in L$ and $v \in V$. For each $n \geq 0$ let V_{n} be the span of the monomials $X^{\ell} Y^{n-\ell}$, where $0 \leq \ell \leq n$. Observe that $\operatorname{Dim} V_{n}=n+1$ and $A=\oplus_{n=0}^{\infty} V_{n}$.
(c) Show that V_{n} is a simple $L=\operatorname{sl}(2, F)$-module for all $n \geq 0$. Determine the weight spaces, corresponding weights, and a maximal vector for each V_{n}.

