
MATH 531 Written Homework 4 Solution Radford 11/21/07

In this exercise set we begin a rather detailed study of sl(n, F ).

1. (20 points) For all 1 ≤ i, j, k, ` ≤ n note ei jek ` = δj,kei `; thus [ei j ek `] = δj,kei `−δ`,iek j.

(a) (5) This is boring but necessary.

(ad ei j◦ad ek `)(eu v) = [ei j [ek ` eu v]]

= [ei j (δ`,uek v − δv,`eu `)]

= δ`,u[ei j ek v]− δv,`[ei j eu `)]

= δ`,u(δj,kei v − δv,iek j)− δv,`(δj,uei ` − δ`,ieu j)

= δ`,uδj,kei v − δ`,uδi,vek j − δk,vδj,uei ` + δk,vδi,`eu j.

(b) (5) In the expression of part (a), the contribution of aek `, where a ∈ F , to the coefficient
of eu v is δk,uδ`,va. Thus the answer is:

δi,uδv,vδ`,uδj,k − δk,uδj,vδ`,uδi,v − δi,uδ`,vδk,vδj,u + δu,uδj,vδk,vδi,`

= δ`,uδj,kδi,u − δ`,uδi,vδk,uδj,v − δk,vδj,uδi,uδ`,v + δk,vδi,`δj,v.

(c) (5) Fix ei j, ek `. For eu v write (ad ei j◦ad ek `)(eu v) =
∑

1≤x,y≤n α(x,y), (u,v)ex y. In light of
part (b)

κ(ei j, ek `) = Tr(ad ei j◦ad ek `)

=
∑

1≤u,v≤n

α(u,v), (u,v)

=
∑

1≤u,v≤n

δ`,uδj,kδi,u −
∑

1≤u,v≤n

δ`,uδi,vδk,uδj,v −
∑

1≤u,v≤n

δk,vδj,uδi,uδ`,v +
∑

1≤u,v≤n

δk,vδi,`δj,v

=
∑

1≤v≤n

δ`,`δj,kδi,` − δ`,`δi,iδk,`δj,i − δk,kδj,jδi,jδ`,k +
∑

1≤u≤n

δk,jδi,`δj,j

= 2nδi,`δj,k − 2δi,jδk,`.

(d) (5) Let x =
∑

1≤i,j≤n ai,jei j ∈ L. By part (b), x ∈ Rad κ if and only if for all 1 ≤ k, ` ≤
n,

0 = κ(x, ek `) =
∑

1≤i,j≤n

ai jκ(ei j, ek `),
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or equivalently ∑

1≤i,j≤n

ai,j(2nδi,`δj,k − 2δi,jδk,`) = 0,

or equivalently

2na`,k = 2


 ∑

1≤i≤n

ai,i


 δk,`,

or equivalently

a`,k = δk,`


 1

n


 ∑

1≤i≤n

ai,i





 . (1)

Thus x =
∑

1≤i≤n ai,iei i = a1,1In. Conversely, if x = aIn =
∑

1≤i≤n aei i for some a ∈ F ,
then (1) holds, so x ∈ Rad κ.

2. (25 points) Let κ′ = κgl(n,F ). Since L = sl(n, F ) is an ideal of gl(n, F ) it follows that
κ = κ′|L×L. Now gl(n, F ) = sl(n, F )⊕FIn.

To show that κ is non-degenerate. Let x ∈ Radκ and assume that κ(x, y) = 0 for all
y ∈ L. Since gl(n, F ) = L⊕F In, any element of gl(n, F ) an be written y + aIn for some
y ∈ L and a ∈ F . Since Radκ′ = F In by part (d) of Problem 1, the calculation

0 = κ(x, y) = κ′(x, y) = κ′(x, y) + κ′(x, aIn) = κ′(x, y + aIn)

shows that x ∈ Rad κ′ (10). Thus x ∈ L∩F In = (0) which means that x = 0. Therefore κ
is non-singular (15).

3. (30 points) Let Φ be the set of αk `’s and h =
∑n

i=1 λiei i,∈ H. For h′ ∈ H note that
[hh′] = 0 since both h, h′ are diagonal matrices. Thus H is a subalgebra (abelian) of L.

Suppose that 1 ≤ k, ` ≤ n and are distinct. Then

[h ek `] =
n∑

i=1

λi[ei i ek `] = λkek kek ` − λ`ek `e` ` = (λk − λ`)ek ` = αk `(h)ek `.

Since L = H⊕(
⊕

1≤k,`≤n, k 6=` Fek `), we have shown that ad h is a diagonalizable operator
(thus H is a toral subalgebra of L) and the summand Fek ` ⊆ Lαk `

.
It is left as a small exercise to show that αk ` = αk′ `′ if and only if k = k′ and ` = `′.

Since
H⊕(

⊕

1≤k,`≤n, k 6=`

Fek `) = L =
⊕

α∈H∗
Lα, (2)

and the summands on the left are subspaces of the summands on the right, the summands
on the left are the non-zero summands on the right. In particular H = L0. If H ′ is a toral
subalgebra and H ⊆ H ′ then [hh′] = 0 for all h ∈ H and h′ ∈ H ′ which implies h′ ∈ L0.
Therefore H = H ′ from which we conclude that (a) H is a maximal toral subalgebra of L
(10). From our comments about the summands of (2) it now follows that (b) Φ is the root
system of L relative to H (10) and (c) Lαk `

= Fek ` for all 1 ≤ k, ` ≤ n and k 6= ` (10).
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4. (25 points) Let α ∈ Φ. Then α = αk ` for some distinct 1 ≤ k, ` ≤ n. Since

−αk ` = α` k (3)

we deduce deduce that Sαk `
= Fe` k⊕Ftαk `

⊕Fek ` by Exercise 3. Note that ek ` and e` k

generate Sαk `
as a Lie algebra.

Let β ∈ Φ and suppose that β 6= ±αk `. Then β = αu v, or αu `, or or αu k, or αk v, or
α` v, where u, v 6∈ {k, `}, by (3) and Exercise 3. The α-string β +(−r)α, . . . , β +qα through
β accounts for a simple sl(2, F ) = Sα-module V = Lβ−rα⊕ · · ·⊕Lβ+qα which is therefore
generated by er s, indeed any non-zero v ∈ V , where β = αr s. Also note that if U is any
sl(2, F )-module then a subspace U ′ of U is a submodule if and only if x·U ′, y·U ′ ⊆ U ′ as
then h·U ′ = [x y]·U ′ ⊆ x(·y·U ′) + y(·x·U ′) ⊆ U ′ in this case.

Case 1: (5) β = αu,v. Since [ek ` eu v] = 0 = [e` k eu v] it follows that Sαk `
acts trivially on

Feu v. Therefore V = Feu v which means that the αk `-string through β is β (r = q = 0
here.)

Case 2: (5) β = αu `. Since [ek ` eu `] = 0, [e` k eu `] = −eu k, [ek ` eu k] = −eu `, and
[e` k eu k] = 0, it follows that V = Feu k⊕Feu ` = Lαu k

⊕Lαu `
. Since αu k + αk ` = αu ` the

α-root string through β is β − α, β. (r = 1, q = 0 here.)

Case 3: (5) β = αk v. Since [ek ` ek v] = 0, [e` k ek v] = e` v, [ek ` e` v] = ek v, and [e` k e` v] = 0,
it follows that V = Fe` v⊕Fek v = Lα` v

⊕Lαk v
. Since αk ` + α` v = αk v the α-root string

through β is β − α, β. (r = 1, q = 0 here.)

Case 4: (5) β = αu k = −αk u. Here V = Feu k⊕Feu ` as in Case 2. Since αu k + αk ` = αu `

the the α-root string through β is β, β + α. (r = 0, q = 1 here.)

Case 5: (5) β = α` v = −αv `. Here V = Fe` v⊕Fek v = Lα` v
⊕Lαk v

as in Case 3. Since
αk ` + α` v = αk v the α-root string through β is β, β + α. (r = 0, q = 1 here.)

Comment: The hint was meant to lead you on a stroll through the proof involved in
determining strings. Many of you used the fact that αi j + αk ` is a root if and only if
j = k or i = ` instead. This really required proof, which should have been given. (See §8.4
Proposition (d) for example.)

Cases 4 and 5 fall out quickly from Cases 3 and 2 respectively. Note that if

β + (−r)α, . . . , β + qα

is the α-string through β then

−β + (−q)α, . . . ,−β + rα

is the α-string through −β as γ ∈ Φ if and only if −γ ∈ Φ.
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