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Chapter 1

Basic Concepts

Below are comments relevant to various sections in the text. They are meant
to clarify, amplify, or generalize material in the text. Exercises are optional.

1.1 Definitions and first examples

1.1.1 The notion of a Lie algebra

We begin with a discussion of algebras in general. An algebra over F is a
vector space A together with a bilinear map m : A×A −→ A referred to
as multiplication. Usual notation for m is m((a, b)) = ab for all a, b ∈ A.
Bilinearity translates to

(BL.1) (a + a′)b = ab + a′b and (αa)b = α(ab),

(BL.2) a(b + b′) = ab + ab′ and a(αb) = α(ab)

for all a, a′, b, b′ ∈ A and α ∈ F . Sometimes it is very useful to think of
multiplication as a linear map m : A⊗F A −→ A which is determined by
m(a⊗b) = m((a, b)) = ab for all a, b ∈ A.

Let A be an algebra over F . Since A is a ring

a0 = 0 = 0a (1.1)

or all a ∈ A and

−(ab) = (−a)b = a(−b) (1.2)

3



4 CHAPTER 1. BASIC CONCEPTS

for all a, b ∈ A. A subalgebra of A is a subspace B of A such that ab ∈ B
for all a, b ∈ B. Thus a subalgebra is an algebra in its own right with the
multiplication of A. Among the subalgebras of A are A, and by (1.1), the
singleton set {0}, usually denoted (0).

A map of algebras, or homomorphism of algebras, is a linear map f :
A −→ A′, where A and A′ are algebras over F , such that f(ab) = f(a)f(b)
for all a, b ∈ A. Suppose that f : A −→ A′ is a map of algebras. If B
is a subalgebra of A then its image f(B) is a subalgebra of A′. If B′ is a
subalgebra of A′ then its preimage f−1(B′) is a subalgebra of A.

A Lie algebra over F is an algebra L over F such that

(L.1) a2 = 0 and

(L.2) a(bc) + b(ca) + c(ab) = 0

for all a, b, c ∈ L. Axiom (L.2) is referred to as the Jacobi identity.
Suppose that L is a Lie algebra over F . Then

ba = −ab (1.3)

for all b, a ∈ L as

0 = (a + b)2 = (a + b)(a + b) = a2 + ab + ba + b2 = ab + ba.

When the characteristic of F is not 2, axiom (L.1) and (1.3) are equivalent.
Observe that (1.3) holds for rings where the squares of all elements are zero.

In light of (1.2) and (1.3) we see that axiom (L.2) is equivalent to

a(bc) = b(ac) + (ab)c (1.4)

for all a, b, c ∈ L.

Notation: The product of a, b ∈ L is usually denoted [a b].

Thus the axioms for a Lie algebras are usually written

[a a] = 0 and [a [b c]] + [b [c a]] + [c [a b]] = 0

for all a, b, c ∈ L.
Let a ∈ L. The linear span Fa is a subalgebra of A since [a a] = 0. Thus

every one-dimensional subspace of L is a subalgebra of L. When L and L′

are Lie algebras, the condition that a linear map f : L −→ L′ is a map of
Lie algebras is expressed f([a b]) = [f(a) f(b)] for all a, b ∈ L.
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Exercise 1.1.1 You might call this variations on the Jacobi identity. Let A be
an algebra over F . Show that Axioms (L.1) and (L.2) are equivalent to (L.1) and
any of

(a) (ab)c + (bc)a + (ca)b = 0 for all a, b, c ∈ A;

(b) a(bc) + c(ab) + b(ca) = 0 for all a, b, c ∈ A;

(c) (ab)c + (ca)b + (bc)a = 0 for all a, b, c ∈ A.

1.1.2 Linear Lie algebras

An associative algebra gives rise to a Lie algebra. Let A be any associative
algebra over F . Then the ”bracket” defined by

[a b] = ab− ba

for all a, b ∈ A gives the vector space A a Lie algebra structure. Note that
[a b] is the commutator of a and b. Observe that:

(a) a and b commute if and only if [a b] = 0;

(b) A is commutative if and only if [a b] = 0 for all a, b ∈ A;

(c) c is in the center of A if and only if [a c] = 0 for all a ∈ A.

Now let L be a Lie algebra over F . The last two statements motivate the
following definitions:

L is abelian if [a b] = 0 for all a, b ∈ L;

The center of L is the set Z(L) = {c ∈ L | [a c] = 0 ∀a ∈ L}.
For an associative algebra A over F let L(A) denote the Lie algebra with

underlying vector space A and the bracket product. A map of associative
algebras f : A −→ A′ is also a map of Lie algebras f : L(A) −→ L(A′). The
categorically minded reader will notice that the associations A 7→ L(A) and
f 7→ f describes a functor from associative algebras to Lie algebras.

There is much to be said about the classical families A` – D`. The exer-
cises below deal with important details. We comment here that Lie algebras
of the types B` – D` have the form Ls as described below.
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Let M(n, F ) be the (associative) algebra of n×n matrices over F and
s ∈ M(n, F ). Set

Ls = {x ∈ M(n, F ) |xts = −sx}.
Then an easy calculation shows that Ls is a Lie subalgebra of gl(n, F ) =
L(M(n, F )).

Exercise 1.1.2 Using the fact that the trace function Tr : M(n, F ) −→ F is lin-
ear, use the Rank–Nullity Theorem to show that sl(n, F ) = KerTr has dimension
n2 − 1.

Exercise 1.1.3 Suppose that s ∈ M(n, F ) is invertible and the characteristic of
F is not 2. Show that Ls is a Lie subalgebra of sl(n, F ). (Thus the classical Lie
algebras are subalgebras of sl(n, F ) for some n.)

Exercise 1.1.4 Let s ∈ M(n, F ) and b : Fn×Fn −→ F be defined by b(u, v) =
utsv for all u, v ∈ Fn.

(a) Show that b is a bilinear form.

(b) Show that b is symmetric (meaning that b(u, v) = b(v, u) for all u, v ∈ Fn)
if and only if s is symmetric.

(c) Show that b is skew symmetric (meaning that b(u, v) = −b(v, u) for all
u, v ∈ Fn) if and only if s is skew symmetric.

(d) Show that

Ls = {x ∈ M(n, F ) | b(xu, v) = −b(u, xv) for all u, v ∈ Fn}.

Thus Ls can be described in terms of a bilinear form.

All bilinear forms on F n are described by part (a) of Exercise 1.1.4. This
is basic linear algebra included here for the record.

Exercise 1.1.5 Let b : Fn×Fn −→ F be a bilinear form and s ∈ M(n, F ) be
the matrix given by sı  = b(eı, e), where {e1, . . . , en} is the standard basis for Fn.
Show that b(u, v) = utsv for all u, v ∈ Fn.

There is a vector space analog of Ls which is suggested by part d) of
Exercise 1.1.4.
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Exercise 1.1.6 Let V be any vector space over F and suppose that β : V×V −→
F is a bilinear form. Show that Lβ = {x ∈ gl(V ) |β(x(u), v) = −β(u, x(v)) for all u, v ∈
V } is a subalgebra of gl(V ).

The matrices s which describe the families B` – D` are presented in
“block” form and are symmetric or skew-symmetric. There is a very nice
algebra of matrices presented in block form which makes the analysis of these
classical families as vector spaces rather easy. First an exercise on symmetric
and skew-symmetric matrices.

Exercise 1.1.7 Let n ≥ 1.

(a) Show that the subspace of symmetric matrices of M(n, F ) has dimension
n(n + 1)

2
.

Suppose that the characteristic of F is not 2.

(b) Show that subspace of skew symmetric matrices of M(n, F ) has dimension
(n− 1)n

2
.

(c) Show that every matrix in M(n, F ) can be written as a sum of a symmetric
matrix and a skew symmetric matrix in M(n, F ) in a unique way. (This
accounts for the fact that the dimensions of parts a) and b) add to n2.)

Observe that if F has characteristic 2 then symmetric matrices and skew symmetric
matrices of M(n, F ) are the same.

For computational purposes, we will view matrices in terms of blocks of
entries and conceptualize these blocks as entries of a matrix. This process is
illustrated by

A =




1 2 3 4 5 6
7 8 9 10 11 12

13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30
31 32 33 34 35 36




=




1 2 3 4 5 6
7 8 9 10 11 12

13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30
31 32 33 34 35 36




=




A1 1 A1 2

A2 1 A2 2

A3 1 A3 2


 ,
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where
A1 1 =

(
1 2

)
A1 2 =

(
3 4 5 6

)

A2 1 =




7 8
13 14
19 20


 A2 2 =




9 10 11 12
15 16 17 18
21 22 23 24




A3 1 =

(
25 26
30 31

)
A3 2 =

(
27 28 29 30
33 34 35 36

)

We are regarding the 6×6 matrix A as an m×n matrix, where

m = (m1,m2,m3) = (1, 3, 2) and n = (n1, n2) = (2, 4)

describe how the rows and columns respectively are partitioned.
Suppose that A is an m×n matrix with coefficients in F ,

m = (m1,m2, . . . ,mr) and n = (n1, n2, . . . , ns)

have positive integer entries such that

m1 + · · ·+ mr = m and n1 + · · ·+ ns = n.

Then A can be regarded as the m×n matrix

A =




A1 1 · · · A1 s
...

...
Ar 1 · · · Ar s


 ,

where Ai j is the mi×nj matrix whose entries is given by

(Ai j)k ` = Am1+···+mi−1+k n1+···+nj−1+`

for all 1 ≤ i ≤ r, 1 ≤ j ≤ s, 1 ≤ k ≤ mi, and 1 ≤ k ≤ nj. By convention
m0 = n0 = 0.

Observe that At is the n×m matrix described by

At =




(A1 1)
t · · · (Ar 1)

t

...
...

(A1 s)
t · · · (Ar s)

t


 =




(A1 1)
t · · · (A1 s)

t

...
...

(Ar 1)
t · · · (Ar s)

t




t

,

where the latter is a formal expression.
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Exercise 1.1.8 Suppose that A is an m×n matrix and B is an n×p matrix with
coefficients in F and let C = AB be the m×p matrix which is their product. Let

m = (m1,m2, . . . , mr), n = (n1, n2, . . . , ns), and p = (p1, p2, . . . , pt)

have positive integer entries and satisfy

m1 + · · ·+ mr = m, n1 + · · ·+ ns = n, and p1 + · · ·+ pt = p.

Write

A =




A1 1 · · · A1 s
...

...
Ar 1 · · · Ar s


 , B =




B1 1 · · · B1 t
...

...
Bs 1 · · · Bs t


 , and C =




C1 1 · · · C1 t
...

...
Cr 1 · · · Cr t




as above. Show that

Ci j =
s∑

`=1

Ai `B` j

for all 1 ≤ i ≤ r and 1 ≤ j ≤ t.

Exercise 1.1.9 Let ` ≥ 1, suppose that A ∈ M(`, F ) is symmetric and invertible,
and suppose that the characteristic of F is not 2.

(a) Generalization of type D`. Let s ∈ M(2`, F ) have block form s =
(

0 A
A 0

)
.

Show that DimLs = 2`2 − `.

(b) Generalization of type C`. Let s ∈ M(2`, F ) have block form s =
(

0 A
−A 0

)
.

Show that DimLs = 2`2 + `.

(c) Generalization of type B`. Let s ∈ M(2`+1, F ) have block form s =




1 0 0
0 0 A
0 −A 0


.

Show that DimLs = 2`2 + `.

1.1.3 Lie algebras of derivations

Let A be an algebra over F . A derivation of A is a linear endomorphism
D : A −→ A which satisfies

D(ab) = aD(b) + D(a)b
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for all a, b ∈ A. Important examples of derivations for us include the for-

mal partial derivatives
∂

∂x1

, . . . ,
∂

∂xr

of the commutative polynomial algebra

F [x1, . . . , xr]. The notion of derivation can be thought of as a generalization
of the product rule of Differential Calculus (fg)′ = f ′g + fg′ for differentia-
tion. Observe that the kernel of a derivation is a subalgebra of A by (1.1).
The set Der(A) of derivations of A is a subspace of End(A).

Suppose that D, D′ are derivations of A. For a, b ∈ A the calculation

(D◦D′)(ab) = D(D′(ab))

= D(aD′(b) + D′(a)b)

=
(
a(D(D′(b))) + D(a)D′(b)

)
+

(
D′(a)D(b) + (D(D′(a)))b

)

shows that

(D◦D′)(ab) = a(D(D′(b))) + D(a)D′(b) + D′(a)D(b) + (D(D′(a)))b,

and hence

(D′◦D)(ab) = a(D′(D(b))) + D′(a)D(b) + D(a)D′(b) + (D′(D(a)))b.

Thus

(D◦D′ −D′◦D)(ab) = a((D◦D′ −D′◦D)(b)) + ((D◦D′ −D′◦D)(a))b

for all a, b ∈ A which means that [D D′] = D◦D′ −D′◦D is a derivation of
A. Therefore

Der(A) is a Lie subalgebra of gl(A) (1.5)

By induction on n the Leibnitz rule

Dn(ab) =
n∑

`=0

(
n
`

)
D`(a)Dn−`(b) (1.6)

holds for all n ≥ 0 and a, b ∈ A. By convention D0 = 1End(A) = IdA is the
identity map of A. Note that when n = 1 the formula is the definition of
derivation.

For a ∈ A the functions `a, ra : A −→ A defined by

`a(x) = ax and ra(x) = xa
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for all x ∈ A are called left (respectively right) multiplication by a. Note that
`a is linear by (BL.2) and ra is linear by (BL.1). The map

π : A −→ End(A)

defined by π(a) = `a for all a ∈ A is linear by (BL.1).
Now suppose that A is associative. Let a, b ∈ A. The calculation

(`a◦rb)(x) = `a(rb(x)) = a(xb) = (ax)b = rb(`a(x)) = (rb◦`a)(x)

for all x ∈ A shows that `a and rb commute. Also

`ab(x) = (ab)x = a(bx) = (`a(`b(x)) = (`a◦`b)(x)

for all x ∈ A shows that `ab = `a◦`b. Since A is an associative algebra the
map π is an algebra map, called the left regular representation of A. When
A has a unity π is one-one; in this case A can be regarded as a subalgebra
of the algebra of endomorphisms of a vector space.

Now suppose that L is a Lie algebra over F . Then (1.4) can be expressed

`a(bc) = b`a(c) + `a(b)c

for all a, b, c ∈ L; equivalently `a is a derivation of L for all a ∈ L. Thus
π(a) = `a ∈ Der(L) and we may think of

π : L −→ Der(L)

which is linear. Let a, b ∈ L. The calculation

[`a `b](x) = (`a◦`b−`b◦`a)(x) = `a(bx)−b`a(x) = b`a(x)+`a(b)x−b`a(x) = `a(b)x = (ab)x

for all x ∈ L shows that `ab = [`a `b]. Therefore π : L −→ Der(L) is a Lie
algebra map, called the regular representation of L.

Notation: ad a = `a. Thus ad a(x) = [a x] for all x ∈ L.

The fact that ad a is a derivation of L is expressed

ad a([x y]) = [x ad a(y)] + [ad a(x) y]

for all x, y ∈ L and the fact that π is multiplicative is expressed

ad [a b] = [ad a ad b]
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for all a, b ∈ L.
Let A be an algebra over F . The first two exercises below give a more

theoretical way of deducing (1.6) and the fact the Der(A) is a subalgebra
of End(A). We think of multiplication as the linear map m : A⊗F A −→ A
given by m(a⊗b) = ab for all a, b ∈ A.

Exercise 1.1.10 Let D : A −→ A be linear.

(a) Show that D is a derivation of A if and only if D◦m = m◦(IdA⊗D+D⊗IdA).

(b) Show that Dn◦m = m◦(IdA⊗D + D⊗IdA)n for all n ≥ 0.

(c) Show that IdA⊗D and D⊗IdA commute; that is (IdA⊗D)◦(D⊗IdA) =
(D⊗IdA)◦(IdA⊗D).

(d) Use part (c) and the Binomial Theorem to deduce that Dn◦m = m◦
(

n∑

`=0

(
n
`

)
D`⊗Dn−`

)

for all n ≥ 0.

(e) Deduce (1.6) from part (d).

Exercise 1.1.11 Use part (a) of Exercise 1.1.10 to show that Der(A) is a Lie
subalgebra of gl(A).

Exercise 1.1.12 Show that A is a Lie algebra over F if and only if (L.1) and
either of the following hold:

(a) `a is a derivation of A for all a ∈ A;

(b) ra is a derivation of A for all a ∈ A.

Exercise 1.1.13 Now assume that A is associative and a ∈ A. Here `a and ra

are defined for the associative structure on A and ad a is defined for gl(A).

(a) Show that ad a = `a − ra.

(b) Show that (ad a)n =
n∑

`=0

(−1)`

(
n
`

)
`an−`◦ra` for all n ≥ 0. [Hint: Recall

that `a and rb commute for all a, b ∈ A. See part (d) of Exercise 1.1.10.]

(c) Suppose that an = 0 for some n > 0. Show that (ad a)2n−1 = 0. (Thus if a
is a nilpotent element of A then ad a is a nilpotent element of the associative
algebra end(A).)
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1.1.4 Abstract Lie Algebras

We start by constructing finite-dimensional algebras in a very concrete way.
Let A be a vector space over F with basis {a1, . . . , ar} and let {a`

ı, }1≤ı,,`≤r

be any set of scalars. We define a multiplication of basis vectors by

aıa =
r∑

`=1

a`
ı, a`

for all 1 ≤ ı,  ≤ r. There is at most one way to extend this multiplication
of basis vectors to an algebra structure on A. To see this, let a, b ∈ A and
write a = x1a1 + · · ·+ xrar and b = y1a1 + · · ·+ yrar as linear combinations
of basis elements. Then bilinearity forces

ab = (
r∑

ı=1

xıaı)(
r∑

=1

ya) =
r∑

ı,=1

xıyaıa =
r∑

ı,,`=1

xıya
`
ı, a`.

One can check that the rule

ab =
r∑

ı,,`=1

xıya
`
ı, a`

does indeed define an algebra structure on A. The scalars a`
ı,  are called

structure constants. All finite-dimensional algebras can be described in terms
of structure constants.

Now let A be any algebra over F , not necessarily finite-dimensional. We
examine what it takes to verify that certain axioms hold.

Define
f : A×A×A −→ A

by
f(a, b, c) = a(bc) + b(ca) + c(ab)

for all a, b, c ∈ A. The Jacobi Identity is the same as the identity f(a, b, c) = 0
for all a, b, c ∈ A. What is sufficient to imply the latter?

Observe that f is linear in each variable. (This should be remind you
of the determinant function on n×n matrices Det : F n× · · ·×F n −→ F
thought of a function on the columns of n×n matrices.) That f is linear in
each variable means that for all a, b ∈ A the functions

fa,b,∗, fa,∗,b, f∗,a,b : A −→ A
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defined by

fa,b,∗(x) = f(a, b, x), fa,∗,b(x) = f(a, x, b), and f∗,a,b(x) = f(x, a, b)

for all x ∈ A respectively are linear. Check that the axioms for an algebra
imply that these functions are linear. Note that fa,b,∗(x) = f(a, b, x) = 0 for
all x ∈ A, or equivalently the subspace Kerfa,b,∗ = A, if Kerfa,b,∗ contains a
spanning set for A. Thus f(a, b, x) = 0 for all x ∈ A if f(a, b, x) = 0 for all
x in some spanning set for A.

At this point it is not hard to construct an argument to show that
f(a, b, c) = 0 for all a, b, c ∈ A if this equation holds for all a, b, c in some
spanning set for A.

If the characteristic of F is not 2 then the axiom a2 = 0 for all a ∈ A is
equivalent to ab = −ba, or ab + ba = 0, for all a, b ∈ A. The latter holds if
and only if g(a, b) = 0 for all a, b ∈ A, where

g(a, b) = ab + ba.

Note that g is linear in each variable; thus g(a, b) = 0 for all a, b ∈ A if and
only if g(a, b) = 0 for all a, b in some spanning set for A.

1.2 Ideals and homomorphisms

1.2.1 Ideals

Most of what is done in this section applies to algebras in general, so we will
start there. Let A be an algebra over F . An left ideal (respectively right)
ideal of A is a subspace I of A such that ab ∈ I (respectively ba ∈ I) for
all a ∈ A and b ∈ I. An ideal, or two-sided ideal, of A is a subspace of A
which is both a left ideal and a right ideal of A. Thus left or right ideals,
and ideals, of A are subalgebras of A.

Left, right, and two-sided ideals can be defined in terms of left and right
multiplication maps `a, ra : A −→ A. Suppose that I is a subspace of A.
Then I is a left (respectively right, or two-sided) ideal of A if and only if
`a(I) ⊆ I (respectively ra(I) ⊆ I, or `a(I), ra(I) ⊆ I) for all a ∈ A. In
particular

I is a left ideal of A if and only if `a(I) ⊆ I for all a ∈ A; (1.7)
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that is I is invariant under the endomorphism `a for all a ∈ A.
Suppose that f : A −→ A′ is an algebra homomorphism. We have noted

that f(A) is a subalgebra of A′. If I is a left (respectively right, two-sided)
ideal of A then the image f(I) is a left (respectively right, two-sided) ideal
of f(A). If I ′ is a left (respectively right, two-sided) ideal of A′ then the
pre-image f−1(I ′) is a left (respectively right, two-sided) ideal of A.

Note that A is always an ideal of A as is the zero dimensional subspace
(0) = {0} of A by (1.1). Consequently, if f : A −→ B is an algebra homo-
morphism then Kerf = f−1((0)) is an ideal of A.

Let I be an ideal of A. Then the quotient vector space A/I is an algebra
over F , where

(a + I)(b + I) = ab + I

for all a, b ∈ A. The main aspect of this assertion is whether or not multi-
plication is well-defined. The fact that I is a two-sided ideal is used for this.
For suppose that a, b, a′, b′ ∈ A and a + I = a′ + I, b + I = b′ + I. Then
a′ = a + x and b′ = b + y for some x, y,∈ I. The calculation

a′b′ = (a + x)(b + y) = ab + ay + xb + xy = ab + z,

where z = ay + xb + xy ∈ I, shows that ab + I = a′b′ + I. Observe that the
linear projection

π : A −→ A/I,

which is defined by π(a) = a + I for all a ∈ A, is an algebra homomorphism.
Note that Kerπ = I. We have shown that ideals of algebras and kernels

of algebra homomorphisms are the same.
Now let {Iı}ı∈I be an indexed set of ideals of A. Then it is easy to see

that

⋂
ı∈I

Iı and the vector space sum
∑
ı∈I

Iı are ideals of A. (1.8)

A concrete description of the sum is

∑
ı∈I

Iı = {aı1 + · · ·+ aır | r ≥ 1, ı1, . . . , ır ∈ I, aı ∈ Iı ∀1 ≤  ≤ r}.

Let S be a subset of A. The ideal A of A contains S. By the intersection
part of (1.8), among all ideals of A which contain S there is a unique minimal
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one, namely the intersection of all ideals of A which contain S. This ideal is
usually denoted by (S).

Suppose that U, V are subspaces of A. Then UV denotes the span of the
set of products uv, where u ∈ U and v ∈ V .

If A is associative then A is said to be simple if A has exactly two ideals;
in other words A is not (0) and the only ideals of A are A and (0). If A is a
Lie algebra then A is said to be simple if A has exactly two ideals and A is
not abelian. Thus 1-dimensional Lie algebras, even though they have exactly
two ideals, are not simple.

Now let us turn the special case of a Lie algebra L. Since [y x] = −[x y]
for all x, y ∈ L, there is no distinction between left, right, and two-sided ideal
of L. Thus a subspace I of L is an ideal of L if and only if [L I] ⊆ I. In
terms of the adjoint action:

I is an ideal of L if and if ad x(I) ⊆ I for all x ∈ L (1.9)

by (1.7). Another way of stating (1.9) is to say that the ideals of L are the
subspaces of L invariant under ad x for all x ∈ L.

Suppose that I, J are ideals of L. Let x ∈ L. Since ad x is a derivation
of L, the calculation

ad x([I J ]) ⊆ [ad x(I) J ] + [I ad x(J)] ⊆ [I J ] + [I J ] = [I J ]

shows that [I J ] is an ideal of L by (1.9). Also prove this assertion directly
from the axioms for a Lie algebra!

A comment about principal ideals. Let x ∈ L. Then [Lx] is contained
in the ideal generated by x (we should say more formally by {x}). Observe
that

[Lx] = [xL] = Im ad x.

Now [xx] = 0 means that Ker ad x is not (0). Thus when L is finite-
dimensional, [Lx] is a proper subspace of L by the Rank–Nullity Theorem
applied to the linear endomorphism ad x : L −→ L. When L is finite-
dimensional and simple, [Lx] is an ideal of L if and only if x = 0. See
Exercises 1.2.3 and 1.2.4.

Concerning centralizers and normalizers: let U, V be subspaces of L. Then

CU(V ) = {u ∈ U | [u V ] = (0)}
is the centralizer of V in U and

NU(V ) = {u ∈ U | [uV ] ⊆ V }
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is the normalizer of V in U . Observe that CU(V ) ⊆ NU(V ).
The following assertions follow directly from the axioms for a Lie alge-

bra. We are interested in understanding these assertions in terms of the
endomorphisms ad x.

First of all CL(V ) =
⋂

x∈V Ker ad x and is thus a subalgebra of L. The
intersection characterization is clear. The kernel of a derivation is a subalge-
bra, and the intersection of subalgebras of an algebra is a subalgebra. Since
CU(V ) = U∩CL(V ) it follows that:

If U is a sublagebra of L then CU(V ) is a subalgebra of L. (1.10)

Observe that NL(V ) = {x ∈ L | ad x(V ) ⊆ V } is a subalgebra of L. To
see this note that L = {T ∈ End(L) |T (V ) ⊆ V } is a subalgebra of the
associative algebra End(L); thus L a Lie subalgebra of gl(L). Let π : L −→
gl(L) be the regular representation of L; thus π(x) = ad x for all x ∈ L. Since
NL(V ) = π−1(L) is the pre-image of a Lie subalgebra under a Lie algebra
map, it follows that NL(V ) is a subalgebras of L. Since NU(V ) = U∩NL(V )
we have shown:

If U is a sublagebra of L then NU(V ) is a subalgebra of L. (1.11)

We next observe that CL(V ) is an ideal of NL(V ). The reason for this
is that π′ : NL(V ) −→ gl(V ) given by π′(x) = ad x|V is a well-defined
map of Lie algebras and CL(V ) = Ker π′. As NU(V ) = U∩NL(V ) and
CU(V ) = U∩CL(V ):

If U is a sublagebra of L then CU(V ) is an ideal of NU(V ). (1.12)

In the following exercises A is an algebra over F and L is a Lie algebra
over F .

Exercise 1.2.1 Suppose that A is associative and U, V are subspaces of A. Show
that:

(a) If U is a left ideal of A then UV is a left ideal of A.

(b) If V is a right ideal of A then UV is a right ideal of A.

(c) If U is a left ideal of A and V is a right ideal of A then UV is an ideal of A.

Exercise 1.2.2 Suppose that D : A −→ A is a derivation of A. Show that:
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(a) KerD is a subalgebra of A.

(b) If U, V are ideals of A and D(U) ⊆ U , D(V ) ⊆ V then D(UV ) ⊆ UV . See
(1.9) and the discussion of the subsequent paragraph.

Exercise 1.2.3 Let π : L −→ Der(L) be the principal representation of L. Recall
that π(x) = ad x for all x ∈ L.

(a) Show that Kerπ = Z(L); thus the center of L is an ideal of L.

(b) Suppose that L is simple. Show that L is isomorphic to a subalgebra of
gl(L); hence L is linear.

Exercise 1.2.4 Suppose that L is finite-dimensional and simple. Show that [L x]
only if x = 0.

Exercise 1.2.5 Show that L is simple if and only if L has exactly 2 ideals and
DimL > 1.

Exercise 1.2.6 This exercise outlines a proof of the simplicity of sl(2, F ) when
the characteristic of F is not 2. First of all let F be any field.

(a) Suppose that DimL ≤ 2. Show that [LL] = L implies L = (0).

(b) Suppose that DimL = 3. Show that L is simple if and only if [L L] = L.
[Hint: Let I be an ideal of L and consider the projection π : L −→ L/I.
Observe that π([L L]) = [π(L) π(L)].]

(c) Now suppose that the characteristic of F is not 2. Use part (b) to show that
sl(2, F ) is simple.

1.2.2 Homomorphisms and Representations

It should be no surprise that the proposition of this section holds for all
algebras over F . To establish this recall that you have the homomorphism
theorems for abelian groups at your disposal.

Let L be a Lie algebra. We merely summarize some important details.

(a) Regarding L as a vector space over F , recall that the associative algebra
End (L) has a Lie algebra structure defined by

[S T ] = S◦T − T◦S
for all S, T ∈ End (L). The vector space End (L) with this Lie product
is referred to as gl(L).
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(b) The subset Der A of derivations of the (Lie) algebra L is a (Lie) subal-
gebra of gl(L).

(c) ad x ∈ Der(L) for all x ∈ L.

(d) The map π : L −→ gl(L) defined by π(x) = ad x for all x ∈ L is map
of Lie algebras. The algebra map π is called the adjoint representation
of L.

Observe that

Ker π = {x ∈ L | ad x = 0} = {x ∈ L | [xL] = (0)} = Z(L).

Thus π is one-one if and only if the center Z(L) = (0), as is the case when L
is simple.

1.2.3 Automorphisms

This is a rather compact section. Here is what seems to be the main point.

Let L be a Lie subalgebra of gl(V ) = L(End(V )) for some vector space
V over F . Any automorphism f of the associative algebra End(V ) is a Lie
algebra automorphism of gl(V ). Thus if f(L) = L the restriction f |L is a Lie
algebra automorphism of L.

Typical automorphisms of the associative algebra End(V ) are fu defined
by fu(x) = u◦x◦u−1 for all x ∈ End(V ), where u in a linear automorphism
of V . (When V is finite-dimensional and F is algebraically closed these are
the only automorphisms of End(V ).)

Suppose that x ∈ L is a nilpotent endomorphism of V and that the
characteristic of F is zero. Then the formal exponential u = exp(x) is a
linear automorphism of V and fu(L) = L. Thus the restriction fu|L is a Lie
algebra automorphism of L. Now for the details.

Let A be an algebra over F . An automorphism of A is a bijective algebra
endomorphism of A. The set Aut(A) of algebra automorphisms of A is a
group under function composition. There are interesting connections between
Aut(A) and Der(A).
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Let D ∈ Der(A) and f ∈ Aut(A). Then f−1 ∈ Aut(A) and the calculation

(f◦D◦f−1)(ab)

= f(D(f−1(ab)))

= f(D(f−1(a)f−1(b)))

= f(f−1(a)D(f−1(b)) + D(f−1(a))f−1(b))

= a(f(D(f−1(b)))) + (f(D(f−1(a))))b

for all a, b ∈ A shows that:

If f ∈ Aut(A) and D ∈ Der(A) then f◦D◦f−1 ∈ Der(A). (1.13)

By virtue of (1.13) the group Aut(A) acts on Der(A) by conjugation.
To continue we will need to discuss nilpotent and unipotent elements, and

the exponential and logarithm functions in an algebraic setting. Let A be an
associative algebra with unity, for example End(V ) under composition. An
element a ∈ A is nilpotent if an = 0 for some n > 0 and a is unipotent if
a = 1 + b for some nilpotent element b ∈ A.

Lemma 1.2.7 Let A be an associative algebra with unity over a field of
characteristic 0, let N be the set of nilpotent elements of A, and let U be the
set of unipotent elements of A.

(a) 0 ∈ N , and if a, b ∈ N commute then a + αb ∈ N for all α ∈ F .

(b) If a ∈ N and b ∈ A commute then ab ∈ N .

(c) 1 ∈ U , and if a, b ∈ U commute then ab ∈ U .

(d) If a ∈ U then a has a multiplicative inverse and a−1 ∈ U .

Proof: Suppose that a, b ∈ A commute. Then the binomial theorem holds
for a, b; that is

(a + b)` =
∑̀
ı=0

(
`
ı

)
a`−ıbı

for all ` ≥ 0. Suppose am = 0 = bn, where m, n are positive integers. Then
(a + b)m+n−1 = 0 as for each 0 ≤ i ≤ m + n one of am+n−1−i = 0 or bi = 0
since either n ≤ m + n − 1 − i or m ≤ i. Note that bn = 0 implies that
(αb)n = 0 for all α ∈ F . Part (a) now follows. Part (b) follows from the



1.2. IDEALS AND HOMOMORPHISMS 21

formula (ab)n = anbn, where n ≥ 0 and a, b ∈ A commute, and (1.1). Part
(c) follows from parts (a) and (b).

Part (d) follows from parts (a) and (b) as well. Let b ∈ N . Then bn = 0
for some n ≥ 1 and

(1− b)(1 + b + · · ·+ bn−1) = 1− bn = 1.

Replacing b with −b we deduce (1 + b)(1 + c) = (1 + c)(1 + b) = 1 for some
c ∈ N . ¤

For the exponential function to be meaningful we will need for reciprocals
of factorials to be defined in F . Thus for the remainder of this section we
will assume that the characteristic of F is 0. Recall that the exponential
function of Calculus can be represented by the power series

exp(x) =
∞∑

n=0

xn

n!

for all real numbers x, and the natural logarithm function is represented by
the power series

ln(x) = −
∞∑

n=1

(1− x)n

n

for all 0 < x < 2. Regard exp(x) and ln(x) as formal power series in indeter-
minate x.

Suppose that a ∈ N . Then an = 0 for some n > 0. Therefore the formal
sum

exp(a) =
∞∑

n=0

an

n!

is meaningful since an = an+1 = · · · = 0 means that it can be regarded as
a finite sum. Note that exp(a) ∈ U by parts (a) and (b) of Lemma 1.2.7.
Observe that

exp(0) = 1 (1.14)

and:

If a, b ∈ N commute then exp(a + b) = exp(a)exp(b). (1.15)

A consequence of the two preceding equations is that:

If a ∈ N then exp(a) is invertible and exp(−a) = exp(a)−1. (1.16)
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Now suppose that a ∈ U . Then 1− a is nilpotent. Therefore the formal sum

ln(a) = −
∞∑

n=1

(1− a)n

n

is meaningful since (1 − a)n = (1 − a)n+1 = · · · = 0 for some n > 0 means
that it can be regarded as a finite sum. Note that ln(a) ∈ N by parts (a)
and (b) of Lemma 1.2.7. It is a nice exercise1 to show that

exp : N −→ U and ln : U −→ N are inverses. (1.17)

Now let A be any algebra over F and suppose that D ∈ Der(A). Then
D belongs to the associative algebra with unity End(A). Suppose that D
is nilpotent. Then exp(D) is a unipotent element of End(A). Using the
Leibnitz Rule (1.6) we calculate

exp(D)(ab) =
∞∑

n=0

Dn(ab)

n!

=
∞∑

n=0

(
n∑

ı=0

(
n
ı

)
Dn−ı(a)Dı(b)

n!

)

=
∞∑

n=0

(
n∑

ı=0

Dn−ı(a)Dı(b)

(n− ı!)ı!

)

=
∞∑

,ı=0

D(a)Dı(b)

!ı!

=

( ∞∑
=0

D(a)

!

)( ∞∑
ı=0

Dı(b)

ı!

)

= (exp(D)(a))(exp(D)(b))

for all a, b ∈ A which shows that exp(D) is an algebra automorphism of
A. As an exercise the reader is challenged (see Exercise 1.2.9 below) to
show that if φ is a unipotent algebra automorphism of A then ln(φ) is a
nilpotent derivation of A. Thus exp and ln induce bijective correspondences

1Exercise §8 ¶¶2. Godement, Algebra, Herman, Houghton Mifflin Company, Boston,
1963. The symbol ¶¶ means an exercise for the very brave.
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between the set of nilpotent derivations of A and the set of unipotent algebra
automorphisms of A.

Let us finally turn to Lie algebras. Let L = gl(V ) = L(End(V )), where V
is a vector space over F , and let x ∈ End(V ). Recall that `x, rx : End(V ) −→
End(V ) defined by `x(y) = x◦y and rx(y) = y◦x for all y ∈ End(V ) are
commuting endomorphisms of End(V ) and ad x = `x − rx.

Now suppose that x is nilpotent. Then `x, rx, and ad x are nilpotent; see
Exercise 1.1.13. Thus

exp(ad x) = exp(`x−rx) = exp(`x)◦exp(−rx) = `exp(x)◦rexp(−x) = `exp(x)◦r(exp(x))−1

which means
(exp(x))◦y◦(exp(x))−1 = (exp(ad x))(y) (1.18)

for all y ∈ gl(V ).
Let L be any Lie algebra over F . Then exp(ad x) is an algebra auto-

morphism of L whenever the derivation ad x is nilpotent. The subgroup of
Aut(L) generated by these automorphisms is the subgroup Autinner(L) of
inner automorphisms of L. For any x ∈ L and any algebra homomorphism
φ : L −→ L observe that

ad φ(x)◦φ = φ◦ad x.

Therefore φ◦(ad x)◦φ−1 = ad (φ(x)) for all x ∈ L and φ ∈ Aut(L) which
shows that Autinner(L) is a normal subgroup of Aut(L).

Now let us assume that L is a subalgebra of gl(V ) for some vector space
V over F and suppose x ∈ L is a nilpotent endomorphism of V . Then ad x
is nilpotent, and therefore adL x = (ad x)|L is as well. By (1.18) we calculate
for y ∈ L that

exp(adL x)(y) = exp(ad x)|L(y) = (exp(ad x))(y) = (exp(x))◦y◦(exp(x))−1.

Thus and (exp(x))◦L◦(exp(x))−1 = L and exp(adL x) is the associative alge-
bra (and hence Lie) algebra inner automorphism determined by the restric-
tion u = exp(x)|L.

In the following exercises we will regard the multiplication of an algebra
A over F as a linear map m : A⊗F A −→ A.

Exercise 1.2.8 Show that a linear endomorphism f : A −→ A is an algebra
map if and only if f◦m = m◦(f⊗f). (Compare with part (a) of Exercise 1.1.10).
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Exercise 1.2.9 Suppose F has characteristic 0 and f is a unipotent algebra
automorphism of A.

(a) Show that f⊗f is a unipotent endomorphism of A⊗F A. [Hint: Write f⊗f−
IdA⊗IdA as the sum of two commuting endomorphisms of A⊗F A.]

(b) Show that (IdA − f)◦m = m◦(IdA⊗IdA − f⊗f).

(c) Show that ln(f)◦m = m◦ln(f⊗f).

(d) Show that IdA⊗ln(f) + ln(f)⊗IdA = ln(f⊗f). [Hint: Show that left and
right hand sides of the equation are nilpotent endomorphisms of A⊗F A.
Recall that exp : N −→ U is one-one.]

(e) Show that ln(f) is a derivation of A. [Hint: See part (a) of Exercise 1.1.10.]

1.3 Solvable and Nilpotent Lie algebras

1.3.1 Solvability

Let L be a Lie algebra over F and suppose that S is a subspace of L. Define

S(0) = S and S(n+1) = [S(n) S(n)]

for all n ≥ 0. The following are easily established by induction:

(a) (S(m))(n) = S(m+n) for all m,n ≥ 0.

(b) If T is a subset of S then T (n) ⊆ S(n) for all n ≥ 0.

(c) If f : L −→ L′ is a map of Lie algebras then f(S(n)) = f(S)(n) for all
n ≥ 0.

(d) If S is a subalgebra of L then S(n) is an ideal of S for all n ≥ 0 and
S(0) ⊇ S(1) ⊇ S(2) ⊇ · · · .

Comments on the proposition.

Remark 1.3.1 Reformulate part (b) to read “If f : L −→ L′ is a map of
Lie algebras then L is solvable if and only if Im f and Ker f are solvable.”.

Remark 1.3.2 The proof of part (c) is not so involved in light of the refor-
mulation of part (b).
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Suppose that I, J are solvable ideals of L. Then the (projection) map
of Lie algebras π : L −→ L/J induces a map of Lie algebras f : I + J −→
(I + J)/J given by f(x) = x + J for all x ∈ I + J . Since f(I) = Im f and
J = Ker f are solvable, I + J is solvable.

1.3.2 Nilpotency

Let L be a Lie algebra over F and suppose that S is a subspace of L. Define

S0 = S and Sn+1 = [S Sn]

for all n ≥ 0. The following are easily established by induction. Note the
parallels with (a) – (d) of the preceding section.

(b’) If T is a subset of S then T n ⊆ Sn for all n ≥ 0.

(c’) If f : L −→ L′ is a map of Lie algebras then f(Sn) = f(S)n for all
n ≥ 0.

Suppose that S is a subalgebra of L. Then:

(d’) For all n ≥ 0 the subspace Sn is an ideal of S, S(n) ⊆ Sn, and S0 ⊇
S1 ⊇ S2 ⊇ · · · .

(a’) (Sm)n ⊆ Sm+n for all m,n ≥ 0.

Comments on the proposition.

Remark 1.3.3 Concerning part (b): If I is a nilpotent ideal of L and L/I
is also nilpotent, it does not necessarily follow that L is nilpotent.

For example, let L the non-abelian two-dimensional Lie algebra over F .
Then L has basis {x, y} and the product is determined by [x y] = y. The
span I = Fy is a one-dimensional ideal of L. Note that L1 = L2 = · · · = I
and thus L is not nilpotent; however L/I and I are. Apropos of item a’)
above, note that (L1)1 = (0) is a proper subspace of L1+1 = I.
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1.3.3 Proof of Engel’s Theorem

Remark 1.3.4 Let L be any Lie algebra and K be a subalgebra of L. If
x ∈ NL(K) then K + Fx is a subalgebra of L.

Remark 1.3.5 The proof of the Theorem holds verbatum with L finite-dimensional
and V any vector space over F .

Concerning the notation in paragraph 3, page 13. Let L be a (Lie) sub-
algebra of gl(V ) and let K be an ideal of L. Note that

W = {v ∈ V |K(v) = (0)}.

For a subset S of L define S(v) = {s(v) | s ∈ S}.
We wish to show that W is L-invariant, that is y(W ) ⊆ W , or equivalently

y(v) ∈ W for all y ∈ L and v ∈ W . Let y ∈ L and v ∈ W . Then y(v) ∈ W
if and only if x(y(v)) = 0 for all x ∈ K. For x ∈ K the product [x y] ∈ K
since K is an ideal of L. The last equation follows from the calculation

0 = [x y](v) = x(y(v))− y(x(v)) = x(y(v))− y(0) = x(y(v)).

Thus W is L-invariant.
Concerning paragraph 1 on page 13 and the proof of the Corollary, let T

be a linear endomorphism of a vector space V over F and suppose that W is
a T -invariant subspace of V . Then T is a well-defined linear endomorphism
of the quotient space V/W , where

T (v + W ) = T (v) + W

for all v ∈ V .



Chapter 2

Semisimple Lie Algebras

Below are comments relevant to various sections in the text. They are meant
to clarify, amplify, or generalize material in the text. Exercises are optional.

2.1 Theorems pf Lie and Cartan

2.1.1 Lie’s Theorem

There are several ideas in the proof of the Theorem of the section which
should be highlighted. First of all let A be an associative algebra over the
field F and let a ∈ A. Then f = ad a is a derivation of the Lie algebra L(A),
that is

f([x y]) = [x f(y)] + [f(x) y]

for all x, y ∈ A. Note that f is also a derivation of the associative algebra A,
that is

f(xy) = xf(y) + f(x)y

for all x, y ∈ A. The last equation is equivalent to

[a xy] = x[a y] + [a x]y,

or a(xy) − (xy)a = x(ay − ya) + (ax − xa)y, for all x, y ∈ A. Since f is a
derivation of A the formula

f(a1 · · · an) =
n∑

i=1

a1 · · · f(ai) · · · an

27
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holds for all a1, · · · , an ∈ A. In particular

[a xm] =
m−1∑
i=0

xi[a x]xm−1−i (2.1)

for all m ≥ 1 and x ∈ A.
Now let V be a vector space over F . Let K be a non-empty subset of

End(V ), and let λ : K −→ F be a function. Set

Vλ = {v ∈ V | y(v) = λ(y)v for all y ∈ K}.
Since Vλ =

⋂
y∈K Ker(y − λ(y)IV ) it follows that Vλ is a subspace of V .

Suppose that x, y ∈ gl(V ). Since yx = [y x] + xy we have

y(x(v)) = [y x](v) + x(y(v)) (2.2)

for all v ∈ V .
Suppose that x ∈ gl(V ) and K is invariant under ad x, that is [y x] =

−ad x(y) ∈ K for all y ∈ K. Then Vλ is invariant under x if and only if
y(x(v)) = λ(y)x(v) for all y ∈ K and v ∈ Vλ. Thus Vλ is invariant under x
if and only if λ([y x]) = 0 by (2.2).

A major portion of the proof of the Theorem boils down to the following
lemma. Note that the definition of Wm therein differs from the one on page
16.

Lemma 2.1.1 Let V be a vector space over the field F , let x ∈ gl(V ), and
let K be a non-empty subset of gl(V ) invariant under ad x. Suppose that
λ : K −→ F is a function and v ∈ Vλ. Set W−1 = (0) and let Wm be the
span of {v, x(v), . . . , xm(v)} for m ≥ 0. Then y(xm(v))−λ(y)xm(v) ∈ Wm−1

for all y ∈ K and m ≥ 0.

Proof: The conclusion of the lemma is true for m = 0 by the definition
of Vλ. Suppose that m > 0 and the conclusion of the lemma is true for
non-negative integers less than or equal to m − 1. Then y(Wm−1) ⊆ Wm−1

for all y ∈ K. Let y ∈ K. By (2.2) we have

y(xm(v)) = [y xm](v) + xm(y(v)) = [y xm](v) + λ(y)xm(v)

and thus
y(xm(v))− λ(y)xm(v) = [y xm](v).
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Since [y x] ∈ K by assumption, we can use (2.1) and our induction hypothesis
to calculate

[y xm](v) =
m−1∑
i=0

xi([y x](xm−1−i(v)))

∈
m−1∑
i=0

xi([y x](Wm−1−i))

⊆
m−1∑
i=0

xi(Wm−1−i)

⊆ Wm−1.

¤
Here is a proof of Corollary C which does not involve Engel’s Theorem.

Proof: Let L0 ⊆ L1 ⊆ · · · ⊆ Ln = L be a flag of ideals for L. Choose a basis
{x1, . . . , xn} for L such that {x1, . . . , xi} is a basis for Li for 1 ≤ i ≤ n. Use
this basis construct an isomorphism of associative algebras End(L) ' Mn(F )
in the usual way.

Let f : L −→ gl(n, F ) be the composite Lie algebra maps L
π−→ gl(L) '

gl(n, F ), where π is the adjoint representation of L. Observe that Im f ⊆
t(n, F ) and Ker f = Z(L). Since

L = [LL]/(Z(L)∩[L L]) ' f([LL]) = [f(L) f(L)] ⊆ n(n, F )

it follows that L is nilpotent. Since Z(L)∩[L L] ⊆ Z([LL]) the quotient
[LL]/Z([LL]) is a quotient of L and is therefore nilpotent. Thus [LL] is
nilpotent. ¤

Exercise 2.1.2 Assume the hypothesis of the preceding lemma. Although an
exact expression for y(xm(v)) is not needed for the proof of Lie’s Theorem, it is
not too difficult to compute it.

Let δ = −adx; thus δ(z) = [z x] for all z ∈ gl(V ). We will show that

y(xm(v)) =
m∑

i=0

[
m
i

]
λ(δm−i(y))xi(v)

for all m ≥ 0.
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(a) Suppose that
[

m
i

]
are non-negative integers for all m ≥ i ≥ 0 which satisfy

[
m
m

]
= 1 for m ≥ 0

and [
m
i

]
=

i∑

j=0

[
m− 1− i− j

j

]
for 0 ≤ i < m.

Show that

y(xm(v)) =
m∑

i=0

[
m
i

]
λ(δm−i(y))xi(v)

for all m ≥ 0.

(b) Show that
[

m
i

]
=

(
m
i

)
for all 0 ≤ i ≤ m. [Hint: Recall that the binomial

coefficients can be defined recursively.]

Exercise 2.1.3 Suppose that the field F has characteristic zero and is not al-
gebraically closed. Show that there is a finite-dimensional vector space V over F

and a solvable subalgebra L of gl(V ) which does not satisfy the conclusion of Lie’s
Theorem. [Hint: Consider one-dimensional Lie algebras.]

Exercise 2.1.4 Here we examine Lie’s Theorem in positive characteristic. Sup-
pose that F is an algebraically closed field of characteristic p > 0.

(a) Show that the conclusion of Lie’s Theorem is true if DimV < p.

(b) When DimV = p find an example of a solvable Lie subalgebra of gl(V ) such
that the conclusion of Lie’s Theorem is false. [Hint: Let {vi}i∈Zp

be a basis
for V and let L be the subalgebra of gl(V ) generated by x, y, where

x(vi) = vi−1 and y(vi) = ivi

for all i ∈ Zp. Note that [x y] = x and that x, y have no common eigenvec-
tor.]

2.1.2 Jordan-Chevalley decomposition

See “Decomposition of Operators” which is available on the course home
page.
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2.1.3 Cartan’s Criterion

There is some interesting mathematics involved in the proof of the Lemma of
the section. Assume that F has any characteristic and that the characteristic
polynomial of x splits over F .

Let V be a vector space over F and let U , W be subspaces of V such that
U ⊆ W . Let

M(W ,U) = {T ∈ End(V) |T (W) ⊆ U}.
Then M(W ,U) is a subspace of End(V) closed under composition. Thus if
T ∈ M(W ,U) and f(x) ∈ F [x] is a polynomial with zero constant term then
f(T ) ∈ M(W ,U). Note that IV ∈ M(W ,U) if and only if U = W .

Suppose that T ∈ M(W ,U) and the characteristic polynomial of T splits
over F (as is the case when F is algebraically closed). Then the nilpotent
and semisimple parts Tn, Ts ∈ M(W ,U) as well since they are polynomials
in T with no zero constant term.

Now we assume the hypothesis of the Lemma. Let V = gl(V ), U = A,
and W = B. Then

M = {x ∈ gl(V ) | ad x ∈ M(U ,W)}.
Let x ∈ M . Suppose y ∈ V and x, y commute. Then xn and y commute
which means xn◦y is nilpotent. Therefore

0 = Tr(x◦y) = Tr(xs◦y) + Tr(xn◦y) = Tr(xs◦y). (2.3)

Let {v1, . . . , vn} be a basis of eigenvectors for xs and let λ1, . . . , λn ∈ F
satisfy xs(vi) = λivi for all 1 ≤ i ≤ n. For each 1 ≤ i, j ≤ n define
ei j ∈ End(V ) by

ei j(vk) = δj,kvih

for all 1 ≤ k ≤ n. Note that {ei j}1≤i,j≤n is a basis for End(V ) and

ei j◦ek ` = δj,kei `

for all 1 ≤ i, j, k, ` ≤ n. Also note that

xs =
n∑

i=1

λiei i = λ1e1 1 + · · ·+ λnen n

and
ad xs(ei j) = (λi − λj)ei j
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for all 1 ≤ i, j ≤ n.

Now suppose α1, . . . , αn ∈ F satisfy

λi − λj = λi′ − λj′ implies αi − αj = αi′ − αj′ . (2.4)

Observe that (2.4) implies

λi = λj implies αi = αj. (2.5)

Let

y =
n∑

i=1

αiei i = α1e1 1 + · · ·+ αnen n.

By virtue of (2.5) there exists a polynomial f(x) ∈ F [x] such that f(λi) = αi

for all 1 ≤ i ≤ n by LaGrange interpolation. Thus y = f(xs) which means
that y commutes with x. Notice that

ad y(ei j) = (αi − αj)ei j

for all 1 ≤ i, j ≤ n. Using LaGrange interpolation again, by (2.4) there
exists a polynomial g(x) ∈ F [x] such that g(λi − λj) = αi − αj for all
1 ≤ i, j ≤ n. As g(ad y)(ei j) = g(λi−λj)ei j for all 1 ≤, j ≤ n it follows that
ad y = g(ad xs). Now g(x) has zero constant term since g(0) = g(λ1 − λ1) =
α1 − α1 = 0 by (2.5). Therefore y ∈ M and hence

0 = Tr(xs◦y) =
∑
i=1

λiαi. (2.6)

To complete the proof, regard F as a vector space over its prime field
which is the field of rational numbers Q. Let E be the span of λ1, · · · , λn

over Q and suppose f : F −→ Q be any Q-linear functional. Then (2.4)
holds for f(λ1) . . . , f(λn). By the preceding equation

0 =
∑
i=1

λif(λi)

from which 0 =
∑

i=1 f(λi)
2 follows, since f is linear, and therefore f(λi) = 0

for all 1 ≤ i ≤ n. Thus λ1 = · · · = λn which means that xs = 0. We have
shown x = xn and is nilpotent.
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2.2 Killing form

2.2.1 Criterion for semisimplicity

Basic to this section are bilinear forms. The most important one for our
purposes the Killing form. We begin by discussing a context for the Killing
form and then derive some elementary properties of non-degenerate bilinear
forms on finite-dimensional vector spaces in general.

Let V be any vector space over F and suppose that β : V×V −→ F is
a bilinear form. Then β is symmetric if β(u, v) = β(v, u) for all u, v ∈ V .
If V is an algebra over F then β is associative if β(uv, w) = β(u, vw) for all
u, v, w ∈ V .

Suppose that β is symmetric. Then the radical Rad β of β is the set

Rad β = {u ∈ V | β(u, v) = 0 ∀ v ∈ V } = {v ∈ V | β(u, v) = 0 ∀ u ∈ V }.
Evidently Rad β is a subspace of V . The bilinear form β is non-degenerate
if Rad β = (0).

Now suppose that V is finite-dimensional. Then

β(x, y) = Tr(x◦y)

for all x, y ∈ End (V ) defines a symmetric associative bilinear form on the
(associative) algebra End (V ) in terms of the trace function. We have noted
that [x y◦z] = y◦[x z]+ [x y]◦z for all x, y, z ∈ End (V ); that is the derivation
ad x of gl(V ) is also a derivation of the associative algebra End (V ). Since
the trace function vanishes on commutators, we deduce from the preceding
equation (with x and y interchanged) that

Tr([x y]◦z) = Tr(x◦[y z]) (2.7)

for all x, y, z ∈ End(V ). Therefore

β([x y], z) = β(x, [y z]) (2.8)

for all x, y, z ∈ gl(V ) which means that β is also a symmetric associative
bilinear form on the Lie algebra gl(V ).

Now let L be a Lie algebra over F and suppose that π : L −→ gl(V ) is a
representation of L. Since π is a map of Lie algebras, it follows by (2.8) that
βπ : L×L −→ F defined by

βπ(x, y) = β(π(x), π(y))
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for all x, y ∈ L is a symmetric associative bilinear form. The associativity of
βπ means that Rad βπ is an ideal of L. Observe that:

Remark 2.2.1 Ker π ⊆ Rad βπ.

Suppose further that L is finite-dimensional. When π is the adjoint repre-
sentation of L then βπ = κ is the Killing form of L. Thus

κ(x, y) = Tr(ad x◦ad y)

for all x, y ∈ L.
Now we continue with a discussion of symmetric bilinear forms β : V×V −→

F , where V is finite-dimensional. Note that the function

β` : V −→ V ∗

given by β`(u)(v) = β(u, v) for all u, v ∈ V is linear. Non-singularity of β
can be expressed in terms of β`.

Lemma 2.2.2 Let V be a finite-dimensional vector space over the field F
and let β : V×V −→ F be a symmetric bilinear form. Then the following
are equivalent:

(a) β is non-singular.

(b) β` is one-one.

(c) β` is onto.

(d) β` is an isomorphism.

(e) There exists a basis {v1, . . . , vn} for V such that the matrix (β(vi, vj))
is invertible.

(f) The matrix of part (e) is invertible for all bases for V .

Proof: By the Rank–Nullity Theorem Dim Ker β` + Dim Im β` = Dim V .
Since Dim V = Dim V ∗ and both are finite, parts (b)–(d) are equivalent.

Suppose that Dim V = n and let b : F n×F n −→ F be the “standard
inner product” defined by

b(




x1
...

xn


 ,




y1
...

yn


) = x1y1 + · · ·+ xnyn
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for all




x1
...

xn


 ,




y1
...

yn


 ∈ F n. Observe that b is non-singular.

Now let {v1, . . . , vn} be a basis for V and consider S ∈ Mn(F ) defined by

S = (β(vi,j)).

Suppose that u = x1v1 + · · · + xnvn, v = y1v1 + · · · + ynvn ∈ V . A straight-
forward calculation shows that

β(u, v) = b(




x1
...

xn


 , S




y1
...

yn


).

Thus since b is non-singular, v ∈ Rad β if and only if




y1
...

yn


 is in the null-

space of S. Since S is invertible if and only if its null space is (0), parts (a),
(e), and (f) are equivalent. ¤

A few more technical details about the symmetric bilinear form β :
V×V −→ F . For a subspace U of V set

U⊥ = {v ∈ V | β(v, U) = (0)}.

Since β is symmetric U⊥ = {v ∈ V | β(U, v) = (0)} as well. Observe that
U⊥ = ∩u∈UKer β`(u) and is therefore a subspace of V .

Suppose that V = L is a Lie algebra and β is also associative (as is the
case when L is finite-dimensional and β is the Killing form of L). Then if I
is an ideal of L, the calculation

β([L I⊥], I) = β([I⊥ L], I) = β(I⊥, [L I]) ⊆ β(I⊥, I) = (0)

shows that I⊥ is an ideal of L as well.
Here are few basic facts about the Killing form which will make the proof

of the main theorems of this section and the next fairly straightforward.

Lemma 2.2.3 Let L be a finite-dimensional Lie algebra over the field F and
suppose that I, J are ideals of L. Then:
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(a) If I is abelian then I ⊆ Rad κ. In particular Z(L) ⊆ Rad κ.

(b) If [I J ] = (0) then κ(I, J) = (0).

(c) I⊥ is an ideal of L. Thus Rad κ = L⊥ is an ideal of L.

(d) Suppose that F is algebraically closed, has characteristic zero, and K
is a subalgebra of L. If κ(K, K) = (0) then K is solvable. Thus Rad κ
is a solvable ideal of L.

Proof: Part (a). Suppose x ∈ I and y ∈ L. Then the calculation

(ad x◦ad y)2(L) = [x [y [x [y L]]]] ⊆ [x [y [xL]]] ⊆ [x [y I]] ⊆ [x I] ⊆ [I I] = (0)

shows that (ad x◦ad y)2 = 0. Therefore ad x◦ad y is nilpotent which means
that κ(x, y) = Tr(ad x◦ad y) = 0.

Part (b). Let x ∈ I and y ∈ J . Then

(ad x◦ad y)(L) = [x [y L]] ⊆ [x J ] ⊆ [I J ] = (0).

Therefore ad x◦ad y = 0 which means that κ(x, y) = Tr(ad x◦ad y) = 0.
Part (c) was noted more generally above. To see part (d) note the subalge-

bra ad K of gl(L) satisfies Tr(x◦y) = 0 for all x, y ∈ ad K. Thus K/K ′ ' ad K
is solvable, where K ′ = Z(L)∩K. As K ′ is solvable so is K. ¤

Exercise 2.2.4 Let L = gl(n, F ). The matrix versions for L of the two symmet-
ric associative bilinear forms studied above are the Killing form and the bilinear
form β defined by β(x, y) = Tr(x◦y) for all x, y ∈ L. Here we calculate and
compare them.

Let {ei j}1≤i,j≤n be the standard basis for the underlying vector space Mn(F )
for L. Thus

ei jek ` = δj,kei,`

for all 1 ≤ i, j, k, ` ≤ n.

(a) Show that

(ad ei j ad ek `)(eu v) = δ`,uδj,kei v − δ`,uδi,vek j − δk,vδj,uei ` + δk,vδi,`eu j

for all 1 ≤ i, j, k, `, u, v ≤ n.
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(b) Show that the coefficient of eu v in the expression in part (a) is

δ`,uδj,kδi,u − δ`,uδi,vδk,uδj,v − δk,vδj,uδi,uδ`,v + δk,vδi,`δj,v.

(c) Show that

κ(ei j , ek `) = Tr(ad ei j ad ek `) = 2nδi,`δj,k − 2δi,jδk,`

for all 1 ≤ i, j, k, ` ≤ n.

(d) Show that
β(ei j , ek,`) = Tr(ei jek,`) = δj,kδi,`

for all 1 ≤ i, j, k, ` ≤ n.

Let n = 2.

(e) Show that



κ(e1 1, e1 1) κ(e1 1, e1 2) κ(e1 1, e2 1) κ(e1 1, e2 2)
κ(e1 2, e1 1) κ(e1 2, e1 2) κ(e1 2, e2 1) κ(e1 2, e2 2)
κ(e2 1, e1 1) κ(e2 1, e1 2) κ(e2 1, e2 1) κ(e2 1, e2 2)
κ(e2 2, e1 1) κ(e2 2, e1 2) κ(e2 2, e2 1) κ(e2 2, e2 2)


 =




2 0 0 −2
0 0 4 0
0 4 0 0

−2 0 0 2


 .

(f) Show that



β(e1 1, e1 1) β(e1 1, e1 2) β(e1 1, e2 1) β(e1 1, e2 2)
β(e1 2, e1 1) β(e1 2, e1 2) β(e1 2, e2 1) β(e1 2, e2 2)
β(e2 1, e1 1) β(e2 1, e1 2) β(e2 1, e2 1) β(e2 1, e2 2)
β(e2 2, e1 1) β(e2 2, e1 2) β(e2 2, e2 1) β(e2 2, e2 2)


 =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 .

(g) Let x = e1 2, h = e1 1 − e2 2, and y = e2 1 be the elements of the standard
basis for sl(2, F ). Use part (e) to show that




κ(x, x) κ(x, h) κ(x, y)
κ(h, x) κ(h, h) κ(h, y)
κ(y, x) κ(y, h) κ(y, y)


 =




0 0 4
0 8 0
4 0 0


 .

(h) Continuing with part (g), use part (f) to show that



β(x, x) β(x, h) β(x, y)
β(h, x) β(h, h) β(h, y)
β(y, x) β(y, h) β(y, y)


 =




0 0 1
0 2 0
1 0 0


 .
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2.2.2 Simple ideals of L

Part (b) of the following lemma is an essential detail used in the proof of the
Theorem of this section. We assume a few basic facts about transpose maps.

Let f : V −→ W be a linear map. Then the linear map f ∗ : W ∗ −→ V ∗

defined by f ∗(w∗) = w∗◦f for all w∗ ∈ W ∗ is called the transpose of f . Note
that f one-one implies f ∗ is onto and f onto implies that f ∗ is one-one. If
g : U −→ V is also linear then (f◦g)∗ = g∗◦f ∗.

Lemma 2.2.5 Let V be a finite-dimensional vector space over F , let β :
V×V −→ F is a symmetric bilinear form, and suppose that U is a subspace
of V . Then:

(a) Dim U + Dim U⊥ = Dim V + Dim (U ∩ Rad β).

(b) Suppose that β is non-singular. Then Dim U + Dim U⊥ = Dim V .

Proof: Part (b) is a direct consequence of part a). To show part (a), we
first define a linear map f : V −→ U∗ by f(v)(u) = β(u, v) for all u ∈ U and
v ∈ V . Since Ker f = U⊥, by the Rank–Nullity Theorem we have

Dim U⊥ + Dim Im f = Dim V. (2.9)

It remains to calculate Dim Im f in terms of dimensions mentioned in the
formula of part (a).

Recall that Ker β` = Rad β. Therefore the linear map β` : V −→ V ∗

induces a one-one linear map β` : V/Rad β −→ V ∗ which is defined by
β`(v + Rad β) = β`(v) for all v ∈ V . Let c : V −→ V ∗∗ be the linear
isomorphism defined by c(v)(v∗) = v∗(v) for all v ∈ V and v∗ ∈ V ∗.

The commutative diagram

-

-

6 6

U

V

U/(Rad β∩U)

V/Rad β

i j

π

ρ
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where π, ρ are the projections, i is the projection, and j(u + (U∩Rad β)) =
u + Rad β for all u ∈ U , gives rise to the commutative diagram

¾

¾

? ?55)V ∗
(U/(Rad β∩U))∗

(V/Rad β)∗

25)i∗

j∗

π∗

ρ∗.

Since j is one-one j∗ is onto. Therefore Im (i∗◦π∗) = Im ρ∗. Thus Im ρ∗ is
the image of the composite i∗◦π∗◦(β`)

∗◦c since the third and fourth maps
are isomorphisms. The calculation

(
(i∗◦π∗◦(β`)

∗◦c)(v)
)
(u) =

(
((β`◦π◦i)∗◦c)(v)

)
(u)

=
(
(β`◦π◦i)∗(c(v))

)
(u)

= (c(v)◦β`◦π◦i)(u)

= c(v)
(
β`◦π◦i)(u)

)

=
(
β`◦π◦i)(u)

)
(v)

= β`(u)(v)

= β(u, v)

= f(u)(v)

for all u ∈ U and v ∈ V shows that f = i∗◦π∗◦(β`)
∗◦c. Since ρ is onto ρ∗ is

one-one. Thus

Dim Im f = Dim Im ρ∗

= Dim (U/(Rad β∩U))∗

= Dim (U/(Rad β∩U))

= Dim U −Dim (Rad β∩U);

the last equation follows by the Rank–Nullity Theorem. Part (a) now follows
from this last calculation and (2.9). ¤

Here is a slight reformulation of the theorem of the section with a proof
which allows for an easy induction.
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Theorem 2.2.6 Let L be a finite-dimensional semisimple Lie algebra over
an algebraically closed field of characteristic zero. Then:

(a) L = L1⊕ · · ·⊕Lr is the direct sum of its simple ideals.

(b) Let I be an ideal of L. Then I = L′1⊕ · · ·⊕L′r, where Li = Li or
L′i = (0) for all 1 ≤ i ≤ r.

(c) Each Li is a simple Lie algebra.

(d) Write x, y ∈ L as x = x1⊕ · · ·⊕xr, y = y1⊕ · · ·⊕yr, where xi, yi ∈ Li

for all 1 ≤ i ≤ r. Then

[x y] = [x1 y1]⊕ · · ·⊕[xr yr]

and
κL(x, y) = κL1(x1, y1) + · · ·+ κLr(xr, yr).

Proof: If L is simple then there is nothing to prove. Suppose that L is not
simple, and let I be any non-zero proper ideal of L.

Let us suppose that there is an ideal J of L such that I⊕J = L. Then
J is a non-zero proper ideal of L also. Now [I J ] ⊆ I∩J = (0) implies that
[I J ] = (0) and therefore κ(I, J) = (0) by part (b) of Lemma 2.2.3. Let
x, y ∈ L and write x = x′⊕x′′, y = y′⊕y′′ where x′, y′ ∈ I and x′′, y′′ ∈ J .
Then

[x y] = [x′ y′]⊕[x′′ y′′]

and
κL(x, y) = κL(x′, y′) + κL(x′, y′′) = κI(x

′, y′) + κJ(x′, y′′).

Thus an ideal of I or J is an ideal of L, and since κL is non-degenerate it
follows that κI and κJ are as well. In particular I and J are semisimple Lie
algebras.

Suppose that K is a simple ideal of L. Then [L K] 6= (0); otherwise
K ⊆ Radκ = (0) by part (b) of Lemma 2.2.3 again. Therefore

K = [LK] = [I K]⊕[J K]

is the direct sum of ideals of L. Since K is simple either [J K] = (0) or
[I K] = (0). Our conclusion: K ⊆ I or K ⊆ J . At this point the theorem
follows by induction on Dim L.
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It remains to find J . Consider the ideal J = I⊥ of L. Since κ(I∩I⊥, I∩I⊥) =
(0), we use part d) of Lemma 2.2.3 to conclude that I∩I⊥ ⊆ Rad L = (0).
We have shownI∩I⊥ = (0). Now Dim I + Dim I⊥ = Dim L by part b) of
Lemma 2.2.5. Consequently L = I⊕I⊥ = I⊕J . ¤

Remark 2.2.7 By virtue of the preceding theorem L is the direct product of
simple Lie algebras.

2.2.3 Inner derivations

Let L be any Lie algebra over the field F and let π : L −→ gl(L) be the
adjoint representation of L. Then Im π = {ad x |x ∈ L} is a Lie subalgebra
of gl(L); indeed it is a subalgebra of the subalgebra Der(L) of gl(L).

Let δ ∈ Der(L) and x ∈ L. Then the calculation

[δ ad x](y) = δ(ad x(y))− ad x(δ(y))

= δ([x y])− [x δ(y)]

= [δ(x) y] + [x δ(y)]− [x δ(y)]

= [x δ(y)]

for all x, y ∈ L shows that

[δ ad x] = ad δ(x) (2.10)

for all x ∈ L. By virtue of (2.10) we have that Im π = ad L is an ideal of
Der(L).

There seems to be a gap in the proof of the theorem of this section which
can easily be fixed. The flow of the proof suggests that M+I = M+M⊥ = D
is used. As I∩M = (0) is established, noting that Rad κD∩M ⊆ Rad κM =
(0) would give M + I = D by part a) of Lemma 2.2.5. Here is a slightly
different proof.

Proof: Since L is semisimple, Z(L) = (0) by part a) of Lemma 2.2.3, and
thus the adjoint representation π : L −→ gl(L) is one-one. Two conse-
quences: M = Imπ = ad L is semisimple and, by (2.10), if δ ∈ D satisfies
[δ M ] = (0) then δ = 0.

We next observe that Rad κD∩M = (0). For since M is an ideal of D we
have κM = κD|M×M . Thus Rad κD∩M ⊆ Rad κM and the latter is (0) since
M is semisimple.
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Let I be an ideal of D which satisfies I∩M = (0). Since [I M ] ⊆ I∩M =
(0) it follows that I = (0). Our conclusion: Rad κD = (0), or equivalently D
is semisimple, and consequently M = D by part b) of Theorem 2.2.6. ¤

2.2.4 Abstract Jordan decomposition

No particular comments.

2.3 Complete reducibility of representations

2.3.1 Modules

There is a lot of background material needed for this section. The material
below is an easy adaptation of parts of the theory of modules for associative
algebras. A quick read of the following would be a good idea.

Let L be a Lie algebra. Then representations of L and (left) modules
for L can be thought of as two different ways of expressing the same idea.
A left L-module is a vector space V over F together with a map L×V −→
V ((x, v) 7→ x·v) such that

(M.1) x·(u + v) = x·u + x·v and x·(αu) = α(x·u),

(M.2) (x + y)·v = x·v + y·v and (αx)·u = α(x·u), and

(M.3) [x y]·v = x·(y·v)− y·(x·v)

for all x, y ∈ L, u, v ∈ V , and α ∈ F .

Example 2.3.1 Let π : L −→ gl(V ) be a representation of L. Then V is a
left L-module with x·v = π(x)(v) for all x ∈ L and v ∈ V .

Suppose that L is a subalgebra of gl(V ). Then the inclusion map i :
L −→ gl(V ) is a representation of L. Thus:

Example 2.3.2 Let L be a subalgebra of gl(V ). Then V is a left L-module
with x·v = x(v) for all x ∈ L and v ∈ V .

Example 2.3.3 Let π : L −→ gl(L) be the adjoint representation of L. The
left L-module structure on L described in Example 2.3.1 is given by x·v = [x v]
for all x, v ∈ L.



2.3. COMPLETE REDUCIBILITY OF REPRESENTATIONS 43

Example 2.3.4 Let V be a vector space over F . The rule x·v = 0 for all
x ∈ L and v ∈ V gives V a left L-module structure, called the trivial module
structure.

We shall always assume that F has the trivial left L-module structure unless
otherwise stated.

Suppose that V is a vector space over F and L×V −→ V ((x, v) 7→ x·v)
is a function. Define a function π : L −→ F(V ) from L to the set of all
functions F(V ) from V to itself by π(v)(v) = x·v for all x ∈ L and v ∈ V .
Note that F(V ) is a vector space over F with the usual rules for function
addition and scalar product.

Observe that (M.1) is equivalent to saying that π(x) is a linear endomor-
phism of V for all x ∈ L; that is π(x) ∈ End(V ) for all x ∈ L. Note that
(M.2) is equivalent to saying that π : L −→ F(V ) is linear, and (M.3) is
the same as saying that π([x y]) = π(x)◦π(y) − π(y)◦π(x) for all x, y ∈ L.
We have established, in our careful analysis of the meaning of each module
axiom for π, that if (M.1)–(M.3) are satisfied then π(x) ∈ End(V ) for all
x ∈ L and π : L −→ gl(V ) is a representation of L.

One comment on the concept of left A-module for any algebra A over
F . One would want (M.1) and (M.2) to hold. The formulation of the third
axiom evidently would depend on the nature of the multiplication of A; for
example if A is associative one would want (ab)·v = a·(b·v) for all a, b ∈ A
and v ∈ V .

Let V be a left L-module. A submodule of V is a subspace W of V such
that x·w ∈ W for all x ∈ L and w ∈ W . Thus a submodule is a left L-module
in its own right with the module structure of V . Note that V and (0) are
submodules of V . The module V is simple, or irreducible, if V has exactly
two submodules.

Let {Vi}i∈I by an indexed family of submodules of V . Then
∑
i∈I

Vi and

∩i∈IVi are submodules of V . Since V is a submodule of V , the intersection
property implies that any subset S of V is contained in a unique minimal
submodule of V , called the submodule of V generated by S. A submodule W
of V is finitely generated if it W generated by a finite subset of V .

A map of left L-modules V and W is a linear map f : V −→ W such that
f(x·v) = x·f(v) for all x ∈ L and v ∈ V . Suppose that W is a submodule
of V . Then the quotient vector space V/W has a left L-module structure
determined by the requirement that the linear projection π : V −→ V/W is a
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module map. There are the isomorphism theorems for modules to formulate
and prove.

If V, W are left L-modules then the tensor product V⊗W and the vector
space Hom(V, W ) have left L-module structures.

Lemma 2.3.5 Suppose that L is a Lie algebras over the field F and V,W
are left L-modules. Then:

(a) V⊗W is a left L-module where x·(v⊗w) = x·v⊗w + v⊗x·w for all
x ∈ L, v ∈ V , and w ∈ W .

(b) Hom(V,W ) is a left L-module where (x·f)(v) = −f(x·v)+x·(f(v)) for
all x ∈ L, f ∈ Hom(V, W ), and v ∈ V .

Proof: The proof is a nice exercise in definitions and is left to the reader.
Apropos of part (b), be sure to show that if x ∈ L and f ∈ Hom(V,W ) then
x·f ∈ Hom(V, W ). ¤

Remark 2.3.6 f ∈ Hom(V,W )is a map of left L-modules if and only if
x·f = 0 for all x ∈ L; that is if and only if f spans a trivial left L-module.

Now suppose that V is a left L-module. Then V ∗ = Hom(V, F ) has a left
L-module structure by part b) of the preceding proposition. Note that

(x·v∗)(v) = −v∗(x·v) (2.11)

for all x ∈ L, v∗ ∈ V ∗, and v ∈ V . The module structure defined by (2.11) is
called the contragredient action. We will assume that V ∗ is a left L-module
with this action unless otherwise stated.

Corollary 2.3.7 Let L be a Lie algebra over the field F and suppose that
V, W are left L-modules. With the module structures of parts (b) and (a) of
Proposition 2.3.5 the one-one linear map π : V ∗⊗W −→ Hom(V, W ) defined
by π(v∗⊗w)(v) = v∗(v)w for all v∗ ∈ V ∗, w ∈ W , and v ∈ V is a map of left
L-modules. ¤

A non-zero left L-module V is completely reducible if V is the sum of
simple submodules. There are several useful equivalent formulations of com-
pletely reducible.

Suppose that V is a vector space over F and W is a subspace of V . Then
a projection of V onto W is a linear map f : V −→ W such that f |W = IW .
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In this case V = W⊕Ker f . Conversely, if V = W⊕W ′ is the direct sum of
subspaces then f : V −→ W defined by f(w⊕w′) = w is a projection of V
onto W and Ker f = W ′.

Proposition 2.3.8 Let L be a Lie algebra over the field F and suppose that
V is a left L-module. Then the following are equivalent:

(a) V is completely reducible.

(b) V is the direct sum of simple submodules.

(c) V is not zero and if W is a submodule of V then V = W⊕W ′ for some
submodule W ′ of V .

(d) V is not zero and if W is a submodule of V then there exists a projection
f : V −→ W of V onto W which is a module map.

Proof: The conclusion of the proposition holds for associative algebras.
We make cosmetic changes to the proof in the associative case to prove our
version for Lie algebras.

That part (b) implies part (a) is clear. Assume the hypothesis of part
(a) and let W be a submodule of V . By Zorn’s Lemma there is a submodule
W ′ of V maximal with respect property that W∩W ′ = (0), or equivalently
W + W ′ = W⊕W ′.

Suppose that W + W ′ is a proper submodule of V . Then some simple
submodule S of V is not contained in W + W ′. Thus (W + W ′)∩S =
(0). Hence W + W ′ + S = (W⊕W ′)⊕S = W⊕(W ′⊕S) which means that
W∩(W ′⊕S) = (0). This contradiction shows that W⊕W ′ = W + W ′ = V
after all. We have shown that part (a) implies part (c).

Assume the hypothesis of part (c) and let W be the sum of all the simple
submodules of V . (We will take W = (0) if V has no simple submodules.)
By assumption W⊕W ′ = V for some submodule W ′ of V . If W ′ = (0) part
(b) follows.

Suppose that W ′ is not zero. Then W ′ contains a non-zero finitely gener-
ated submodule W ′′. By Zorn’s Lemma W ′′ has a maximal proper submodule
M . By assumption M⊕M ′ = V for some submodule M ′ of V . The reader is
left to show that M⊕(M ′∩W ′′) = W ′′ and that S = M ′∩W ′′ is a simple sub-
module of V . But this means S ⊆ W∩W ′ = (0), a contradiction. Therefore
W ′ = (0) after all. We shown that part (c) implies part (b).
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We have shown that parts (a)–(c) are equivalent. By our comments pre-
ceding the statement of the proposition parts (c) and (d) are equivalent.
¤

I think of Shur’s Lemma in terms of modules over associative algebras.
There seem to be several formulations of this extremely useful lemma. Here,
I would venture to say, is the more typical formulation of Shur’s Lemma.

Lemma 2.3.9 Let A be an associative algebra over an algebraically closed
field F , let V be a finite-dimensional irreducible left A-module, and suppose
that f : V −→ V is a module map. Then f = αI for some α ∈ F .

Proof: Let D be the set of all linear endomorphisms of V which are left
A-module maps. It is easy to see that D is a subalgebra of the associative
algebra End(V ); in particular D is finite-dimensional. Let f ∈ D. Since
Ker f , Im f are submodules of V , and V is simple, either f = 0 or f is an
isomorphism. Therefore D is a division algebra over F . Now we may regard
F as a subalgebra of D via the identification of α ∈ F with αI ∈ D. Since
F is algebraically closed necessarily D = F . ¤

Corollary 2.3.10 Let V be a finite-dimensional vector space over an alge-
braically closed field F , let S be a subset of End(V ) such that (0) and V
are the only subspaces of V invariant under all T ∈ S, and suppose that
f ∈ End(V ) commutes with all T ∈ S. Then f = αI for some α ∈ F .

Proof: We may assume that V 6= (0). Let A be the set of all T ∈ End(V )
which commute with f . Then A is a subalgebra of the associative algebra
End(V ). Now V is a left End(V )-module where T ·v = T (v) for all T ∈
End(V ) and v ∈ V . Thus V is a left A-module under the same action. By
assumption A contains S. The invariance assumption for S means that V is
a simple left A-module. Since f commutes with all T ∈ A it follows that f
is a left A-module map. Therefore f = αI for some α ∈ F by Lemma 2.3.9
¤

Here is the connection between Shur’s Lemma as formulated on page 26
of the text and Lemma 2.3.9 above, an associative version of Shur’s Lemma.
Let V be a finite-dimensional vector space over F (which is assumed to be
algebraically closed) and suppose that π : L −→ gl(V ) is an irreducible
representation; that is suppose that V is an irreducible module under the



2.3. COMPLETE REDUCIBILITY OF REPRESENTATIONS 47

action x·v = π(x)(v) for all x ∈ L and v ∈ V . Irreducibility means that V
and (0) are the only subspaces of V invariant under π(x) for all x ∈ L.

Let f be a linear endomorphism of V which commutes with all π(x),
x ∈ L. Then V , S = Im π, and f satisfy the hypothesis of Corollary 2.3.10;
thus f = αI for some α ∈ F .

In the following exercises L is a Lie algebra over the field F .

Exercise 2.3.11 Let V be a completely reducible left L-module.

(a) Show that a non-zero submodule of V contains a simple submodule of V .

(b) Show that non-zero submodules and quotients of V are completely reducible.

Exercise 2.3.12 Let V be a left L-module and suppose that β : V×V −→ F is
a bilinear form. Show that the following are equivalent:

(a) β` : V −→ V ∗ is a map of left L-modules.

(b) β(x·u, v) = −β(u, x·v) for all x ∈ L and u, v ∈ V .

Exercise 2.3.13 Regard L as a left L-module under x·v = [x v] for all x, v ∈ L;
this is the module action arising form the adjoint representation of L. Suppose
that β : L×L −→ F is a bilinear form.

(a) Show that β` : L −→ L∗ is a left L-module map if and only if β is associative.

(b) Let κ : L×L −→ F be the Killing form of L. Show that κ` : L −→ L∗ is a
map of left L-modules.

Exercise 2.3.14 Show that Corollary 2.3.10 implies the following:

Lemma 2.3.15 Let L be a Lie algebra over an algebraically closed field F , let
V be a finite-dimensional simple left L-module, and suppose that f : V −→ V
is a map of left L-modules. Then f = αI for some α ∈ F .

Exercise 2.3.16 Prove the following corollary:

Corollary 2.3.17 Let L be a Lie algebra over an algebraically closed field F ,
let V, W be isomorphic finite-dimensional simple left L-modules, and suppose
that f, g : V −→ W are non-zero maps of left L-modules. Then g = αf for
some α ∈ F .
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[Hint: Show that f, g are module isomorphisms and thus f−1◦g : V −→ V is a
module isomorphism.]

Exercise 2.3.18 Suppose that L is finite-dimensional, simple, and the field F
is algebraically closed of characteristic zero.

(a) Let β : L×L −→ F be an associative bilinear form. Show that β = ακ for
some α ∈ F . [Hint: Note that the Killing form κ is non-degenerate. See
Exercises 2.3.13 and 2.3.16.]

(b) Suppose that L is a subalgebra of gl(V ) for some finite-dimensional vector
space V over F . Show that there is a non-zero α ∈ F such that

κ(x, y) = αTr(x◦y)

for all x, y ∈ L.

In regard to part (b), see Exercise 2.2.4.

2.3.2 Casimir element of a representation

Let V be a finite-dimensional vector space over the field F and suppose that
{v1, . . . , vn} is a basis for V . For each 1 ≤ i ≤ n define vi ∈ V ∗ by vi(vj) = δi,j

for all 1 ≤ j ≤ n. It is easy to see that {v1, . . . , vn} is a basis for V ∗, called
the basis for V ∗ dual to the basis {v1, . . . , vn}, or more informally the dual
basis for V ∗.

Now let L be a finite-dimensional Lie algebra over the field F and suppose
that β : L×L −→ F is a non-degenerate symmetric associative bilinear form.
Case in point: the Killing form β when L semisimple and F an algebra field
of characteristic zero. Since β is non-degenerate β` : L −→ L∗ is a linear
isomorphism. Let {x1, . . . , xn} be a basis for L and let {x1, . . . , xn} be the
dual basis for L∗. Since β` is an isomorphism there are unique y1, . . . , yn ∈ L
which satisfy β`(yi) = xi for all 1 ≤ i ≤ n. Observe that {y1, . . . , yn} is also
a basis for L and, since β is symmetric, that

β(yi, xj) = δi,j = β(xi, yj) (2.12)

for all 1 ≤ i, j ≤ n. By Exercise 2.3.22 we have

x =
n∑

i=1

β(x, xi)yi =
n∑

i=1

β(x, yi)xi (2.13)
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for all x ∈ L.
The tensor

∑n
i=1 xi⊗yi is of importance in connection with the Casimir

element. For given β it does not depend on the particular choice of basis.
See Exercise 2.3.21. A very important relation for us is

n∑
i=1

[xxi]⊗yi =
n∑

i=1

xi⊗[yi x] (2.14)

for all x ∈ L.

Proof: By virtue of Exercise 2.3.21 we need only show that for each z ∈ L
applying β`(z)⊗I to both sides of the equation results in the same element
of L. Applying β`(z)⊗I to the left hand side of the equation yields

n∑
i=1

β`(z)([xxi])yi =
n∑

i=1

β(z, [xxi])yi =
n∑

i=1

β([z x], xi)yi = [z x]

by (2.13) since β is associative. Applying β`(z)⊗I to the right hand side
yields

n∑
i=1

β`(z)(xi)[yi x] =
n∑

i=1

β`(z, xi)[yi x] = [
n∑

i=1

β`(z, xi)yi x] = [z x]

by (2.13) again. ¤

Lemma 2.3.19 Let φ : L −→ gl(V ) be a representation of a Lie algebra
L over F and suppose that

∑n
i=1 xi⊗yi ∈ L⊗L satisfies (2.14). Then the

endomorphism of V defined by

cβ(φ) =
n∑

i=1

φ(xi)◦φ(yi)

is a map of left L-modules.

Proof: Let x ∈ L. Since φ is a Lie algebra map we deduce form (2.14) that

n∑
i=1

[φ(x) φ(xi)]◦φ(yi) =
n∑

i=1

φ(xi)◦[φ(yi) φ(x)]. (2.15)
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Since the Lie algebra derivation ad φ(x) of gl(V ) is also an associative algebra
derivation of End(V ), we use (2.15) to compute

[φ(x) cβ(φ)] = [φ(x)
n∑

i=1

φ(xi)◦φ(yi)]

=
n∑

i=1

[φ(x) φ(xi)]◦φ(yi) +
n∑

i=1

φ(xi)◦[φ(x) φ(yi)]

=
n∑

i=1

φ(xi)◦[φ(yi) φ(x)]−
n∑

i=1

φ(xi)◦[φ(yi) φ(x)]

= 0.

by (2.15). Therefore φ(x) and cβ(φ) commute for all x ∈ L; that is cβ(φ) is
a map of left L-modules. ¤

In more concrete terms

cβ(φ)(v) =
n∑

i=1

xi·(yi·v) (2.16)

for all v ∈ V .

We end with a very important application to semisimple Lie algebras.

Proposition 2.3.20 Let L be a finite-dimensional semisimple Lie algebra
over an algebraically closed field F of characteristic 0, and suppose that φ :
L −→ gl(V ) is a non-trivial finite-dimensional representation of L. Then
there is a module map cβ(φ) : V −→ V described by (2.16) which satisfies
Tr(cβ(φ)) 6= 0.

Proof: First of all suppose that Ker φ = (0); that is φ is a faithful represen-
tation. Let β : L −→ F be the symmetric associative bilinear form defined
by β(x, y) = Tr(φ(x)◦φ(y)) for all x, y ∈ L.

We claim first of all that β is non-singular. The ideal I = Rad β of L is a
semisimple Lie algebra. Thus φ(I) is a semisimple subalgebra of gl(V ). Since
0 = β(x, y) = Tr(φ(x)◦φ(y)) for all x, y ∈ I it follows that the semisimple
subalgebra φ(I) is also solvable. Therefore φ(I) = (0). Thus I ⊆ Ker φ = (0)
which means that Rad β = (0). Therefore β is non-singular.
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By our discussion above there are bases {x1, . . . , xn} and {y1, . . . , yn} for
L which satisfy (2.12) and (2.14). Let cβ(φ) be the module endomorphism
of V of Lemma 2.3.19 defined for

∑n
i=1 xi⊗yi. Observe that

Tr(cβ(φ)) =
n∑

i=1

Tr(φ(xi)◦φ(yi)) =
n∑

i=1

β(xi, yi) = (Dim L)1.

Since φ is not trivial, L 6= (0), and thus (Dim L)1 6= 0 since the characteristic
of F is zero.

Now we pass to the general case. Since L is semisimple L = Ker φ⊕L is
the direct sum of ideals of L. Observe there is only one possibility for L. Now
L is a semisimple Lie algebra and the restriction φ|L : L −→ gl(V ) is a non-
trivial faithful representation of L. Construct cβ(φ) = cβ|L×L(φ|L) as above
with bases {x1, . . . , xn} and {y1, . . . , yn} for L. Note that (2.14) is satisfied
for all x ∈ L as [Rad β L] = (0). Therefore cβ(φ) is an endomorphism of
L-modules by Lemma 2.3.19. ¤

The module map cβ(φ) described in the proof of the preceding proposition
is called the Casimir element of φ. Observe that the construction does not
depend on the choice of basis {x1, . . . , xn}.
Exercise 2.3.21 Let V,W be vector spaces over the field F and suppose that
v ∈ V⊗W is not zero. Write v =

∑r
i=1 vi⊗wi as a sum of tensors where r is as

small as possible.

(a) Show that {v1, . . . , vr} and {w1, . . . , wr} are linearly independent sets. [Hint:
What happens if r > 1 and vr is a linear combination of v1, . . . , vr−1?]

(b) Show that there is a f ∈ V ∗ such that 0 6= (f⊗I)(v) =
∑r

i=1 f(vi)wi.

c) Suppose that u ∈ V⊗W . Show that (f⊗I)(u) = 0 for all f ∈ V ∗ implies
that u = 0.

Exercise 2.3.22 Let β : V⊗V −→ F be a non-degenerate symmetric bilinear
form on a finite-dimensional vector space V over F .

(a) Show that there are bases {xn, . . . , xn} and {y1, . . . , yn} for V such that
(2.12) holds.

Suppose {x1, . . . , xn} and {y1, . . . , yn} are bases for V such that (2.12) holds.

(b) Show that
∑n

i=1 β(x, xi)yi = x =
∑n

i=1 β(x, yi)xi for all x ∈ V . [Hint:
Possibly too helpful of a hint. Write x =

∑n
j=1 αjxj and calculate β(x, yi).]



52 CHAPTER 2. SEMISIMPLE LIE ALGEBRAS

(c) Suppose {x′1, . . . , x′n} and {y′1, . . . , y′n} are also bases for V such that (2.12)
holds. Show that

∑n
i=1 xi⊗yi =

∑n
i=1 x′i⊗y′i. [Hint: Note that β` : V −→ V ∗

is an isomorphism. Apply β`(x)⊗I to the difference of the two sides of this
equation. See Exercise 2.3.21.]

2.3.3 Weyl’s Theorem

Concerning the Lemma.

Remark 2.3.23 Let L be any Lie algebra and suppose that V is a one-
dimensional left L-module. Then [LL]·v = (0).

To see this, write V = Fv and let x, y ∈ L. Then x·v = αv and y·v = βv
for some α, β ∈ F . Therefore

[x y]·v = x·(y·v)− y·(x·v) = x·(βv)− y·(αv) = βαv − αβv = 0.

Suppose that L is a Lie algebra over F and let V be a non-zero left L-
module. Then V is completely reducible if and only if for every submodule
W of V there is a projection f : V −→ W from V onto W which is a module
map by Proposition 2.3.8.

Let W be a submodule of V . Recall that Hom(V, W ) is a left L-module
where x·f(v) = −f(x·v) + x·f(v) for all x ∈ L, f ∈ Hom(V, W ), and v ∈ V .
Observe that

M(W,W ) = {f ∈ Hom(V,W ) | f(W ) ⊆ W}
is a submodule of Hom(V,W ) and that π : M(V,W ) −→ End(W ) defined
by π(f) = f |W is a map of left L-modules. Since the identity map IdW :
W −→ W is a module map the linear span F IdW is a one-dimensional trivial
left L-module by Remark 2.3.6. Note that W = Ker π is a codimension one
submodule of V = π−1(FIW ). Observe that any projection f : V −→ W
lies in V\W . Conversely, if f ∈ V\W then some scalar multiple of f is a
projection of V onto W . Therefore there exists a projection of V onto W
which is a module map if and only if there exists a one-dimensional trivial
submodule W ′ of V such that V = W⊕W ′.

We have a characterization of Lie algebras whose finite-dimensional rep-
resentations are completely reducible in terms of the existence of certain
one-dimensional modules.
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Theorem 2.3.24 Let L be a Lie algebra over the field F . Then the following
are equivalent:

a) All non-zero finite-dimensional left L-modules are completely reducible.

b) [LL] = L and all finite-dimensional left L-modules V which contain a
codimension one simple submodule W contain a one-dimensional sub-
module W ′ such that V = W⊕W ′.

Proof: Suppose that all non-zero left L-modules are completely reducible.
Suppose that V is finite-dimensional left L-module and W is a submodule
of V . Then V = W⊕W ′ for some submodule W ′ of V . Since Dim V =
Dim W + Dim W ′, if W has codimension one then W ′ has dimension one.
That L = [LL] follows by Exercise 2.3.30. We have shown that part a)
implies part b).

Conversely, assume the hypothesis of part b). Since L = [LL] any one-
dimensional left L-module is trivial by Remark 2.3.23. Let V be a finite-
dimensional left L-module which contains a submodule W of codimension
one. Since any left L-module is trivial, by our discussion preceding the
statement of the Theorem to show part b) implies part a) we need only show
that V contains a one-dimensional submodule W ′ such that V = W⊕W ′.
This we do by induction on Dim V .

If W is simple we are done by assumption. Suppose that W is not sim-
ple. We may assume that W 6= (0). Then W contains a non-zero proper
submodule W ′′. Since W/W ′′ is a codimension one submodule of V/W ′′,
by induction on Dim V we have V/W ′′ = W/W ′′⊕W ′/W ′′, where W ′ is a
submodule of V containing W ′′. It is a small exercise to show that W ′′ is
a codimension one submodule of W ′ and that W ′ is a proper submodule
of V . Thus by induction on Dim V again, W ′ = W ′′⊕W ′′′ where W ′′′ is a
one-dimensional submodule of W ′′. Since W ′′′∩W ⊆ W ′∩W ⊆ W ′′ it follows
that W ′′′∩W ⊆ W ′′′∩W ′′ = (0). Therefore V = W⊕W ′′′. ¤

Remark 2.3.25 Weyl’s Theorem follows form Theorem 2.3.24 and the lemma
below:

Lemma 2.3.26 Let L be a finite-dimensional semisimple Lie algebra over
an algebraically closed field of characteristic zero and suppose that V is a
finite-dimensional left L module which contains a codimension one simple
submodule W . Then V = W⊕W ′ for some a one-dimensional submodule
(which must be trivial).



54 CHAPTER 2. SEMISIMPLE LIE ALGEBRAS

Proof: By Proposition 2.3.20 there are x1, . . ., xn, y1, . . ., yn ∈ L such
that f : V −→ V defined by f(v) =

∑n
i=1 xi·(yi·v) for all v ∈ V is a left

L-module map and Tr(f) 6= 0. By the Lemma of the section x·V ⊆ W ;
therefore f(V ) ⊆ W .

Suppose that f(W ) = (0). Then f 2 = 0 which means that Tr(f) = 0,
a contradiction. Therefore f(W ) 6= (0). Since W is simple it follows that
f(W ) = W . Therefore Im f = W , so Ker f is a one-dimensional submodule
of V by the Rank–Nullity Theorem. Since W∩Ker f is a submodule of W ,
it follows that W∩Ker f = (0). Our conclusion: V = W⊕Ker f . ¤

The following theorem is very important for associative algebras1:

Theorem 2.3.27 Let A be a finite-dimensional associative algebra over the
field F . Then the following are equivalent:

(a) All left A-modules are completely reducible.

(b) A is completely reducible as a left A-module under multiplication.

Exercise 2.3.28 The preceding theorem is not the case for Lie algebras as the
following example shows. Let L = Fx be a one-dimensional Lie algebra over F ,
suppose that V is a vector space over F and let π : L −→ End(V ) be any linear
map, and let T = π(x). Note that L is a completely reducible left L-module no
matter what the structure.

(a) Show that π is a representation of L.

(b) Show that the submodules of V are the T -invariant subspaces of V .

(c) Show that V is completely reducible if and only if the minimal polynomial
of T over F factors into distinct irreducible factors.

(d) Show that there are non-zero left L-modules which are not completely re-
ducible.

Exercise 2.3.29 Let f : L −→ L′ be a map of Lie algebras and suppose that V
is a left L′-module.

(a) Show that V is a left L-module where x·v = f(x)·v for all x ∈ L and v ∈ V .

Regard V as a left L-module according to part (a).

1See Theorem 4, page 820 of Abstract Algebra, Dummit and Foote, Prentice Hall, N.J.,
1999
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(b) Show that the L′-submodules of V are the L-submodules of V .

Suppose that f is onto.

(c) Show that L-submodules of F are L’-submodules of V .

(d) Suppose that V 6= (0). Show that V is a completely reducible left L-module
if and only if V is a completely reducible left L’-module.

Exercise 2.3.30 Let L be a Lie algebra over the field F and suppose that all
non-zero left L-modules are completely reducible. Show that L = [LL]. [Hint: If
not, show there is an onto Lie algebra map f : L −→ L/I where I is a codimension
one ideal of L. See Exercises 2.3.28 and 2.3.29.]

2.3.4 Preservation of Jordan decomposition

Let V be any vector space over F and let W be a subspace of V . Recall that
M(W,W ) = {f ∈ End(V ) | f(W ) ⊆ W} is a subalgebra of the associative
algebra End(V ) and is therefore a Lie subalgebra of gl(V ). The map Π :
M(W,W ) −→ End(W ) defined by Π(x) = x|W is a map associative algebras
and therefore can be regarded as a map of Lie algebras Π : M(W,W ) −→
gl(W ).

Let L be a subspace of gl(V ) and set

LW = {x ∈ gl(V ) | [xL] ⊆ L, x(W ) ⊆ W, Tr(x|W ) = 0}
= {x ∈ gl(V ) | ad x(L) ⊆ L, x(W ) ⊆ W, Tr(x|W ) = 0}.

It is easy enough to check directly that LW is a Lie subalgebra of gl(V ). Let
V = gl(V ) and π : gl(V ) −→ gl(V) be the adjoint representation. Then L is
a subspace of V and

LW = π−1(M(L,L))∩Π−1(sl(W )) (2.17)

which shows that LW is a Lie subalgebra of gl(V ). Suppose that x ∈ LW .
Since xs, xn are polynomials in x it follows that W is invariant under xn and
xs. For this same reason L is invariant under (ad x)s = ad xs and (ad x)n =
ad xn. Since W is invariant under x, xs, and xn we have x|W = xs|W +xn|W .
Now xn|W is nilpotent. Therefore Trxn|W = 0 and consequently Tr(xs|W ) =
Tr(xs|W ) + Tr(xn|W ) = Tr(x|W ) = 0. We have shown that

x ∈ LW implies xs, xn ∈ LW . (2.18)
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Note that Π([M(W,W ) M(W,W )]) = [Π(M(W,W )) Π(M(W,W ))] ⊆
sl(W ); thus

If L is a Lie subalgebra and L(W ) ⊆ W then [LL] ⊆ LW . (2.19)

The technical point of the section is embodied in the following:

Lemma 2.3.31 Suppose that V is a finite-dimensional vector space over an
algebraically closed field F of characteristic zero and L is a subalgebra of
gl(V ) such that

(a) [LL] = L,

(b) V is a completely reducible left L-module under x·v = x(v) for all x ∈ L
and v ∈ V ,

(c) gl(V ) is a completely reducible left L-module under the adjoint action,
that is x·v = ad x(v) = [x v] for all v ∈ gl(V ).

Then xs, xn ∈ L for all x ∈ L.

Proof: Write V = W1 + · · ·+ Wr as the sum of simple submodules and set
L′ = LW1∩ · · · ∩LWr . By (2.19) we conclude that L ⊆ LW . Since [LW L] ⊆ L
in any case it follows that [LLW ] ⊆ LW . Thus LW is an L-submodule
of gl(V ). Now non-zero submodules of completely reducible modules are
completely reducible by Exercise 2.3.11. At this point the proof in the text
goes through verbatim. ¤

In the following exercises we explore the implications of a finite-dimensional
Lie algebra L being completely reducible under the adjoint action; that is
x·v = ad x(v) = [x v] for all x, v ∈ L.

Exercise 2.3.32 Let L be a non-zero finite-dimensional Lie algebra over the field
F and suppose that L is a completely reducible left L-module under the adjoint
action. Then

L = L1⊕ · · ·⊕Ls

is the direct sum of simple left L-modules, that is simple ideals of L.

(a) Let I be a simple ideal of L.

(i) Show that I ⊆ Z(L) of I = [LI] = [Li Li] = Li for some 1 ≤ i ≤ s.

(ii) Show that Dim I = 1 if and only if I ⊆ Z(L).
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By virtue of part (a) we may write

L = Z⊕L1⊕ · · ·⊕Lr

as the direct sum of ideals where Z ⊆ Z(L) and dimLi > 1 for all 1 ≤ i ≤ r.

(b) Show that Li is a simple Lie algebra for all 1 ≤ i ≤ r.

(c) Show that Z = Z(L).

(d) Let I be an ideal of L. Show that I = (I∩Z(L))⊕L′1⊕ · · ·⊕L′r, where L′i =
(0) or L′i = Li for all 1 ≤ i ≤ r.

(e) Show that RadL = Z(L) (and thus L is reductive).

(f) Show that L = Z(L)⊕[LL], where L = [LL] is semisimple and is a com-
pletely reduced left L-module under the adjoint action.

Exercise 2.3.33 Let L be a non-zero finite-dimensional Lie algebra and suppose
that all finite-dimensional non-zero left L-modules are completely reducible. Show
that L is semisimple. [Hint: See Exercises 2.3.28–2.3.32.]

Exercise 2.3.34 Prove the following theorem. See Exercise 2.3.28 in connection
with the theorem.

Theorem 2.3.35 Let L be an non-zero finite-dimensional Lie algebra over
an algebraically closed field of characteristic zero. Then the following are
equivalent:

(a) Z(L) = (0) and L is a completely reducible left L-module under the
adjoint action.

(b) L is semisimple.

(c) All non-zero finite-dimensional left L-modules are completely reducible.

2.4 Representations of sl(2, F )

2.4.1 Weights and maximal vectors

For a linear endomorphism T : V −→ V of a vector space V over F let

Vλ = Ker (T − λI) = {v ∈ V |T (v) = λv}
for all λ ∈ F . Note that if Vλ 6= (0) then Vλ is the subspace of eigenvectors
for T belonging to λ.
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Remark 2.4.1 Let T : V −→ V be a semisimple linear endomorphism of a
finite-dimensional vector space V over F . Then V = ⊕λ∈F Vλ.

Let L = sl(2, F ) and suppose that the field F is algebraically closed of
characteristic zero. We have seen that L is simple, hence semisimple. Let V
be any finite-dimensional left L-module. Then left multiplication

h· : V −→ V

by h, defined by h·(v) = h·v for all v ∈ V , is a semisimple endomorphism
of V . The effect of the left multiplications determined by x, y, and h on the
Vλ’s is explained by schematic diagram

-
¾

-
¾

-
¾

-
¾

Vλ−2 Vλ Vλ+2
x·
y·

x·
y·

x·
y·

x·
y·n

-

h·
n

-

h·
n

-

h·

.

In the following exercises, we expand on the corollary of Section 6.4 of
the text which is a very important result for this section.

Exercise 2.4.2 Let φ : L −→ L′ be a map of finite-dimensional Lie algebras,
where L is semisimple. Suppose that F is an algebraically closed field of charac-
teristic zero.

(a) Suppose that L′ is semisimple also and φ is onto. Show that φ(x)s = φ(xs)
and φ(x)n = φ(xn) for all x ∈ L. [Hint: Let x ∈ L. Note that (adφ(x))◦φ =
φ◦(adx) and therefore f(adφ(x))◦φ = φ◦f(ad x) for all f(x) ∈ F [x]. Recall
that an endomorphism T : V −→ V of a finite-dimensional vector space over
any field F is semisimple if and only if f(T ) = 0 for some f(x) ∈ F [x] which
splits into distinct linear factors over F , and that T is nilpotent if and only
if f(T ) = 0 where f(x) = xm for some m > 0.]

(b) Suppose that L′ is semisimple also and φ is one-one. Show that φ(x)s =
φ(xs) and φ(x)n = φ(xn) for all x ∈ L. [Hint: By part a) we may assume
that φ is the inclusion; that is L ⊆ L′. The adjoint representation adL′ :
L′ −→ gl(L′) is one-one. Let x = xs + xn be the decomposition of x into
semisimple and nilpotent parts in L′. Then adL′ x = adL′ xs +adL′ xn is the
Jordan-Chevalley decomposition of adL x in End(L′). Thus adL′xs, adL′xn ∈
adL′(L). Show that xs, xn ∈ L and that adL x = adL xs + adL xn is the
Jordan-Chevalley decomposition of adL x in End(L); thus x = xs +xn is the
decomposition of x into semisimple and nilpotent parts in L.]
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(c) Show that φ(x)s = φ(xs) and φ(x)n = φ(xn) for all x ∈ L.

d) Suppose that L′ = gl(V ) for some finite-dimensional vector space V over
F . Show that φ(x) = φ(xs) + φ(xn) is the Jordan-Chevalley decomposition
of φ(x) for all x ∈ L. (That is, go through the details of the proof of the
corollary of Section 6.3.)

Exercise 2.4.3 Let F be an algebraically closed field of characteristic zero and
suppose that L ⊆ gl(V ) is a semisimple Lie subalgebra of gl(V ), where V is a
finite-dimensional vector space over F . Give a very careful proof of the fact that
for x ∈ L the decomposition x = xs+xn into semisimple and nilpotent parts in L is
the Jordan–Chevalley decomposition of the endomorphism x of V into commuting
semisimple and nilpotent endomorphisms.

2.4.2 Classification of irreducible modules

We continue with the notation and assumptions of the previous section unless
otherwise stated. L = sl(2, F ) and the field F is algebraically closed of
characteristic zero.

Let V be any non-zero finite-dimensional left L-module. For ρ ∈ F we
set Vρ = Ker (h·−ρI). Since h· is a semisimple endomorphism of V it follows
that Vρ 6= (0) for some ρ ∈ F .

Now the sum
Vρ + Vρ+2 + Vρ+4 + · · ·

is direct since the subscripts are distinct elements of F . Since V is finite-
dimensional Vρ+2` = (0) for some ` ≥ 0. Let ` be the least such integer. Then
` ≥ 1. Set λ = ρ + 2(`− 1). Then

Vλ 6= (0) = Vλ+2.

Choose u0 ∈ Vλ\0. Note that x·u0 = 0. For all 1 ≤ ı define uı by

uı = y·uı−1.

Observe that
uı ∈ Vλ−2ı

for all 0 ≤ ı. Now the sum

Vλ + Vλ−2 + Vλ−4 + · · ·
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is direct since the subscripts are distinct elements of F . Therefore u` = 0
for some ` ≥ 0. Let ` be the least such integer. Observe that ` > 0. Let
m = `− 1. Then

um 6= 0 = um+1.

For convenience we set u−1 = 0.
Let W be linear span of u0, . . . , um. Since these vectors are not zero and

belong to different eigenspaces for h· it follows that {u0, . . . , um} is a basis
for W . We will show that there are α0, . . . , αm+1 ∈ F which satisfy

x·uı = αıuı−1 for all 0 ≤ ı ≤ m + 1, (2.20)

α0 = 0 = αm+1, and α1, . . . , αm 6= 0.
Suppose this is the case. Then W is a submodule of V . Observe that any

uı generates W as a left L-module. Furthermore W is simple. For let W ′

be a non-zero submodule of W . Then W ′ is invariant under h·. Since h·|W ′

is semisimple also, W ′ contains a non-zero eigenvector for this restriction.
Since the eigenspaces of h· are one dimensional and spanned by the uı’s, it
follows that uı ∈ W ′ for some 1 ≤ ı ≤ m. Therefore W ′ = W .

Back to α0, . . . , αm+1. We show that

αı = ı(λ + 1− ı) (2.21)

for all 0 ≤ ı ≤ m + 1. Since α0 = 0 the equation x·u0 = 0 = α0u−1 follows.
Suppose that x·u = αu−1 for all 0 ≤  < ı ≤ m + 1. Then 0 < ı ≤ m + 1
and thus

x·uı = x·(y·uı−1) = [x y]·uı−1 + y·(x·uı−1)

= (λ− 2(ı− 1))·uı−1 + y·(αı−1uı−2)

=
(
(λ− 2(ı− 1) + (ı− 1)(λ + 2− ı)

) ·uı−1

= ı(λ + 1− ı)·uı−1.

We have established (2.21) by induction on ı.
Since αm+1 = 0 we conclude that λ = m. Therefore

αı = ı(m + 1− ı)

for all 0 ≤ ı ≤ m + 1. Observe that

αı = αm+1−ı for all 0 ≤ ı ≤ m + 1;
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thus the αı’s have a nice symmetry. Note that αı = 0 if and only if ı = 0 or
ı = m + 1. Thus W is simple.

We will make a change of basis which will give the traditional description
of W . Set

vı =
uı

ı!

for all 0 ≤ ı ≤ m. Then {v0, . . . , vm} is a basis for W and

h·vı = (m− 2ı)·vı, x·vı = (m + 1− ı)·vı−1, y·vı = (ı + 1)·vı+1 (2.22)

for all 0 ≤ ı ≤ m. Suppose that V = W . Identifying the endomorphisms
h·, x·, and y· of V with their matrices with respect to {v0, . . . , vm} we have

h· =




m
m− 2

. . .

−m


 ,

x· =




0 m
0 m− 1

. . . . . .

0 1
0




,

and

y· =




0
1 0

2
. . .
. . . 0

m 0




.

We have determined what finite-dimensional simple left L-modules must
be. Whether or not they exist (they do) needs to be verified. See Exercise
2.4.8. We close with a result which will be useful in Chapter 8.

Corollary 2.4.4 Let F be an algebraically closed field of characteristic zero
and suppose that V is a finite-dimensional L = sl(2, F )-module. Then the
eigenvalues of the left multiplication h· : V −→ V are integers.
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Proof: We may as well assume that V 6= (0). In this case V is the sum
of simple left L-modules which satisfy the conclusion of the corollary. Thus
f(h·) = 0 for some f(x) = (x − λ1) · · · (x − λr) ∈ F [x] with λ1, . . . , λr ∈ Z.
Since the eigenvalues of h· must be roots of f(x) the corollary follows. ¤

Exercise 2.4.5 Let L be a finite-dimensional Lie algebra over a field F with basis
{x1, . . . , xn} and suppose that V is a vector space over F . Let T1, . . . , Tn ∈ End(V )
and φ : L −→ End(V ) be the linear map determined by φ(xı) = Tı for all 1 ≤ ı ≤ n.
Then φ determines a representation of Lie algebras φ : L −→ gl(V ) if and only if

φ([x y]) = [φ(x) φ(y)] (2.23)

holds for all x, y ∈ L.
Show that (2.23) holds if and only if

φ([xı x]) = [Tı T]

for all 1 ≤ ı <  ≤ n. [Hint: Note that β, β′ : L×L −→ End(V ) defined by
β(x, y) = φ([x y]) and β′(x, y) = [φ(x)φ(y)] for all x, y ∈ L are both bilinear
functions γ : L×L −→ End(V ) which satisfy γ(y, x) = −γ(x, y) and γ(x, x) = 0
for all x, y ∈ L.]

Exercise 2.4.6 Suppose that F is a field of characteristic zero, not necessarily
algebraically closed, let L = sl(2, F ), and let {x, y, h} be the standard basis for L.
Let λ ∈ F and V (λ) be the vector space over F with basis of symbols {uı}ı∈Z .
Define

αı = ı(λ + 1− ı)

for all ı ∈ Z.

(a) Let T1, T2, T3 ∈ End(V (λ)) be the endomorphisms determined by

T1(uı) = αıuı−1, T2(uı) = uı+1, and T3(uı) = (λ− 2ı)uı

for all ı ∈ Z. Show that the linear map φ : L −→ End(V (λ)) which is
defined by φ(x) = T1, φ(y) = T2, and φ(h) = T3, determines a representation
φ : L −→ End(V (λ)).

(b) Suppose that W is a non-zero submodule of V (λ). Show that um ∈ W for
some m ∈ Z. [Hint: Let w ∈ W\0. Then w ∈ Fuk + · · · + Fu` for some
integers k < `. Let W be the smallest subspace of V (λ) containing w and
invariant under h·. Then W ⊆ W,Fuk + · · · + Fu`. The latter inclusion
implies that W is finite-dimensional and h·|W : W −→ W is a semisimple
endomorphism of W.]
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(c) Suppose that λ 6∈ Z. Show that V (λ) is simple.

(d) Suppose that λ ∈ Z. Show that V (λ) has exactly one proper submodule
W , and that W is simple. (In this case V (λ) is not completely reducible.)

Exercise 2.4.7 Try your hand at Exercise 7 on page 34 of the text.

Exercise 2.4.8 Suppose that F is a field of characteristic zero, not necessarily
algebraically closed, let L = sl(2, F ), and let {x, y, h} be the standard basis for
L. For a non-negative integer m ≥ 0 show that there is a simple left L-module of
dimension m+1 with basis {v0, . . . , vm} which satisfies (2.22). [Hint: See Exercise
2.4.5.]

Exercise 2.4.9 Suppose that L is a Lie algebra over a field F and let V be a
left L-module. Let EndL(V ) be the set of all module maps f : V −→ V .

(a) Show that EndL(V ) is a subalgebra of the associative algebra End(V ).

(b) Determine EndL(V ) where V = V (λ) is the L = sl(2, F )-module of Exercise
2.4.6.

(c) Determine EndL(V ) where V = W is the simple L = sl(2, F )-module of
dimension m + 1 described in this section. Do not assume that F is alge-
braically closed.

See Shur’s Lemma for Lie algebras in connection with parts (b) and (c).

Exercise 2.4.10 Let V (λ), V (λ′) be the L = sl(2, F )-modules of Exercise 2.4.6.
Show that V (λ) ' V (λ′) as left L-modules if and only if λ = λ′. [Hint: Let
{u′ı}ı∈Z be the basis for V (λ′) described in Exercise 2.4.6 and suppose that
fV (λ) −→ V (λ′) is a module isomorphism. Show that f(ur) = αu′0 for some
r ∈ Z and α ∈ F\0. Thus, replacing f by (1/α)f , we may assume that f(u0) = u′0.
Show that f(ur+ı) = u′ı for all ı ≥ 0.]

2.5 Root Space Decompositions

L is a finite-dimensional non-zero semisimple Lie algebra. Recall that the
fundamental representation φ : L −→ gl(L), x 7→ ad x, is injective. Let
x, y ∈ L. Since ad [x y] = [ad x ad y] it follows that [x y] = 0 if and only if
ad x and ad y are commuting operators.
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Lemma 2.5.1 Let x, y ∈ L and suppose that [x y] = 0. Then:

(a) ad x commutes with ad y, ad ys, and ad yn.

(b) [x ys] = 0 = [x yn].

(c) κ(x, y) = κ(xs, ys).

Proof: Since [x y] = 0 the operators ad x and ad y commute. Now (ad y)s =
ad ys and (ad y)n = ad yn are polynomials in ad y. Therefore these operators
commute with ad x. We have shown parts (a) and (b).

To show part (c) we observe that κ(x, y) = κ(x, ys + yn) = κ(x, ys) +
κ(x, yn). Now κ(x, yn) = tr(ad x ◦ ad yn). Since ad x and ad yn commute by
part (a), and ad yn is nilpotent, for some m ≥ 0 we have (ad x ◦ ad yn)m =
(ad x)m◦(ad yn)m = 0. Since the trace of a nilpotent endomorphism is zero,
κ(x, yn) = Tr(ad x ◦ ad yn) = 0. We have shown that κ(x, y) = κ(x, ys).
Since κ is symmetric, and [ys x] = 0 by part (b), the calculation κ(x, ys) =
κ(ys, x) = κ(ys, xs) completes the proof of part (c). ¤

2.5.1 Maximal toral subalgebras and roots

Buried in this section is an analog of Engel’s Theorem. Let L be a finite-
dimensional Lie algebra over a field F . We will say that x ∈ L is ad-
semisimple if ad x is a semisimple endomorphism of L. (This must be a
standard definition.) If L is abelian then all x ∈ L are ad-semisimple as
ad x = 0. The converse is true as well.

Lemma 2.5.2 Let L be a finite-dimensional Lie algebra over the field F .
Suppose x, y ∈ L\0 where y is ad-semisimple and ad x(y) = λy for some
λ ∈ F . Then λ = 0.

Proof: Let λ1, . . . , λr ∈ F be the distinct eigenvalues for ad y and let
V1, . . . , Vr be the corresponding subspaces of eigenvectors. Then L = V1⊕ · · ·⊕Vr.
Recall that 0 is an eigenvalue for ad y since 0 = [y y] = ad y(y). We may take
λr = 0.

By assumption [x y] = ad x(y) = λy. Write x = x1 + · · · + xr where
xı ∈ Vı for all 1 ≤ ı ≤ r. Applying ad y to both sides of this equation we
calculate

−λy = [y x] = λ1x1 + · · ·+ λrxr = λ1x1 + · · ·+ λr−1xr−1
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and thus
λ1x1 + · · ·+ λr−1xr−1 + λy = 0.

Since y ∈ Vr we conclude that λ1x1 = · · · = λy = 0. ¤

Theorem 2.5.3 Let L be a finite-dimensional Lie algebra over a field F
which consists of ad-semisimple elements. Then L is abelian.

Proof: Let x ∈ L\0. Then the only eigenvalue of ad x is 0 by Lemma 2.5.2.
Therefore ad x = 0 since ad x is semisimple. ¤

Now suppose that L is a finite-dimensional semisimple Lie algebra and
F is an algebraically closed field of characteristic zero. Suppose that T is a
toral subalgebra of L and let x ∈ T . Then adLx is semisimple by definition.
Since adLx(T ) ⊆ T the restriction adLx|T = adT x is semisimple. There T
consists of ad-semisimple elements and hence T is abelian.

Let V be a finite-dimensional vector space over the field F and suppose
that S is a non-empty subset of endomorphisms of V . Let Φ be the set of
all functions λ : S −→ F and set

Vλ = {v ∈ V |S(v) = λ(S)v for all S ∈ S}.

Observe that Vλ = ∩S∈SKer (S − λ(S)I) and is therefore a subspace of V .
We leave the reader with the important exercise of showing that

∑

λ∈Φ
Vλ = ⊕

λ∈ΦVλ.

Lemma 2.5.4 Let V be a finite-dimensional vector space over the field F
and suppose that S is a non-empty family of commuting semisimple endo-
morphisms of V . Then:

(a) V has a basis which consists of eigenvectors for all S ∈ S, or equiva-
lently V = ⊕

λ∈ΦVλ.

(b) The linear span of S is a family of commuting semisimple endomor-
phisms of V .

Proof: We first show part (a). Suppose all S ∈ S have one eigenvalue.
Then S ∈ S has the form S = αI for some α ∈ F . Thus any basis for V will
do.
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We may assume that some S ∈ S has at least two eigenvalues. Let
ρ1, . . . , ρr be the distinct eigenvalues of S. Then V = V1⊕ · · ·⊕Vr, where
Vı = Ker(S − ρıI) is the subspace of eigenvectors for S belonging to ρı. Let
S ′ ∈ S. Since S ′ commutes with S by assumption, it follows that each of the
subspaces Vı of V is invariant under S ′. For each 1 ≤ ı ≤ r the hypothesis
of the lemma applies to the set of restrictions Sı = {T |Vı |T ∈ S}. As
Dim Vı < Dim V for all 1 ≤ ı ≤ r, part a) follows by induction on Dim V .

By part (a) there is a basis {v1, . . . , vn} for V such that S(vı) ∈ Fvı for
all S ∈ S and 1 ≤ ı ≤ n. The set of all such linear endomorphisms of V
which satisfy this property forms a subspace W of End(V ) which contains S
and any T, T ′ ∈ W commute. Thus part (b) follows. ¤

Now suppose that H is a toral subalgebra of L, not necessarily maximal.
Then H is abelian. By part (a) of Lemma 2.5.1 the set S = {ad h |h ∈ H}
is a family of commuting diagonalizable operators on L. Thus

L =
⊕

α:S−→F

Lα, (2.24)

where

Lα = {x ∈ L | ad h(x) = α(ad h)x ∀h ∈ H}
= {x ∈ L | [h x] = ((α ◦ φ)(h))x ∀h ∈ H}.

Observe that the restriction (α ◦ φ)|H : H −→ F is linear. By slight abuse
of notation we replace (α ◦ φ)|H by α and thus have

L =
⊕
α∈H∗

Lα, (2.25)

where
Lα = {x ∈ L | [h x] = α(h)x ∀h ∈ H}.

Observe that L0 = CL(H). Since H is abelian H ⊆ CL(H). Since L is
finite-dimensional there are only finitely many Lα’s such that Lα 6= (0). Let

Φ = {α ∈ H∗ |α 6= 0 and Lα 6= (0)}.

Then
L = CL(H)⊕

⊕

α∈Φ
Lα. (2.26)
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When H is a maximal toral subalgebra the elements of Φ are called roots of
L relative to H, or more informally roots.

We set the stage for the proof of parts (b) and (c) of the Proposition
below. Let 0 6= β ∈ H∗ and suppose that T is a linear endomorphism of L
such that T (Lα) ⊆ Lβ+α for all α ∈ H∗. Fix α ∈ H∗. Then T n(Lα) ⊆ Lnβ+α

for all n ≥ 0. Since β 6= 0 the terms of the sequence α, β + α, 2β + α, . . . are
distinct. Since L is finite-dimensional, we see from (2.25) that Lnαβ+α = (0)
for some nα ≥ 0. Thus Tm(Lα) = (0) for all m ≥ nα.

Let Φ = {α1, . . . , αr} and n be the maximum of n0, nα1 , . . . , nαr . Then
T n(Lα) = (0) for all α ∈ H∗. Therefore T n = 0; in particular T is nilpotent.

Proposition 2.5.5 Let α, β ∈ H∗. Then:

(a) [Lα Lβ] ⊆ Lα+β.

(b) Suppose β 6= 0 and x ∈ Lβ. Then ad x is nilpotent.

(c) κ(Lα, Lβ) = (0) unless α + β = 0. Furthermore κ(Lα, L−α) = (0)
implies Lα = (0).

Proof: Let H ∈ h. Since ad h is a derivation of L, for x ∈ Lα and y ∈ Lβ

the calculation

[h [x y]] = [[h x] y]]+[x [h y]] = [α(h)x y]+[xβ(h)y] = (α(h)+β(h))[x y] = (α+β)(h)[x y]

shows that [x y] ∈ Lα+β. We have shown part (a).
Assume the hypothesis of part (b) and set T = ad x. Then T (Lα) =

[xLα] ⊆ Lβ+α by part (a). Thus T is nilpotent.
Let x ∈ Lα, y ∈ Lβ and T = ad x ◦ ad y. Then T (Lγ) = [x [y Lγ]] ⊆

[xLβ+γ] ⊆ L(α+β)+γ for all γ ∈ H∗. If α+β 6= 0 then T is nilpotent and thus
κ(x, y) = Tr(T ) = 0.

We have shown that κ(Lα, Lβ) = (0) unless β = −α. If κ(Lα, L−α) = (0)
then κ(Lα, Lβ) = (0) for all β ∈ H∗ which means κ(Lα, L) = (0) by (2.25).
In this case Lα = (0) as κ is non-singular. ¤

Corollary 2.5.6 Let C = CL(H). Then:

(a) The restriction κ|C×C is non-degenerate.

(b) Let x ∈ C. Then xs, xn ∈ C.
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Suppose that H is a maximal toral subalgebra of L. Then:

(c) All semisimple elements of C belong to H.

(d) Z(C) = H.

Proof: To show part (a) we let x ∈ C and suppose that (0) = κ(x,C) =
κ(x, L0). Let β ∈ Φ. Since 0 + β 6= 0, by part (c) of Proposition 2.5.5
we conclude κ(x, Lβ) = (0). Therefore κ(x, L) = (0) by (2.26). Since κ is
non-singular x = 0. Part (b) follows by part (b) of Lemma 2.5.1.

Part (c). Let x ∈ C be semisimple. Now [H + Fx H + Fx] ⊆ [H C] +
[C H] + [Fx Fx] = (0) means that H + Fx is an abelian subalgebra of L.
Note that ad h, ad x commute for all h ∈ H by part (a) of Lemma 2.5.1.
Thus for all α ∈ F the operator ad (h+αx) = ad h+αad x is diagonalizable;
see part (b) of Lemma 2.5.4. Therefore H + Fx is toral. Since H ⊆ H + Fx
and the former is a maximal toral subalgebra of L, H = H+Fx which means
x ∈ H.

Part (d). Since H ⊆ C necessarily H ⊆ Z(C) by definition of C. Con-
versely, let x ∈ Z(C). By part (b) xs, xn ∈ C and thus xs, xn ∈ Z(C) by part
(b) of Lemma 2.5.1 again. Since [C xn] = (0), κ(C, xn) = (0) by part (c) of
Lemma 2.5.1. Therefore xn = 0 by part (a). Thus x = xs ∈ H by part (c).
¤

2.5.2 The Centralizer of H

Theorem 2.5.7 Suppose H is a maximal toral subalgebra of L. Then H =
CL(H).

Proof: In light of part (d) of Corollary 2.5.6 we need only show that C is
abelian.

First we note that C is nilpotent. Let x ∈ C. Then adC x = adC xs +
adC xn = ad xn|C since [xs C] = (0) by parts (b) and (c) of Corollary 2.5.6.
Thus adC x is nilpotent for all x ∈ C which means C is nilpotent by Engel’s
Theorem.

Next we note that Z(C)∩[C C] = (0), which is equivalent to κ(C, Z(C)∩[C C]) =
(0) by part (a) of Corollary 2.5.6. Using part (c) of Lemma 2.5.1 and part
(c) of Corollary 2.5.6 we compute

κ(C, Z(C)∩[C C]) ⊆ κ(H, Z(C)∩[C C]) ⊆ κ(H, [C C]) = κ([H C], C) = κ((0), C) = (0).
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Since Z(C)∩[C C] = (0) it follows that [C C] = (0) by 3.3 Lemma of
Humphreys. ¤

2.5.3 Orthogonality Properties

Let H be a maximal toral subalgebra of L. Then CL(H) = H; in particular
the restriction κ|H×H is non-degenerate. Thus κ` : H −→ H∗,given by
h 7→ κ`(h), where κ`(h) : H −→ F is defined by

κ`(h)(x) = κ(h, x)

for all x ∈ H, is injective. Since Dim H = Dim H∗ it follows that κ` is
bijective. Thus for α ∈ H∗ there is a unique tα ∈ H such that κ`(tα) = α.
Observe that tα is determined by

α(x) = κ(tα, x)

for all x ∈ H.
We will use the following lemma in the proof of the next proposition.

Lemma 2.5.8 Let X,Y, T be endomorphisms of a finite-dimensional vector
space V over F which satisfy T = [X Y ] and [T X] = 0 = [T Y ]. Then T is
nilpotent.

Proof: We may assume V 6= (0). Let λ ∈ F be an eigenvalue for T and
U = {v ∈ V |T (v) = λv}. Since X and Y commute with T it follows that
X(U) ⊆ U and Y (U) ⊆ U . From

λIdU = T |U = [X Y ]|U = [X|U Y |U ]

we calculate λDim U = Tr(T |U) = Tr([X|U Y |U ]) = 0. Since Dim U > 0 and
the characteristic of F is zero, λ = 0. Therefore T is nilpotent. ¤

Proposition 2.5.9 Let H be a maximal toral subalgebra of L. Then:

(a) Φ spans H∗. Thus |Φ| ≥ Dim H and the tα’s span H.

Let α ∈ Φ. Then:

(b) −α ∈ Φ.

(c) If x ∈ Lα and y ∈ L−α then [x y] = κ(x, y)tα.
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(d) [Lα L−α] = Ftα. Thus L is generated as a Lie algebra by the root spaces
Lα.

(e) α(tα) = κ(tα, tα) 6= 0.

(f) There are xα ∈ Lα and yα ∈ L−α such that the span of xα, yα, and
hα = [xα yα] is a Lie-subalgebra Sα ' sl(2, F ); indeed [hα xα] = 2xα

and [hα yα] = −2yα.

(g) All hα’s arising in part (f) are the same; hα =
2tα

κ(tα, tα)
=

2tα
α(tα)

. Fur-

thermore h−α = −hα.

Proof: Let V be the span of Φ ⊆ H∗. Suppose that f ∈ H∗ ∗ vanishes
on V . Since H is finite-dimensional, the linear map H −→ H∗ ∗, given by
h −→ ĥ, where ĥ(α) = α(h) for all α ∈ H∗, is an isomorphism. Thus f = ĥ

for some h ∈ H. This means 0 = f(α) = ĥ(α) = α(h), hence [hLα] = (0),
for all α ∈ Φ. Since [hL0] = [hH] = (0) it follows that [h L] = (0) by (2.25).
We have shown h ∈ Z(L) = (0) which means that the only function f ∈ H∗ ∗

which vanishes on V is f = 0. Consequently V = H∗ which establishes part
(a).

Part (c) of Proposition 2.5.5 implies κ(Lα, L−α) 6= (0); in particular
L−α 6= (0) which establishes part (b). Suppose x ∈ Lα and y ∈ L−α. Then
[x y] ∈ L0 = H. For all h ∈ H the calculation

κ`(κ(x, y)tα)(h) = κ(x, y)α(h) = κ([hx], y) = κ(h, [x y]) = κ([x y], h) = κ`([x y])(h)

shows that κ`(κ(x, y)tα) = κ`([x y]tα). Since κ` is injective κ(x, y)tα = [x y].
We have shown part (c). In light of (2.25) part (d) follows from part (c) since
κ(Lα, L−α) 6= (0) and the tα’s span H.

There are x ∈ Lα and y ∈ L−α such that [x y] = tα by part (d). Suppose
α(tα) = 0. Since [tα x] = α(tα)x = 0 and [tα y] = (−α)(tα)y = 0, Lemma
2.5.8 applied to T = ad tα, X = ad x, and Y = ad y shows that ad tα is
nilpotent. Since this operator is also diagonalizable, ad tα = 0 and therefore
tα = 0, a contradiction. Thus α(tα) 6= 0 after all. We have shown part (e).

Let hα =
2tα

α(tα)
. By part (d) there are xα ∈ Lα and yα ∈ L−α such

that [xα yα] = hα. Since α(hα) = 2, [hα xα] = α(hα)x = 2xα and [hα yα] =
(−α)(hα)y = −2yα. Since L−α + L0 + Lα is direct and yα, hα, xα are not
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zero, the span Sα of these vectors is 3-dimensional. We have established part
(f).

Part (g). hα = atα for some a ∈ F by part (c). From α(hα)xα = [hα xα] =
2xα we deduce aα(tα) = α(hα) = 2. Since κ`(−tα) = −κ`(tα) = −α it follows
that −tα = t−α. ¤

2.5.4 Integrality Properties

We continue with the notation of the preceding section and will use the
results of the two preceding sections without particular reference.

Proposition 2.5.10 Let H be a maximal toral subalgebra of L and Φ the
corresponding set of roots and let α, β ∈ Φ. Then:

(a) Dim Lα = 1. (In particular for any non-zero x ∈ Lα there is a unique
y ∈ L−α such that [x y] = hα.)

(b) Let c ∈ F . Then cα ∈ Φ if and only if c = ±1.

(c) β(hα) ∈ Z and β − β(hα)α ∈ Φ.

(d) α + β ∈ Φ then [Lα Lβ] = Lα+β.

(e) Suppose β 6= ±α and let r, q ≥ 0 be the largest non-negative integers
such that β− rα, β + qα ∈ Φ. Then β + iα ∈ Φ for all −r ≤ i ≤ q and
β(hα) = r − q.

Proof: We first show parts (a) and (b). Note that the parenthetical part
of part (a) follows from the preceding sentence and part (f) of Proposition
2.5.9.

Regard L as a left Sα-module under the adjoint action. For a left Sα-
submodule V of L and λ ∈ F recall that

Vλ = {v ∈ V | [hα v] = λv}.

Let α ∈ Φ and set M =
⊕

c∈F Lcα. Note that M is a subalgebra of L
since [Lcα Ldα] ⊆ L(c+d)α for all c, d ∈ F . Since Sα = Fyα + Fhα + Fxα ⊆
L−α + L0 + Lα it follows that Sα is a subalgebra of M . Therefore M is a left
Sα-module under the adjoint action.
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Note that L0 = H = Ker α⊕Fhα. Observe that Sα ⊆ M ′ = Fyα + L0 +
Fxα = Ker α⊕Sα and the latter is a subalgebra of L as well. Thus M ′ is a Sα-
submodule. That M ′ is a subalgebra of M follows from [hH] = (0), [hxα] =
α(h)xα = 0, and [h yα] = −α(h)yα = 0 for h ∈ Ker α. These calculations

show that as a direct sum of simple Sα-modules M ′ =
(⊕n

i=1
Fhi

)
⊕Sα,

where {h1, . . . , hn} is a basis for Ker α.
Recall that α(hα) = 2. For x ∈ Lcα the calculation [hα x] = cα(hα)x =

2cx shows that Lα ⊆ L2c. Since
∑

c∈F L2c is direct,

Lcα = M2c for all c ∈ F and thus M =
⊕

c∈F M2c.

Since Sα is semisimple M is the direct sum of simple Sα-modules S. Now S
is the direct sum of one-dimensional weight spaces. Thus S =

⊕
c∈F S∩M2c.

Recall that the weights of S are −m+2`, where 0 ≤ ` ≤ m, for some m ≥ 0.
Suppose that cα ∈ Φ. Then some simple Sα-submodule S of M intersects

Lcα = M2c. Thus 2c ∈ Z.
Suppose that 2c is even. Then S intersects L0 = H which means S ⊆ M ′.

The weights of M ′ are −2, 0, 2. Therefore c = ±1. In particular 2α 6∈ Φ.
Suppose that 2c is odd. Then S intersects M1 = L(1/2)α. Since twice

(1/2)α is a root, this is not possible.
We have shown M = M ′ which means that Dim Lα = 1 and cα ∈ Φ if

and only if c = ±1. Parts (a) and (b) are established.
Now let β ∈ Φ where β 6= ±α. Observe that N =

⊕
i∈Z Lβ+iα is a left

Sα-submodule of L,

Nβ(hα)+2i = Lβ+iα, and thus N =
⊕

i∈Z Nβ(hα)+2i.

Suppose that β + iα = 0. Then β = −iα is a root; therefore i = ±1, a
contradiction. Thus β + iα 6= 0 for all i ∈ Z.

Since there are no integers i, i′ which satisfy β(hα) + 2i = 0 and β(hα) +
2i′ = 1, there can be no n, n′ ∈ N with weights 0, 1 respectively. Since root
spaces are one-dimensional and N is the direct sum of simple Sα-modules, N
is simple. For some m ≥ 0 the weights of N are −m + 2i, where 0 ≤ i ≤ m.
Write

−m = β(hα) + 2(−r) and m = β(hα) + 2q.

Then r, q ≥ 0 since β(hα) is a weight as β ∈ Φ. Therefore

N =
m⊕

i=0

M−m+2i =
m⊕

i=0

Mβ(hα)+2(−r+i) =

q⊕
i=−r

Mβ(hα)+2i =

q⊕
i=−r

Lβ+iα;
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thus β + iα ∈ Φ if and only if −r ≤ i ≤ q. Since −m = −2r + β(hα) and
m = 2q + β(hα) it follows that β(hα) = r − q. Since −r ≤ −r + q ≤ q,
β− β(hα)α = β + (−r + q)α ∈ Φ. As α(hα) = 2, and α−α(hα)α = −α ∈ Φ
by part (b), we have established parts (c)–(f). ¤

2.5.5 Rationality properties. Summary

We continue with the notation of the previous two sections. First the very
important:

κ(h, k) =
∑

α∈Φ
α(h)α(k) (2.27)

for all h, k ∈ H.

Proof: Let h, k ∈ H. Then for α ∈ H∗ and x ∈ Lα we have

(ad h◦ad k)(x) = [h [k x]] = α(h)α(k)x.

Therefore Lα is invariant under ad h◦ad k and (ad h◦ad k)|Lα = α(h)α(k)IdLα .

As L = L0 ⊕
(⊕

α∈Φ
Lα

)
we have

κ(h, k) = Tr(ad h◦ad k)

= Tr((ad h◦ad k)|L0) +
∑

α∈Φ
Tr((ad h◦ad k)|Lα)

= 0(h)0(k)Dim H +
∑

α∈Φ
α(h)α(k)Dim Lα

=
∑

α∈Φ
α(h)α(k).

¤
Let α, β ∈ H∗. Since κ symmetric

α(tβ) = κ(tα, tβ) = β(tα). (2.28)

Now suppose that α, β ∈ Φ. Then

2β(tα)

α(tα)
= β(hα) ∈ Z (2.29)
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by part (c) of Proposition 2.5.10. Using (2.27) and (2.28) we deduce α(tα) =∑
γ∈Φ γ(tα)2 from which

4

α(tα)
=

∑

γ∈Φ

(
2γ(tα)

α(tα)

)2

∈ Z

follows. Thus α(tα) ∈ Q which means

κ(tα, tβ) = κ(tβ, tα) = β(tα) ∈ Q (2.30)

by (2.29).
Let {tα1 , . . . , tαn} be a basis for H over F and A = (ai j) ∈ M(n, F ) be

the matrix of the bilinear form κ|H×H . By definition ai j = κ(tαi
, tαj

) for all
1 ≤ i, j ≤ n. Since κ is non-degenerate and symmetric A is invertible and
symmetric. Now A ∈ M(n,Q) by (2.30). Since Det A 6= 0 we conclude that
A−1 ∈ M(n,Q). Note that

κ(
n∑

i=1

citαi
,

n∑
j=1

djtαj
) =




c1
...
cn




t

A




d1
...
dn


 (2.31)

for all c1, . . . , cn, d1, . . . , dn ∈ F .
Let α ∈ Φ. Then tα =

∑n
j=1 cjtαj

for some c1, . . . , cn ∈ F . For 1 ≤ i ≤ n
set di = κ(tαi

, tα). Applying κ`(tαi
) to both sides of the first equation we

obtain di =
∑n

j=1 cjai j; thus

A




c1
...
cn


 =




d1
...
dn


 ∈ Qn

which means 


c1
...
cn


 = A−1




d1
...
dn


 ∈ Qn.

Therefore c1, . . . , cn ∈ Q.
Let EQ be the Q-span of Φ. We have shown that {tα1 , . . . , tαn} is a basis

for EQ as a vector space over Q. Now let E be the vector space over the
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field of real numbers R with basis of symbols {tα1 , . . . , tαn}. We regard EQ
as a Q-subspace of E by tα 7→ tα.

Let ( , ) be the R-bilinear form on E whose matrix is A. Then ( , )
is symmetric and non-degenerate since A is symmetric and non-degenerate.
Observe that ( , )|EQ×EQ

= κ|EQ×EQ
.

At this point we identify tα and α. Thus (α, β) = κ(tα, tβ) = α(tβ) =
β(tα). Note that

(u,v) =
∑

γ∈Φ
(γ,u)(γ,v) (2.32)

for all u,v ∈ E by (2.27) as both sides of this equation are R-bilinear forms
which agree on pairs u = α and v = β which come from a spanning set. As
a consequence of the last equation ( , ) is positive definite; that is (u,u) ≥ 0
for all u ∈ E, with equality if and only if u = 0.

Theorem 2.5.11 Let E, Φ, and ( , ) be the symmetric positive definite
bilinear form above. Then:

(a) Φ spans E and 0 6∈ Φ.

Suppose α, β ∈ Φ.

(b) Let c ∈ R. Then cα ∈ Φ f and only if c = ±1.

(c) β − 2(β, α)

(α, α)
α ∈ Φ.

(d)
2(β, α)

(α, α)
∈ Z.

¤

We may identify E with Rn and the inner product ( , ) with the standard
inner product on Rn. Thus finding the Φ’s of the theorem is a problem in
the Euclidean space Rn.
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Chapter 3

Root Systems

Below are comments relevant to various sections in the text. They are meant
to clarify, amplify, or generalize material in the text. Exercises are optional.

3.1 Axiomatics

3.1.1 Reflections in a euclidean space

We begin with some general comments about euclidean spaces, projections,
and reflections. See Exercises 3.1.2–3.1.7 for details.

Suppose that V is any vector space over R and that ( , ) : V×V −→ R
is a symmetric positive definite bilinear form. Let u ∈ V \0. Then

P = u⊥ = {v ∈ V | (u, v) = 0}
is a codimension one subspace, or a hyperspace, of V . When V is finite-
dimensional all codimension one subspaces of V have this form.

Define a linear function πu : V −→ V by

πu(v) = v − (u, v)

(u, u)
u

for all v ∈ V . Then πu(v) = v for all v ∈ P as (u, v) = 0 in this case. Observe
that (πu(v), u) = 0 for all v ∈ V . Therefore Im π ⊆ P . The map πu regarded
as a map from V to P is a linear projection from V onto P .

The projection πu is singled out from the others by the fact that πu(v) is
the vector in U closest to v, meaning that

||v − πu(v)|| ≤ ||v − u′||

77
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for all u′ ∈ U . The reflection σu of V through P is defined by

σu = 2πu − IdV ;

thus

σu(v) = v − 2(v, u)

(u, u)
u

for all v ∈ V . Note that σu(u) = −u and σu(v) = v for all v ∈ P . In
particular

σ2
u = IdV ,

that is σu is an involution of V .
The following diagram indicates the relationship between πu and σu.
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u-axis

p-axis

v

v − πu(v)

πu(v)− v

πu(v)

σu(v)

v−πu(v) =
(v, u)

(u, u)
u, πu(v) = v− (v, u)

(u, u)
u, σu(v) = πu(v)+(πu(v)−v) = 2πu(v)−v

The u-axis is the span of u and the “positive” part of this axis is the
set {au | a > 0}. The p-axis is the span of πu(v), which is usually one-
dimensional. Observe that the p-axis lies in P and, of course, all of P
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is perpendicular to u. Also observe that σu is an isometry of V ; that is
||σu(v)|| = ||v|| for all v ∈ V .

Comments concerning the lemma of the section. Suppose that F is any
field and V is a vector space over F . Then GL(V ) denotes the group of linear
automorphisms of V under function composition. For a non-empty subset Φ
of V let

GΦ = {g ∈ GL(V ) | g(Φ) = Φ}.
Then GΦ is a subgroup of GL(V ) and the restriction map g 7→ g|Φ deter-
mines a group homomorphism π : G −→ Sym(Φ) from G to the group of
permutations on Φ. If Φ spans V then π is injective since Ker π = (IdV ) in
this case. Thus if Φ spans V and V is finite-dimensional then GΦ is a finite
group.

A codimension one subspace of V is called a hyperplane of V . From this
point on we will assume that F is of characteristic zero.

Suppose that P is a hyperplane of V , σ ∈ GL(V ) fixes P pointwise, and
σ(α) = −α for some non-zero α ∈ V . Then α 6∈ P since σ(α) 6= α. Thus
V = P⊕Fα. Since σ(p) = p and σ2(α) = α it follows that σ2 = IdV ; that
is σ is an involution of V . In particular σ−1 = σ. The lemma of 9.1 is a
consequence of part (b) of the following.

Lemma 3.1.1 Suppose that σ, σ′ ∈ GL(V ) each fix a hyperplane of V point-
wise and that σ(α) = −α = σ′(α) for some non-zero α ∈ V .

(a) σ = σ′ or τ = σ′σ has infinite order.

(b) Suppose that V is finite-dimensional and Φ is a finite spanning set for
V . If σ(Φ) = Φ = σ′(Φ) then σ = σ′.

Proof: Part (b) follows from part (a) since σ, σ′, hence τ = σ′σ, belong to
the finite group GΦ in this case.

Part (a). Let P, P ′ be hyperplanes fixed pointwise by σ, σ′ respectively.
Then P⊕Fα = V = P ′⊕Fα.

Consider τ = σ′σ. Then τ(α) = α. Let p ∈ P . Then p = p′+aα for some
p′ ∈ P ′ and a ∈ F . Therefore

τ(p) = σ′(σ(p)) = σ′(p) = σ′(p′ + aα) = p′ − aα = p− 2aα

which shows that (τ − IdV )(p) = −2aα. Since τ(α) = α = IdV (α) the
operator (τ − IdV )2 vanishes on p and α. Therefore (τ − IdV )2 = 0, or
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equivalently τ 2 = 2τ − IdV . This equation implies τn = nτ − (n− 1)IdV for
all n ≥ 1.

Suppose that τ = σ′σ has finite order. Then τn = IdV for some n ≥ 1.
Therefore IdV = τn = nτ− (n−1)IdV or nτ = nIdV . Since the characteristic
of F is zero σ′σ = τ = IdV from which σ′ = σ−1 = σ follows. ¤

Exercise 3.1.2 Let V be a finite-dimensional vector space over F .

(a) Show that the hyperspaces of V are the Ker v∗’s where v∗ ∈ V ∗\0.

(b) Now suppose that F = R and β = ( , ) : V×V −→ R is a symmetric
positive definite bilinear form. Show that the hyperspaces of V are the u⊥’s,
where u ∈ V \0. [Hint: Recall that β` : V −→ V ∗ given by β`(u, v) =
β(u, v) = (u, v) for all u, v ∈ V is a linear isomorphism.]

In the next exercise we discuss closest vectors and projections.

Definition 3.1.3 Let V be a vector space over R and suppose that ( , ) :
V×V −→ R is a symmetric positive definite bilinear form. Let U be a
subspace of V and v ∈ V . Then u ∈ U is a closest vector in U to v if
||v − u|| ≤ ||v − u′|| for all u′ ∈ U .

Exercise 3.1.4 Let V be a vector space over R and let ( , ) : V×V −→ R be
a symmetric positive definite bilinear form. Suppose that U is a subspace of V ,
v ∈ V , and u ∈ U is a closest vector in U to v.

(a) Show that (v − u, u′) = 0 for all u′ ∈ U . [Hint: Let t ∈ R. Note that

||v − u||2 ≤ ||v − (u + tu′)||2 = ||v − u||2 − 2t(v − u, tu′) + t2||u′||2

which implies that 0 ≤ −2t(v − u, u′) + t2||u′||2 for all t ∈ R. Consider the
cases t > 0 and t < 0 and take limits as t 7→ 0.]

(b) Suppose that u′ ∈ U is also a closest vector in U to v. Show that u = u′.
[Hint: Compute ||v − u′||2 = ||(v − u) + (u− u′)||2. For x, y ∈ V recall that
||x + y||2 = ||x||2 + ||y||2 if and only if (x, y) = 0.]

By virtue of part (b) for v′ ∈ V there is at most one closest vector in U to v′.

(c) Suppose that v′ ∈ V and there is a closest vector u′ ∈ U to v′. For a ∈ R
show that au + u′ is a closest vector in U to av + v′.

Exercise 3.1.5 Let V be a vector space over R and let ( , ) : V×V −→ R be a
symmetric positive definite bilinear form.
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(a) Suppose that U is a subspace of V and every vector in V has a closest
vector in U . Define π : V −→ U by π(v) = u, where u ∈ U is the vector in
U closest to v. Show that π is linear and π(u) = u for all u ∈ U . (Thus π is
a projection from V onto U .)

(b) Let u ∈ V \0 and U = u⊥. For v ∈ V show that v − (v, u)
(u, u)

u is a vector in U

closest to v.

Suppose that U is finite-dimensional.

(c) Show that every v ∈ V has a closest vector in U , building an argument
on the following idea: if v ∈ V \U then U is a hyperplane of the subspace
V = U + Fv. [Hint: See part b).]

(d) Show that every v ∈ V has a closest vector in U , building an argument on
the following idea: Let v ∈ V \U and let {u1, . . . , ur} be an orthonormal
basis for U (use Gram–Schmidt). Then v − (v, u1)u1 − · · · − (v, ur)ur is
perpendicular to all u ∈ U .

Definition 3.1.6 We will provisionally call the projection of part (a) the
geometric projection of V onto U .

Exercise 3.1.7 Let V be a vector space over R and let ( , ) : V×V −→ R be a
symmetric positive definite bilinear form and let U be a subspace of V

(a) Suppose that there is a geometric projection π : V −→ U . Show that
V = U⊕U⊥ and Kerπ = U⊥.

Suppose that V = U⊕U⊥.

(b) Show that π : V −→ U defined by π(u⊕u′) = u, whereu ∈ U and u′ ∈ U⊥,
is a geometric projection of V onto U .

(c) Let σ : V −→ V be defined by σ = 2π − I. Show that σ(u⊕u′) = u− u′ for
all u ∈ U and u′ ∈ U⊥.

(d) Show that σ2 = I and that σ is an isometry.

(e) Suppose that v ∈ U\0 and set V = U + Fv. Show that σ(V) ⊆ V and that
σ|V is the reflection through the hyperplane U of V.

Definition 3.1.8 The map σ of part (c) is called the reflection of V through
U .
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3.1.2 Root systems

For the reader’s convenience we recall the axioms of a root system Φ for E.

(R1) Φ ⊂ E\0 and is a finite spanning set of E.

(R2) Let a ∈ F and α ∈ Φ. Then aα ∈ Φ if and only if a = ±1.

(R3) σα(Φ) ⊆ Φ for all α ∈ Φ.

(R4) <β, α> =
2(β, α)

(α, α)
∈ Z for all α, β ∈ Φ.

The structure of a root system is reflected in the structure of rank 2 root
systems, which are analyzed in detail in 9.3, since:

Lemma 3.1.9 Let Φ ⊆ E be a root system for E, let α1, . . . , αr ∈ Φ, let E ′

be the span of these αi’s. Then Φ′ = Φ∩E ′ is a root system for E ′.

Proof: Let α ∈ E ′\0. Then the reflection through the hyperplane Pα in E ′

is σ′α = σα|E′ . Thus for α ∈ Φ′ it follows that σ′α(Φ′) ⊆ Φ∩E ′ = Φ′. ¤
Let Φ be a root system for E. We have noted in the preceding paragraph

that

G = {σ ∈ GL(E) |σ(Φ) = Φ}
is a finite subgroup of GL(E). The Weyl group W of Φ is the subgroup of
G generated by the isometries σα where α ∈ Φ. Thus W is a finite subgroup
of G and is also a subgroup of the group of isometries of E.

Proposition 3.1.10 Let E, E ′ be Euclidean spaces with root systems Φ, Φ′

respectively.

(a) Suppose that τ : E −→ E ′ is a linear isomorphism such that τ(Φ) = Φ′.
Then τσατ−1 = στ(α) for all α ∈ Φ and <τ(β), τ(α)> = <β, α> for all
β, α ∈ Φ.

(b) Suppose that τ ∈ GΦ. Then τσατ−1 = στ(α) for all α ∈ Φ and
<τ(β), τ(α)> = <β, α> for all β, α ∈ Φ.

(c) The Weyl group W of Φ is a normal subgroup of GΦ.
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Proof: Part (c) follows from part (b) and part (b) follows from part (a)
with E = E ′ and Φ = Φ′.

Part (a). Let α ∈ Φ. Then σα fixes P = α⊥ pointwise and σα(α) = −α.
Therefore τσατ−1 fixes the hyperplane τ(P ) of E ′ pointwise and (τσατ−1)(τ(α)) =
−τ(α) = στ(α)(τ(α)). Since τ(Φ) = Φ′ and σα(Φ) = Φ it follows that
τσατ−1(Φ′) = Φ′. As στ(α)(Φ

′) = Φ′ as well, we conclude from part (b)
of Lemma 3.1.1 that τσατ−1 = στ(α).

Now let β ∈ Φ. Then τσατ−1(τ(β)) = τ(σα(β)) = τ(β) − <β, α>τ(α).
On the other hand στ(α)(τ(β)) = τ(β)−<τ(β), τ(α)>τ(α). Thus <β, α> =
<τ(β), τ(α)>. ¤

Let E, E ′ be Euclidean spaces with root systems Φ, Φ′ respectively. An
isomorphism of root systems Φ, Φ′ is an linear isomorphism τ : E −→ E ′

such that τ(Φ) = Φ′ and <τ(β), τ(α)> = <β, α> for all β, α ∈ Φ. By part
(a) of the preceding proposition an isomorphism of root systems Φ, Φ′ is a
linear isomorphism τ : E −→ E ′ such that τ(Φ) = Φ′.

Suppose that aα ∈ R for all α ∈ Φ and let Φ′′ = {aαα |α ∈ Φ}. It is easy
to see that Φ′′ is a root system if and only if

(r1) aα 6= 0;

(r2) aα = a−α;

(r3) aβ = aσα(β);

(r4)

(
aβ

aα

)
<β, α> ∈ Z

for all α, β ∈ Φ. Let c ∈ R be non-zero. Then Φ′′ is a root system with

aα = c for all α ∈ Φ. Φ′′ is also a root system with aα =
1

||α||2 =
1

(α, α)
for

all α ∈ Φ. For since σα is an isometry (r3) holds. The calculation
(

aβ

aα

)
<β, α> =

(
(α, α)

(β, β)

) (
2(β, α)

(α, α)

)
=

2(α, β)

(β, β)
= <α, β>

establishes (r4). Combining these constructions results in a root system

Φ∨ = {α∨ |α ∈ Φ},
called the dual root system, where α∨ =

α

(α, α)
for α ∈ Φ. Note

<β∨, α∨> = <α, β>
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for all α, β ∈ Φ.
Since σau = σu for all a ∈ R\0 and u ∈ E\0 it follows that

σα∨ = σα

for all α ∈ Φ. Therefore the Weyl group of Φ is the Weyl group of Φ∨.

3.1.3 Examples

Let Φ ⊆ E satisfy (R1)–(R3). For α ∈ Φ observe that

τα = −σα

is the reflection of E through the line Rα. See the figure below, which is
derived from the figure of the discussion of 9.2 above, and see Exercise 3.1.7.
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JĴ

666

u-axis

p-axis

v

σu(v)

−σu(v)

Note that (R1)–(R3) are satisfied with the τα’s replacing the σα’s. We will
use the τα’s to study root systems in R2. First some general observations.

Among all of the pairs α′, β′ ∈ Φ, where β′ 6= ±α′, choose one α, β
with smallest angle θ between them. Now 0 ≤ θ ≤ π by definition. (If
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−α ∈ Φ then 0 ≤ θ ≤ π/2.) We define a sequence in E inductively by
setting α0 = α, α1 = β, and for i ≥ 2 we let αi+1 be the reflection of αi−1

through αi. Thus
αi+1 = ταi

(αi−1)

for all i ≥ 2. By induction

α0, α1, α2, · · · ∈ Φ.

Now the angle between αi−1 and αi is the same as the angle between αi and
αi+1. Therefore by induction

the angle between αi and αi+1 is θ

for all i ≥ 0. Since reflections are isometries if follows that

α0, α2, α4, . . . have the same length

and
α1, α3, α5, . . . have the same length.

The figure below illustrates the construction of α0, α1, α2, . . . when E = R2.

-

6

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡µ

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡µ

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡µ

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡µ

³³³³³³³³³1

³³³³³³³³³1

³³³³³³³³³1

³³³³³³³³³1

£
£
£
£
£
£
£
£
££±

£
£
£
£
£
£
£
£
££±

£
£
£
£
£
£
£
£
££±

£
£
£
£
£
£
£
£
££±

y-axis

x-axis

@

@

@

αi+1

αi

αi−1



86 CHAPTER 3. ROOT SYSTEMS

Now suppose that E = R2. Since 0 ≤ θ ≤ π the root α lies between αn

and αn+1 for some n > 0. Let n be the least such integer. Then nθ ≤ 2π <
(n + 1)θ. Since the angle between αn and 2π is 0 ≤ 2π − nθ < θ it follows
that π − nθ = 0. Therefore

θ =
2π

n
.

If the rank of Φ is 2 then n > 2. Evidently

Φ = {α0, α1, . . . , αn−1}.
Suppose that −α ∈ Φ. We have noted that 0 ≤ θ ≤ π/2 in this case.

Thus −α lies between αm and αm+1 for some m > 0. Letting m be the
smallest such positive integer we argue as above that

θ =
π

m
.

In particular n = 2m.
The condition (R4) imposes restrictions on m, namely m = 2, 3, 4 or 6.

Our analysis at this point accounts for the diagram possibilities listed in
Section 9.2. The actual construction requires a bit more work. See Exercises
3.1.11–3.1.12 below. The final touches on the construction of the rank two
root systems are encouraged in Exercise 3.1.15.

Exercise 3.1.11 Let E be a finite-dimensional euclidean space and suppose that
Φ ⊂ E\0 is a finite set.

(a) Show that Φ satisfies (R1)–(R3) if and only if Φ satisfies (R1)–(R3) with
the reflections σα through the hyperplanes α⊥ replaced by the reflections τα

through the lines Fα.

(b) Let Φn = { v

||v|| | v ∈ Φ}. Show that Φ satisfies (R1) and (R3) if and only if

Φn does. (Note that Φn is merely the set of normalizations of Φ.)

Exercise 3.1.12 Suppose that E = R2 with the usual (positive definite) inner
product and let Φ be a rank two system of roots for E. We can assume that
(0, a) ∈ Φ for some a ∈ R\0.

(a) Show that Φn = {u1, . . . , u2m−1} for some m > 1, where

ui =




cos
(

π
m i

)

sin
(

π
m i

)




for all 0 ≤ i < 2m.
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For i ∈ Z we let ui be defined by as above, we let τi = τui be the reflection of
E through the line Fui, and we let σi = −τi be the reflection of E through the
hyperplane, or line in this case, u⊥i .

(b) Show that τi(uj) = u2i−j for all i, j ∈ Z. [Hint: Since the ui’s have length
1 observe that τi(v) = 2(v, ui)ui − v for all v ∈ E. The calculation of τi(uj)
only involves some basic trigonometric formulas.]

(c) Show that σi(uj) = um+2i−j for all i, j ∈ Z.

d) Show that Φ = {α0, . . . , α2m−1}, where

(1) if m is odd then α0 = au0, α1 = au1, . . . , α2m−1 = au2m−1 for some
a > 0, and

(2) if m is even then α0 = au0, α2 = au2, α4 = au4 and α1 = bu1, α3 =
bu3, α5 = bu5, . . . for some a, b > 0.

[Hint: First note that α0 = au0 and α1 = bu1 for some a, b ∈ R\0. Using
part (c) we see that Φ = {±aum+2i,±bum−1+2i | i ∈ Z}.]

e) Suppose (1) or (2) is satisfied. Show that Φ = {α0, . . . , α2m−1} satisfies
(R1)–(R3).

Exercise 3.1.13 Let Wm be the subgroup of isometries of E = R2 generated
by the reflections σ0, . . . , σ2m−1 of Exercise 3.1.12.

(a) Show that Wm is isomorphic to the subgroup Wm of Sym(Z2m) generated
by σ0, . . . , σ2m−1, where

σi(j) = m + 2i− j

for all 0 ≤ i < 2m and j ∈ Z2m.

(b) Show that Wn ' D2m. [Hint: Note that τ = σ1σ0 has order m.]

3.1.4 Pairs of roots

Let β, α ∈ Φ. Then

<β, α><α, β> =

(
2(β, α)

(α, α)

)(
2(α, β)

(β, β)

)
= 4

(
(α, β)

‖α|| ||β||
)2

= 4 cos2 θ, (3.1)
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where θ is the angle between α and β. By convention 0 ≤ θ ≤ π. Note that
cos2 θ = 1 if and only if β and α are scalar multiples of each other; that is
β = ±α. In this case <β, α> = ±2.

Suppose β 6= ±α. Then <β, α><α, β> ∈ {0, 1, 2, 3}. Now <β, α><α, β> =
0 if and only if (α, β) = 0 if and only if α and β are perpendicular.

Suppose further that α and β are not perpendicular. Then <β, α><α, β> ∈
{1, 2, 3}. Since <β, α> and <α, β> are integers, one of <β, α> or <α, β>
is ±1. Assume further that ||β|| ≥ ||α||. From

||β||2
||α||2 =

<β, α>

<α, β>

we conclude that <α, β> = ±1; therefore
||β||2
||α||2 = |<β, α>|. Since <β, α>,<α, β>

and (α, β) all have the same sign,

cos θ = <α, β>

(√
|<β, α>|

2

)
.

The values for the quantities described in the table below now fall into place
very quickly; again our assumptions are β 6= ±α and ||β|| ≥ ||α||.

<α, β> <β, α> cos θ θ ||β||2/||α||2
0 0 0 π/2 undetermined
1 1 1/2 π/3 1

−1 −1 −1/2 2π/3 1

1 2
√

2/2 π/4 2

−1 −2 −√2/2 3π/4 2

1 3
√

3/2 π/6 3

−1 −3 −√3/2 5π/6 3

Lemma 3.1.14 Suppose that β, α ∈ Φ and β 6= ±α.

(a) If (β, α) < 0 then β + α ∈ Φ.

(b) (β, α) > 0 then β − α ∈ Φ.

Proof: Part (b) follows from part (a) with the pair β and −α. To show
part (a). Since (β, α) = (α, β), we may assume without loss of generality



3.1. AXIOMATICS 89

that ||α|| ≥ ||β||. From the table <β, α> = −1 which means β + α =
β −<β, α>α = σα(β) ∈ Φ. ¤

Consider the “sequence”

. . . , β − 2α, β − α, β, β + α, β + α, . . . , (3.2)

where β 6= ±α. Since β is not a scalar multiple of α it follows that β + iα 6=
±α for all i ∈ Z. For i, i′ ∈ Z note that β + iα = β + i′α if and only if i = i′

since α 6= 0. We order the elements of the sequence by β + iα ¹ β + i′α if
and only if i ≤ i′. Since σα(β + iα) = β − (<β, α> + i)α the involution σα

induces an order reversing involution of the sequence.
Suppose that β + iα ¹ β + i′α. Then

[β + iα, β + i′α] = {β +jα | β + iα ¹ β +jα ¹ β + i′α} = {β +jα | i ≤ j ≤ i′}
is the segment with endpoints β + iα and β + i′α. Since σα induces an order
reversing involution of the sequence

σα([β + iα, β + i′α]) = [β − (<β, α> + i′)α, β − (<β, α> + i)α]. (3.3)

Suppose that β + `α 6∈ Φ. Assume β + kα, β + mα ∈ Φ, where k ≤ ` and
` ≤ m. Let k be the largest such integer and m be the smallest. Then k < `
and (β + kα) + α 6∈ Φ and ` < m and (β + mα)− α 6∈ Φ. Therefore

(β + kα, α) 6< 0 and (β + mα,α) 6> 0,

by Lemma 3.1.14, or equivalently

(β, α) + k(α, α) ≥ 0 and (β, α) + m(α, α) ≤ 0

from which (k −m)(α, α) ≥ 0, a contradiction. we have shown

β + iα ¹ β + i′α ∈ Φ implies [β + iα, β + i′α] ⊆ Φ. (3.4)

Now β + (−0)α = β + 0α = β ∈ Φ. Since Φ is finite there are largest
non-negative integers r, q such that β + (−r)α, β + qα ∈ Φ. In light of
(3.4) it follows that the set of all roots in the sequence (3.2) is the segment
[β + (−r)α, β + qα], called the α-string through β. Since σα is injective and
σα(Φ) ⊆ Φ,

[β + (−r)α, β + qα] = [β − (<β, α> + q)α, β − (<β, α> + (−r))α] (3.5)
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by (3.3). Therefore
<β, α> = r − q. (3.6)

Using the table we see that <β′, α′> ≤ 3 for all β′, α′ ∈ Φ. Since β′ =
−(β + (−r)α) and β′′ = β + qα are roots, the calculation

2(r + q) = <(r + q)α, α> = <β′ + β′′, α> = <β′, α> + <β′′, α> ≤ 6

shows that r + q ≤ 3. Therefore roots strings have length at most 4.

Exercise 3.1.15 Use the table on page 45 of the text together with Exercises
3.1.11–3.1.12 to construct the rank 2 root systems.

3.2 Bases and Weyl Chambers

3.2.1 Bases and Weyl chambers

The existence of a regular element is a consequence of the following lemma.
We first note that a vector space V of dimension at least 2 over an infinite
field has an infinite number of one-dimensional subspaces. Indeed let {v1, v2}
be a linearly independent subset of V . Then the v1 + av2’s, where a ∈ F ,
span different one-dimensional subspaces of V .

Lemma 3.2.1 Let V be a finite-dimensional vector space over and infinite
field F and suppose that V = V1

⋃ · · ·⋃Vr is the union of a finite number of
subspaces. Then Vi = V for some 1 ≤ i ≤ r.

Proof: We may as well assume that Dim V ≥ 2. Note there are an infi-
nite number of codimension one subspaces of V . For the codimension one
subspaces of V are the Ker f ’s, where f ∈ V ∗\0, and these kernels are in
one-one correspondence with the one-dimensional subspaces of V ∗. By our
assumption V ∗ is at least two-dimensional.

Let V be a codimension one subspace of V . Since V = (V⋂
V1)

⋃ · · ·⋃(V⋂
Vr)

it follows by induction on Dim V that V = V⋂
Vi, or equivalently V ⊆ Vi,

for some 1 ≤ i ≤ r. Thus some Vi contains two different codimension one
subspaces V ,V ′ from which V = V + V ′ ⊆ Vi follows. ¤

Corollary 3.2.2 Let V be a finite-dimensional vector space over F and let
U,U1, . . . , Ur be subspaces of V . Suppose that U ⊆ ⋃r

i=1Ui. Then U ⊆ Ui for
some 1 ≤ i ≤ r.
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Proof: By assumption U =
⋃r

i=1(U∩Ui) and therefore U = U∩Ui, or
equivalently, U ⊆ Ui, for some 1 ≤ i ≤ r by Lemma 3.2.1. ¤

Some comments on the proof of 10.1 Theorem’.

(1) Write Φ+(γ) = {β1, . . . , βr} where (γ, β1) ≤ · · · ≤ (γ, βr) and use induc-
tion on i.

(5) Let ∆ = {α1, . . . , αn} be any linear basis for E and suppose that a1, . . . , an ∈
F . Then there is a γ ∈ E such that (γ, αi) = ai for all 1 ≤ i ≤ n.

To see this observe that there is a linear functional f ∈ E∗ such that
f(αi) = ai for all 1 ≤ i ≤ n. Now β = ( , ) is a non-degenerate bilinear form.
Therefore β` : E −→ E∗ is a linear isomorphism. This means f = β`(γ) for
some γ ∈ E. Thus

ai = f(αi) = β`(γ)(αi) = β(γ, αi) = (γ, αi)

for all 1 ≤ i ≤ n.

There is quite a bit to say about the Weyl chambers. Let σ ∈ GL(E) be
an isometry. Then (σ(u), σ(v)) = (u, v) for all u, v ∈ E. Consequently

σ(u⊥) = σ(u)⊥

for all u ∈ E. This means that σ ∈ W permutes the set of codimension one
subspaces {Pα |α ∈ Φ}. Therefore

σ(
⋃

α∈Φ
Pα) =

⋃
α∈Φ

Pα

which means that
σ(X) = X

where
X = E\(

⋃
α∈Φ

Pα).

By definition the vectors in X are regular. The vectors in
⋃

α∈ΦPα are
singular.

The distance function

d(u, v) = ||u− v|| =
√

(u− v, u− v)

for all u, v ∈ E gives E the structure of a metric space. We will assume some
of the elementary facts about the resulting topology without proof.
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All linear endomorphisms of E are continuous. In particular all linear
automorphisms of E are homeomorphisms of E. Consequently all σ ∈ W
permute the connected components of X, the Weyl chambers of E. For
γ ∈ X let C(γ) be the Weyl chamber (connected component of X) containing
γ. Then

σ(C(γ)) = C(σ(γ)) (3.7)

for all σ ∈ W .
We will next determine the connected components of X. Let α ∈ Φ.

Since β`(α) : E −→ R is continuous,

P+
α = {γ ∈ E | (α, γ) > 0} = β`(α)−1((0,∞))

and
P−

α = {γ ∈ E | (α, γ) < 0} = β`(α)−1((−∞, 0))

are open subsets of E hence of X. Let Φ = {α1, . . . , αr} be a listing of the
elements of Φ. Since E = P+

α ∪Pα∪P−
α is a partition of E it follows that

X = E\(
⋃

α∈Φ
Pα)

=
⋂

α∈Φ
E\Pα

=
⋂

α∈Φ
(P+

α

⋃
P−

α )

=
⋃

(n1,...,nr)

ni∈{+,−}
(P n1

α1
∩ · · · ∩P nr

αr
)

is the union of disjoint open subsets of E. Once we show that the P n1
α1
∩ · · · ∩P nr

αr
’s

are connected it will follows that the non-empty ones are the connected com-
ponents of X.

Let γ, γ′ ∈ X. Then ϕ : R −→ E defined by

ϕ(t) = tγ + (1− t)γ′

for all t ∈ R is continuous. Thus

ϕ([0, 1]) = {tγ + (1− t)γ′ | 0 ≤ t ≤ 1}
is connected since it is the continuous image of a connected set. Let α ∈ Φ.
We may assume without loss of generality that (γ, α) ≤ (γ′, α). Thus

{(α, tγ + (1− t)γ′) | 0 ≤ t ≤ 1} = [(α, γ), (α, γ′)].
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At this point the reader can see that γ, γ′ ∈ P n1
α1
∩ · · · ∩P nr

αr
implies that

the line segment ϕ([0, 1]) ⊆ P n1
α1
∩ · · · ∩P nr

αr
also. Therefore P n1

α1
∩ · · · ∩P nr

αr
is

connected.
If the Weyl chambers were defined as the P n1

α1
∩ · · · ∩P nr

αr
in the first place

then one could deduce (3.7) from the fact that σ ∈ W is an isometry and
one could deduce that the chambers are convex subsets of X.

As a matter of convenience here we show that any α ∈ Φ belongs to a
base.

Proposition 3.2.3 Let Φ be a root system for E. Then any α ∈ Φ belongs
to a base.

Proof: For β ∈ Φ observe that Pα = Pβ if and only if β = ±α. Thus

Pα 6⊆
⋃

β 6=±α
Pβ

by Corollary 3.2.2. Choose u ∈ Pα such that u 6∈ Pβ for all β 6= ±α.
For β 6= ±α the function fβ : R −→ R defined by

fβ(t) = |(β, u +
tα

(α, α)
)| − t

is continuous. Since fβ(0) = |(β, u)| > 0 it follows that 0 ∈ Oβ = f−1
β ((0,∞))

and thus 0 ∈ ⋂
β 6=±αOβ. This intersection is an open subset of R and thus

contains a t > 0.

Let γ = u +
tα

(α, α)
. Then (α, γ) = t and |(β, γ)| > t for all β 6= ±α.

Therefore α ∈ Φ+(γ) and is indecomposable. ¤
Let ω ∈ W . Since σ is an isometry (u, v) = (σ(u), σ(v)) for all u, v ∈ E.

Thus if ∆ is a base σ(∆) is a base and, using (3.7), it follows that

σ(∆(γ)) = ∆(σ(γ)) (3.8)

for all γ ∈ X.
Now ∆ ⊆ C(γ) for some γ ∈ X. By definition (γ, α) > 0 for all α ∈ ∆,

and C(∆) = C(γ). Suppose that γ′ ∈ X and (γ′, α) > 0 for all α ∈ ∆. Then
(γ′, β), (γ, β) have the same sign for all β ∈ Φ since ∆ is a base. Therefore

C(∆) = {γ′ ∈ X | (γ′, α) > 0 for all α ∈ ∆}. (3.9)
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Exercise 3.2.4 Show that the conclusion of Lemma 3.2.1 holds when

a) F is an infinite field and V1, . . . , Vr is replaced with a family of subspaces
{Vi}i∈I , where |I| < |F |, or

b) F is a finite field and r ≤ |F |.

3.2.2 Lemmas on simple roots

No particular comments.

3.2.3 The Weyl group

Comments on the proof of the theorem of the section:

(a) See Equation 3.9.

(c) See Proposition 3.2.2.

We define `(σ) = 0 if σ = 1 is the identity of the Weyl group. Suppose
that σ ∈ W\1. Then σ = σα1· · ·σαt , where α1, . . . , αt ∈ ∆. Let `(σ) be the
smallest possible t. In any case `(σ) is the length of σ which is a non-negative
integer.

We can associate another non-negative integer to σ ∈ W as well. Let
n(σ) be the number of negative roots in the set {σ(β) | β ∈ ∆}. Observe
that n(1) = 0 as well.

Suppose that `(σ) = t > 0 and write σ = σα1 · · · σαt as above. Then

`(σ) = `(σα1 · · · σαt−1) = `(σσαt) + 1.

We will show that n(σ) = n(σσαt) + 1 as well. Since σαt permutes Φ+\αt by
Lemma B of §10.2, it follows that

{σ(β) | β ∈ Φ+\αt} = {σσαt(σαt(β)) | β ∈ Φ+\αt} = {σσαt(β) | β ∈ Φ+\αt}.
Now

σ(αt) = σα1· · ·σαt−1(αt) ∈ Φ−

by the corollary in §10.2, and thus

σσαt(αt) = σ(−αt) = −σ(αt) ∈ Φ+.

Therefore n(σ) = n(σσαt) + 1. We have proved Lemma A by induction on
`(σ):
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Lemma 3.2.5 `(σ) = n(σ) for all σ ∈ W. ¤

Concerning Lemma B, we write C(∆) = P n1
α1
∩· · ·P nr

αr
as in the notes on

§10.1, and note that

C(∆) ⊆ C(∆)∪Pα1· · ·∪Pαr

as P ni
αi
∪Pαi

is closed for all 1 ≤ i ≤ r.

3.2.4 Irreducible root systems

Let E be a Euclidean space. A subset S ⊆ E is reducible if S is the union
of non-empty subsets S ′ and S ′′ such that (s′, s′′) = 0 for all s′ ∈ S ′ and
s′′ ∈ S ′′. Note that S ′∩S ′′ = ∅ when 0 6∈ S. The set S is irreducible if it is
not reducible.

By definition the empty set is irreducible. Observe that any singleton
subset of E is irreducible. If 0 ∈ S then S is irreducible if and only if
S = {0}. In particular {0} is a maximal irreducible subset of E.

By Zorn’s Lemma every irreducible subset of S is contained in a maximal
irreducible subset of S. The latter are called irreducible components of S. At
this point it is not hard to establish:

Proposition 3.2.6 Let E be a Euclidean space and suppose that S is a sub-
set of E. Then:

(a) S is the union of its irreducible components.

(b) Any irreducible subset of S is contained in an component of S.

(c) Suppose S ′ and S ′′ are different irreducible components of S. Then
S ′∩S ′′ = ∅ and (s′, s′′) = 0 for all s′ ∈ S ′ and s′′ ∈ S ′′.

¤

Now suppose that E is finite-dimensional and that Φ is a root system for
E. Write Φ = Φ1∪ · · · ∪Φr as the disjoint union of its irreducible components
and let Ei be the span of Φi for all 1 ≤ i ≤ r. Then E = E1 + · · · + Er is
an orthogonal direct sum and Φi is a root system for Ei for all 1 ≤ i ≤ r.
Thus understanding root systems boils down to understanding irreducible
root systems.
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Let U be a subspace of E. Then E = U⊕U⊥; use the Gram-Schmidt
process. If σ is an isometry of E and σ(U) ⊆ U then σ(U) = U ; thus
σ(U⊥) ⊆ U⊥. In particular, if U is σ-invariant then U⊥ is σ-invariant as
well.

Lemma 3.2.7 Let E be a finite-dimensional Euclidean space, let v ∈ E\0,
and let U be a subspace of E. Then:

(a) If v ∈ U then U and U⊥ are σv-invariant.

(b) Suppose that U is σv-invariant. Then v ∈ U or v ∈ U⊥.

Proof: Suppose that v ∈ U . The formula σv(u) = u− 2(u, v)

(v, v)
v for all

u ∈ E shows implies that U is σv-invariant. To complete the proof of part
a) we note that σv is a isometry of E.

Suppose that U is σv-invariant. Then U⊥ is as well. Write v = v′ + v′′,
where v′ ∈ U and v′′ ∈ U⊥. Since E = U⊕U⊥, the calculation

−(v′ + v′′) = −v = σv(v) = σv(v
′) + σv(v

′′)

shows that −v′ = σv(v
′) and −v′′ = σv(v

′′). Thus

v′ =
(v′, v)

(v, v)
v and v′′ =

(v′′, v)

(v, v)
v.

Since (v′, v′′) = 0, we deduce from the two preceding equations that (v′, v)(v′′, v) =
0. Therefore one of (v′, v) or (v′′, v) is zero, that is v = v′′ or v = v′. We have
established part b). ¤

Corollary 3.2.8 Let E be a finite-dimensional Euclidean space, let Φ be a
root system for E, and suppose that ∆ ⊆ Φ is a base. Then Φ is reducible if
and only if ∆ is reducible.

Proof: Suppose that Φ is reducible and write Φ = Φ′∪Φ′′, where Φ′,Φ′′

are non-empty and (α′, α′′) = 0 for all α′ ∈ Φ and α′′ ∈ Φ′′. Let ∆′ = ∆∩Φ′

and ∆′′ = ∆∩Φ′′. Then ∆ = ∆′∪∆′′ and (α′, α′′) = 0 for all α′ ∈ ∆′ and
α′′ ∈ ∆′′. If ∆′ = ∅ then ∆ ⊆ Φ′′ and hence Φ′ = ∅ since ∆ is a basis for E.
Thus ∆′ 6= ∅. Likewise ∆′′ 6= ∅ and therefore ∆ is reducible.

Conversely, suppose that ∆ is reducible and write ∆ = ∆′∪∆′′, where ∆′

and ∆′′ are not empty and (α′, α′′) = 0 for all α′ ∈ ∆′ and α′′ ∈ ∆′′. Let
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U be the span of ∆′. Then U⊥ is the span of ∆′′. Now the reflections σα,
where α ∈ ∆, generate the Weyl group W . Therefore both U = U⊥⊥ and
U⊥ are invariant under all σ ∈ W by part (a) of Lemma 3.2.7. This means
that Φ = (U∩Φ)∪(U⊥∩Φ) by Lemma 3.2.7 again and the theorem of the
preceding section. We have shown that Φ is reducible. ¤

Let ∆ be any linear basis for E and for v ∈ E write v =
∑

α∈∆ vαα, where
vα ∈ R for all α ∈ ∆. For u, v ∈ E the relation u ≺ v if and only if uα ≤ vα

for all α ∈ ∆ defines a partial ordering on E. Roots can be compared in
terms of this partial order and also in terms of the height function. Here is
a refinement of Lemma A.

Lemma 3.2.9 Let E be a finite-dimensional Euclidean space, let Φ be a root
system for E, and suppose that ∆ ⊆ Φ is a base.

(a) There exists a unique root β ∈ Φ maximal with respect to the partial
order ≺.

(b) There exist unique root β′ ∈ Φ of maximal height.

(c) β = β′

(d) (β, α) ≥ (β, α) ≥ 0 for all positive roots α ∈ Φ and (β, α) > 0 for some
α ∈ ∆.

(e) β =
∑

α∈∆ kαα, where kα is a positive integer for all α ∈ ∆

Proof: Let β′ ∈ Φ have maximal height. Then β′ is maximal with respect
to the order ≺. Thus parts b) and c) follow from part a).

Let β ∈ Φ be maximal with respect to the order ≺. Then β ∈ Φ+. We
first show part d).

Suppose that (β, α) ≥ 0 does not hold for all α ∈ Φ+. Then there exists
a α ∈ Φ+ such that (β, α) < 0. Therefore β 6= ±α and β + α ∈ Φ. Since
α ∈ Φ+ we have β ≺ β + α. As β 6= β + α we have a contradiction. Thus
(β, α) ≥ 0 for all α ∈ Φ+ after all. Since ∆ is a basis for E it follows that
(β, α) 6= 0 for some α ∈ ∆. Since α ∈ Φ+ necessarily (β, α) > 0.

To complete the proof of part (d), let α ∈ Φ+. If (β, α) = 0 then
(β, β) ≥ (β, α) = 0. In light of the preceding paragraph we may assume
that (β, α) > 0. Thus β − α ∈ Φ. If α − β ∈ Φ+ then α = (α − β) + β
is the sum of positive roots and the maximality of β is contradicted. Thus
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β−α ∈ Φ+ from which we deduce that (β, β)− (β, α) = (β, β −α) ≥ 0. We
have established part d).

To show part (e), write β =
∑

α∈∆ kαα, where kα is a non-negative integer
for all α ∈ ∆. Let ∆′ = {α′ ∈ ∆ | kα′ > 0} and let ∆′′ = {α′′ ∈ ∆ | kα′′ = 0}.
Then ∆ is the union of ∆′ and ∆′′. Now (α, α′) ≤ 0 for distinct α, α′ ∈ ∆.
For α′′ ∈ ∆′′ we calculate, using part (d), that

0 ≤ (β, α′′) =
∑

α′∈∆′
kα′(α

′, α′′) ≤ 0

shows that (α′, α′′) = 0 for all α′ ∈ ∆′. Since ∆ is irreducible and ∆′ is not
empty, ∆′′ is empty.

Finally we show part (c). Suppose that β′′ is also maximal with respect
to the partial order ≺. Then (β, β′′) =

∑
α∈∆ kα(α, β′′) > 0 by parts d) and

e). Suppose that β 6= ±β′′. Then β − β′′ ∈ Φ. One of β − β′′ or β′′ − β
is positive. In the first case β = (β − β′′) + β′′ is the sum of positive roots
which contradicts the maximality of β′′. In the second case the maximality
of β is contradicted. Thus β = β′′. ¤

Recall that a subgroup G of GL(E) acts on E by the rule σ·v = σ(v) for
all σ ∈ G and v ∈ E. The action is irreducible if the only subspaces U of E
for which σ(U) ⊆ U for all σ ∈ G are E and (0). A paraphrase of Lemma B
is:

Lemma 3.2.10 Let E be a finite-dimensional Euclidean space and let Φ be
an irreducible root system for E.

(a) The Weyl group acts irreducibly on E.

(b) For α ∈ Φ the span of {σ(α) |σ ∈ W} is E.

Proof: Let U be a subspace of E and suppose that σ(U) ⊆ U for all σ ∈ W .
Let Φ′ = Φ∩U and Φ′′ = Φ∩U⊥. Then Φ = Φ′∪Φ′′ by Lemma 3.2.7. Since
Φ is irreducible, Φ′ = Φ, in which case U = E, or Φ′ = ∅, in which case
Φ′′ = Φ, U⊥ = E and thus U = (0). We have shown part (a).

As for part (b), if α ∈ Φ then the span of {σ(α) |α ∈ Φ} is a W-invariant
subspace of E which must be E by part (a). ¤

Here is a refinement of Lemma C.

Lemma 3.2.11 Let E be a finite-dimensional Euclidean space and let Φ be
a root system for E. Then:
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(a) Suppose α, β ∈ Φ and ||α|| ≤ ||β||. Then (α, β) = 0 or
||β||2
||α||2 = 1, 2, 3.

(b) Let α1, . . . , αr ∈ Φ. If (αi, αj) 6= 0 for all 1 ≤ i, j ≤ r then at most two
root lengths occur among {α1, . . . , αr}.

(c) Suppose that Φ is irreducible. Then at most two root lengths occur
among Φ.

Proof: To show part (a) we may assume that β 6= ±α and (α, β) 6= 0. In
this case |<β, α><α, β>| ≤ 3 so the absolute value of one of the integers

<β, α>.<α, β> is 1 and that of the other is 1, 2, or 3. Since
||β||2
||α||2 =

<β, α>

<α, β>
,

part (a) now follows. Part (b) is a direct consequence of part (a).
To show part (c), let α, β ∈ Φ and suppose that ||α|| ≤ ||β||. By part

(b) of Lemma 3.2.10 there is a σ ∈ W such that (β, σ(α)) 6= 0. Thus
||β||2
||α||2 =

||β||2
||σ(α)||2 = 1, 2, 3 by part (a). Therefore there cannot be roots α, β, ε

with ||α|| < ||β|| < ||ε|| as

||ε||2
||α||2 =

( ||ε||2
||β||2

)( ||β||2
||α||2

)
= 4, 6, 9.

¤
Lemma 3.2.12 Let E be a finite-dimensional Euclidean space, let Φ be a
root system for E, and let ∆ ⊆ Φ be a base. Then the unique root of maximal
height is a root of maximal length.

Proof:
¤

3.3 Classification

3.3.1 Cartan matrix of Φ

We begin with a brief review and slight generalization of relevant material.
Let E be an Euclidean space and suppose that u ∈ E\0. The reflection
σu : E −→ E through the hyperplane Pu = u⊥ is given by

σu(v) = v − 2(v, u)

(u, u)
u
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for all v ∈ E. Set

<v, u> =
2(v, u)

(u, u)
=

2(v, u)

||u||2 .

Then by definition
σu(v) = v −<v, u>u

for all v ∈ E. Note that <v, u> and <u, v> are both zero or they both have
the same sign.

Suppose further that v ∈ E\0. Using the Cauchy–Schwartz inequality
with the calculation

<v, u><u, v> =

(
2(v, u)

||u||2
)(

2(u, v)

||v||2
)

= 4

(
(u, v)

||u|| ||v||
)2

we conclude that
<v, u><u, v> = 4 cos2 θ,

where θ is the angle between the vectors u and v. (Recall that 0 ≤ θ ≤ π so
the cosine of θ determines θ.) In particular

0 ≤ <v, u><u, v> ≤ 4,

with <v, u><u, v> = 4 if and only if u and v are scalar multiples of each
other.

Observe that <u, v> = 0 if and only if (u, v) = 0 if and only if <v, u> = 0
which is the case if and only if u and v are at right angles to each other.
Suppose that (u, v) 6= 0. Then

<v, u>

<u, v>
=
||v||2
||u||2 .

Suppose that Φ is a root system for E. Then <β, α> ∈ Z for all β, α ∈ Φ.
We shall assume that β and α are non-proportional roots and ||α|| ≤ ||β|| in
the sequel. Thus

<β, α><α, β> = 0, 1, 2, or 3.

We analyze the possibilities.

Case 0: <β, α><α, β> = 0. This is the case (α, β) = 0. Thus <β, α> =
0 = <α, β>.

In the remaining cases (α, β) 6= 0.
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Case 1: <β, α><α, β> = 1. Here

<β, α> = <α, β> = ±1;

thus
||β|| = ||α||.

Since 4 cos2 θ = 1 we observe that

θ =





π
3

: (α, β) > 0;

2π
3

: (α, β) < 0.

Case 2: <β, α><α, β> = 2. Here

<α, β> = ±1 and <β, α> = 2<α, β>

and
||β|| =

√
2||α||.

Since 4 cos2 θ = 2 we observe that

θ =





π
4

: (α, β) > 0;

3π
4

: (α, β) < 0.

Case 3: <β, α><α, β> = 3. Here

<α, β> = ±1 and <β, α> = 3<α, β>

and
||β|| =

√
3||α||.

Since 4 cos2 θ = 3 we observe that

θ =





π
6

: (α, β) > 0;

5π
6

: (α, β) < 0.

Now let ∆ be a base for Φ and let

∆ = {α1, . . . , α`}
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be a listing of the distinct elements of ∆. Recall that

RankΦ = ` = Dim E.

The Cartan matrix of Φ is C = (<αi, αj>). Since <α, α> = 2 for all α ∈ Φ
it follows that the diagonal entries of C are all 2.

Suppose that α, β ∈ ∆ are different. Then α and β are non-proportional
roots and

(α, β) ≤ 0.

We revisit the cases above.

Case 0’: <β, α><α, β> = 0. This is the case (α, β) = 0; thus <β, α> =
0 = <α, β>.

In the remaining cases (α, β) 6= 0.

Case 1’: <β, α><α, β> = 1. Here

<β, α> = <α, β> = −1,

||β|| = ||α||,
and

θ =
2π

3
.

Case 2’: <β, α><α, β> = 2. Here

<α, β> = −1 and <β, α> = −2,

||β|| =
√

2||α||,
and

θ =
3π

4
.

Case 3’: <β, α><α, β> = 3. Here

<α, β> = −1 and <β, α> = −3,

||β|| =
√

3||α||,
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and

θ =
5π

6
.

The off-diagonal entries of C are thus zero or negative. For distinct 1 ≤
i, j ≤ ` both of <αi, αj>,<αj, αi> are zero or one is −1 and the other is −1,
−2 or −3. The four possibilities fit unambiguously into the four cases just
described.

There is only one possible root system (up to isomorphism) with given
Cartan matrix.

Proposition 3.3.1 Suppose that ∆ = {α1, . . . , α`} and ∆′ = {α′1, . . . , α′`}
are bases for rank ` root systems Φ for E and Φ′ for E ′ respectively. Suppose
further that <αi, αj> = <α′i, α

′
j> for all 1 ≤ i, j ≤ `. Then there is a linear

isomorphism φ : E −→ E ′ which is an isomorphism of the root systems Φ
and Φ′.

Proof: We sketch a proof. Before continuing review the discussion following
the Lemma of §9.2 in the text.

Since ∆ and ∆′ are bases for E and E ′ respectively, the set bijection
∆ −→ ∆′ given by αi 7→ α′i determines a linear isomorphism Φ : E −→ E ′.
Since <αi, αj> = <α′i, α

′
j> = <φ(αi), φ(αj)> for all 1 ≤ i, j ≤ ` it follows

that

σα′i(φ(αj)) = φ(σαi
(αj))

for all 1 ≤ i, j ≤ `, or equivalently, since ∆ spans E, that

σα′i◦φ = φ◦σαi

for all 1 ≤ i ≤ `. SinceW is generated by simple reflections, φ◦W◦φ−1 ⊆ W ′.
Replacing φ by φ−1 gives φ−1◦W ′◦φ ⊆ W . We have shown that φ◦W◦φ−1 =
W ′.

To complete the proof we need only show that φ(Φ) = Φ′. Let β ∈ Φ.
Then β = τ(αi) for some τ ∈ W and 1 ≤ i ≤ `; see part c) of the theorem of
§10.3 of the text. The calculation

φ(β) = (φ◦τ◦φ−1)(φ(αi)) = (φ◦τ◦φ−1)(α′i) ∈ (φ◦W◦φ−1)(α′i) ⊆ W ′(α′i) ⊆ Φ′

shows that φ(Φ) ⊆ Φ′. Replacing φ by φ−1 gives φ−1(Φ′) ⊆ Φ. Therefore
φ(Φ) = Φ′ as required. ¤
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3.3.2 Coxeter graphs and Dynkin diagrams

See the case discussion for §11.1

3.3.3 Irreducible components

See the discussion of irreducible components for §10.4.

3.3.4 Classification theorem

This is very nicely written — no further comments.


