In this exercise set we begin a rather detailed study of $s l(n, F)$.

1. (20 points) For all $1 \leq i, j, k, \ell \leq n$ note $e_{i j} e_{k \ell}=\delta_{j, k} e_{i \ell} ;$ thus $\left[e_{i j} e_{k \ell}\right]=\delta_{j, k} e_{i \ell}-\delta_{\ell, i} e_{k j}$.
(a) (5) This is boring but necessary.

$$
\begin{aligned}
\left(\operatorname{ad} e_{i j} \circ \operatorname{ad} e_{k \ell}\right)\left(e_{u v}\right) & =\left[e_{i j}\left[e_{k \ell} e_{u v}\right]\right] \\
& =\left[e_{i j}\left(\delta_{\ell, u} e_{k v}-\delta_{v, \ell} e_{u \ell}\right)\right] \\
& \left.=\delta_{\ell, u}\left[e_{i j} e_{k v}\right]-\delta_{v, \ell}\left[e_{i j} e_{u \ell}\right)\right] \\
& =\delta_{\ell, u}\left(\delta_{j, k} e_{i v}-\delta_{v, i} e_{k j}\right)-\delta_{v, \ell}\left(\delta_{j, u} e_{i \ell}-\delta_{\ell, i} e_{u j}\right) \\
& =\delta_{\ell, u} \delta_{j, k} e_{i v}-\delta_{\ell, u} \delta_{i, v} e_{k j}-\delta_{k, v} \delta_{j, u} e_{i \ell}+\delta_{k, v} \delta_{i, \ell} e_{u j} .
\end{aligned}
$$

(b) (5) In the expression of part (a), the contribution of $a e_{k \ell}$, where $a \in F$, to the coefficient of $e_{u v}$ is $\delta_{k, u} \delta_{\ell, v} a$. Thus the answer is:

$$
\begin{array}{r}
\delta_{i, u} \delta_{v, v} \delta_{\ell, u} \delta_{j, k}-\delta_{k, u} \delta_{j, v} \delta_{\ell, u} \delta_{i, v}-\delta_{i, u} \delta_{\ell, v} \delta_{k, v} \delta_{j, u}+\delta_{u, u} \delta_{j, v} \delta_{k, v} \delta_{i, \ell} \\
=\delta_{\ell, u} \delta_{j, k} \delta_{i, u}-\delta_{\ell, u} \delta_{i, v} \delta_{k, u} \delta_{j, v}-\delta_{k, v} \delta_{j, u} \delta_{i, u} \delta_{\ell, v}+\delta_{k, v} \delta_{i, \ell} \delta_{j, v} .
\end{array}
$$

(c) (5) Fix $e_{i j}, e_{k \ell}$. For $e_{u v}$ write $\left(\operatorname{ad} e_{i j} \circ \operatorname{ad} e_{k \ell}\right)\left(e_{u v}\right)=\sum_{1 \leq x, y \leq n} \alpha_{(x, y),(u, v)} e_{x y}$. In light of part (b)

$$
\begin{aligned}
\kappa\left(e_{i j}, e_{k \ell}\right) & =\operatorname{Tr}\left(\operatorname{ad} e_{i j} \operatorname{oad} e_{k \ell}\right) \\
& =\sum_{1 \leq u, v \leq n} \alpha_{(u, v),(u, v)} \\
& =\sum_{1 \leq u, v \leq n} \delta_{\ell, u} \delta_{j, k} \delta_{i, u}-\sum_{1 \leq u, v \leq n} \delta_{\ell, u} \delta_{i, v} \delta_{k, u} \delta_{j, v}-\sum_{1 \leq u, v \leq n} \delta_{k, v} \delta_{j, u} \delta_{i, u} \delta_{\ell, v}+\sum_{1 \leq u, v \leq n} \delta_{k, v} \delta_{i, \ell} \delta_{j, v} \\
& =\sum_{1 \leq v \leq n} \delta_{\ell, \ell} \delta_{j, k} \delta_{i, \ell}-\delta_{\ell, \ell} \delta_{i, i} \delta_{k, \ell} \delta_{j, i}-\delta_{k, k} \delta_{j, j} \delta_{i, j} \delta_{\ell, k}+\sum_{1 \leq u \leq n} \delta_{k, j} \delta_{i, \ell} \delta_{j, j} \\
& =2 n \delta_{i, \ell} \delta_{j, k}-2 \delta_{i, j} \delta_{k, \ell} .
\end{aligned}
$$

(d) (5) Let $x=\sum_{1 \leq i, j \leq n} a_{i, j} e_{i j} \in L$. By part (b), $x \in \operatorname{Rad} \kappa$ if and only if for all $1 \leq k, \ell \leq$ n,

$$
0=\kappa\left(x, e_{k \ell}\right)=\sum_{1 \leq i, j \leq n} a_{i j} \kappa\left(e_{i j}, e_{k \ell}\right),
$$

or equivalently

$$
\sum_{1 \leq i, j \leq n} a_{i, j}\left(2 n \delta_{i, \ell} \delta_{j, k}-2 \delta_{i, j} \delta_{k, \ell}\right)=0
$$

or equivalently

$$
2 n a_{\ell, k}=2\left(\sum_{1 \leq i \leq n} a_{i, i}\right) \delta_{k, \ell}
$$

or equivalently

$$
\begin{equation*}
a_{\ell, k}=\delta_{k, \ell}\left(\frac{1}{n}\left(\sum_{1 \leq i \leq n} a_{i, i}\right)\right) . \tag{1}
\end{equation*}
$$

Thus $x=\sum_{1 \leq i \leq n} a_{i, i} e_{i i}=a_{1,1} \mathrm{I}_{n}$. Conversely, if $x=a \mathrm{I}_{n}=\sum_{1 \leq i \leq n} a e_{i i}$ for some $a \in F$, then (1) holds, so $x \in \operatorname{Rad} \kappa$.
2. ($\mathbf{2 5}$ points) Let $\kappa^{\prime}=\kappa_{g l(n, F)}$. Since $L=\operatorname{sl}(n, F)$ is an ideal of $g l(n, F)$ it follows that $\kappa=\left.\kappa^{\prime}\right|_{L \times L}$. Now $g l(n, F)=\operatorname{sl}(n, F) \oplus F I_{n}$.

To show that κ is non-degenerate. Let $x \in \operatorname{Rad} \kappa$ and assume that $\kappa(x, y)=0$ for all $y \in L$. Since $g l(n, F)=L \oplus F \mathrm{I}_{n}$, any element of $g l(n, F)$ an be written $y+a \mathrm{I}_{n}$ for some $y \in L$ and $a \in F$. Since $\operatorname{Rad} \kappa^{\prime}=F \mathrm{I}_{n}$ by part (d) of Problem 1, the calculation

$$
0=\kappa(x, y)=\kappa^{\prime}(x, y)=\kappa^{\prime}(x, y)+\kappa^{\prime}\left(x, a \mathrm{I}_{n}\right)=\kappa^{\prime}\left(x, y+a \mathrm{I}_{n}\right)
$$

shows that $x \in \operatorname{Rad} \kappa^{\prime}(\mathbf{1 0})$. Thus $x \in L \cap F \mathrm{I}_{n}=(0)$ which means that $x=0$. Therefore κ is non-singular (15).
3. ($\mathbf{3 0}$ points) Let $\mathbf{\Phi}$ be the set of $\alpha_{k} \ell^{\prime}$ s and $h=\sum_{i=1}^{n} \lambda_{i} e_{i i}, \in H$. For $h^{\prime} \in H$ note that [$\left.h h^{\prime}\right]=0$ since both h, h^{\prime} are diagonal matrices. Thus H is a subalgebra (abelian) of L.

Suppose that $1 \leq k, \ell \leq n$ and are distinct. Then

$$
\left[h e_{k \ell}\right]=\sum_{i=1}^{n} \lambda_{i}\left[e_{i i} e_{k \ell}\right]=\lambda_{k} e_{k k} e_{k \ell}-\lambda_{\ell} e_{k \ell} e_{\ell \ell}=\left(\lambda_{k}-\lambda_{\ell}\right) e_{k \ell}=\alpha_{k \ell}(h) e_{k \ell}
$$

Since $L=H \oplus\left(\oplus_{1 \leq k, \ell \leq n, k \neq \ell} F e_{k \ell}\right)$, we have shown that $\operatorname{ad} h$ is a diagonalizable operator (thus H is a toral subalgebra of L) and the summand $F e_{k \ell} \subseteq L_{\alpha_{k \ell}}$.

It is left as a small exercise to show that $\alpha_{k \ell}=\alpha_{k^{\prime} \ell^{\prime}}$ if and only if $k=k^{\prime}$ and $\ell=\ell^{\prime}$. Since
and the summands on the left are subspaces of the summands on the right, the summands on the left are the non-zero summands on the right. In particular $H=L_{0}$. If H^{\prime} is a toral subalgebra and $H \subseteq H^{\prime}$ then $\left[h h^{\prime}\right]=0$ for all $h \in H$ and $h^{\prime} \in H^{\prime}$ which implies $h^{\prime} \in L_{0}$. Therefore $H=H^{\prime}$ from which we conclude that (a) H is a maximal toral subalgebra of L (10). From our comments about the summands of (2) it now follows that (b) $\boldsymbol{\Phi}$ is the root system of L relative to H (10) and (c) $L_{\alpha_{k \ell}}=F e_{k \ell}$ for all $1 \leq k, \ell \leq n$ and $k \neq \ell(\mathbf{1 0})$.
4. (25 points) Let $\alpha \in \Phi$. Then $\alpha=\alpha_{k \ell}$ for some distinct $1 \leq k, \ell \leq n$. Since

$$
\begin{equation*}
-\alpha_{k \ell}=\alpha_{\ell k} \tag{3}
\end{equation*}
$$

we deduce deduce that $S_{\alpha_{k \ell}}=F e_{\ell k} \oplus F t_{\alpha_{k \ell}} \oplus F e_{k \ell}$ by Exercise 3. Note that $e_{k \ell}$ and $e_{\ell k}$ generate $S_{\alpha_{k \ell}}$ as a Lie algebra.

Let $\beta \in \Phi$ and suppose that $\beta \neq \pm \alpha_{k \ell}$. Then $\beta=\alpha_{u v}$, or $\alpha_{u \ell}$, or or $\alpha_{u k}$, or $\alpha_{k v}$, or $\alpha_{\ell v}$, where $u, v \notin\{k, \ell\}$, by (3) and Exercise 3. The α-string $\beta+(-r) \alpha, \ldots, \beta+q \alpha$ through β accounts for a simple $s l(2, F)=S_{\alpha}$-module $V=L_{\beta-r \alpha} \oplus \cdots \oplus L_{\beta+q \alpha}$ which is therefore generated by $e_{r s}$, indeed any non-zero $v \in V$, where $\beta=\alpha_{r s}$. Also note that if U is any $\mathrm{sl}(2, F)$-module then a subspace U^{\prime} of U is a submodule if and only if $x \cdot U^{\prime}, y \cdot U^{\prime} \subseteq U^{\prime}$ as then $h \cdot U^{\prime}=[x y] \cdot U^{\prime} \subseteq x\left(\cdot y \cdot U^{\prime}\right)+y\left(\cdot x \cdot U^{\prime}\right) \subseteq U^{\prime}$ in this case.
Case 1: (5) $\beta=\alpha_{u, v}$. Since $\left[e_{k \ell} e_{u v}\right]=0=\left[e_{\ell k} e_{u v}\right]$ it follows that $S_{\alpha_{k \ell}}$ acts trivially on $F e_{u v}$. Therefore $V=F e_{u v}$ which means that the $\alpha_{k \ell \text {-string through } \beta \text { is } \beta(r=q=0, ~(r)}$ here.)
Case 2: (5) $\beta=\alpha_{u \ell}$. Since $\left[\begin{array}{ll}e_{k \ell} & e_{u \ell}\end{array}\right]=0,\left[\begin{array}{ll}e_{\ell k} & e_{u \ell}\end{array}\right]=-e_{u k},\left[\begin{array}{ll}e_{k \ell} & e_{u k}\end{array}\right]=-e_{u \ell}$, and $\left[e_{\ell k} e_{u k}\right]=0$, it follows that $V=F e_{u k} \oplus F e_{u \ell}=L_{\alpha_{u k}} \oplus L_{\alpha_{u \ell}}$. Since $\alpha_{u k}+\alpha_{k \ell}=\alpha_{u \ell}$ the α-root string through β is $\beta-\alpha, \beta .(r=1, q=0$ here.)
Case 3: (5) $\beta=\alpha_{k v}$. Since $\left[e_{k \ell} e_{k v}\right]=0,\left[e_{\ell k} e_{k v}\right]=e_{\ell v},\left[e_{k \ell} e_{\ell v}\right]=e_{k v}$, and $\left[e_{\ell k} e_{\ell v}\right]=0$, it follows that $V=F e_{\ell v} \oplus F e_{k v}=L_{\alpha_{\ell v}} \oplus L_{\alpha_{k v}}$. Since $\alpha_{k \ell}+\alpha_{\ell v}=\alpha_{k v}$ the α-root string through β is $\beta-\alpha, \beta$. $(r=1, q=0$ here. $)$

Case 4: (5) $\beta=\alpha_{u k}=-\alpha_{k u}$. Here $V=F e_{u k} \oplus F e_{u \ell}$ as in Case 2. Since $\alpha_{u k}+\alpha_{k \ell}=\alpha_{u \ell}$ the the α-root string through β is $\beta, \beta+\alpha .(r=0, q=1$ here.)
Case 5: (5) $\beta=\alpha_{\ell v}=-\alpha_{v \ell}$. Here $V=F e_{\ell v} \oplus F e_{k v}=L_{\alpha_{\ell v}} \oplus L_{\alpha_{k v}}$ as in Case 3. Since $\alpha_{k \ell}+\alpha_{\ell v}=\alpha_{k v}$ the α-root string through β is $\beta, \beta+\alpha .(r=0, q=1$ here. $)$
Comment: The hint was meant to lead you on a stroll through the proof involved in determining strings. Many of you used the fact that $\alpha_{i j}+\alpha_{k \ell}$ is a root if and only if $j=k$ or $i=\ell$ instead. This really required proof, which should have been given. (See $\S 8.4$ Proposition (d) for example.)

Cases 4 and 5 fall out quickly from Cases 3 and 2 respectively. Note that if

$$
\beta+(-r) \alpha, \ldots, \beta+q \alpha
$$

is the α-string through β then

$$
-\beta+(-q) \alpha, \ldots,-\beta+r \alpha
$$

is the α-string through $-\beta$ as $\gamma \in \Phi$ if and only if $-\gamma \in \Phi$.

