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Decomposition of Operators

Throughout V is a finite-dimensional vector space over a field F and T is a linear endo-
morphism of V . Recall that A = End(V ) is an associative algebra with unity IV over F under
composition. The endomorphism T is semisimple if V is spanned by eigenvectors of T and is
nilpotent if Tm = 0 for some m ≥ 0. Observe that T is both semisimple and nilpotent if and only
if T = 0.

A subspace W of V is T -invariant if T (W ) ⊆ W . Suppose that S is an endomorphism of V
which commutes with T . Then ImS and KerS are T -invariant subspaces of V .

We will show that T = S +N has a unique decomposition as the sum of commuting endomor-
phisms, where S is semisimple and N is nilpotent, if and only if f(T ) = 0 for some f(x) ∈ F [x]
which splits into linear factors over F . This requires very little linear algebra and just a few very
basic facts about polynomials.

1 Preliminaries

Let F [x] be the algebra of polynomials in indeterminate x over F . Suppose that A is an associative
algebra with unity over F . For all a ∈ A there is an algebra map

πa : F [x] −→ A

determined by πa(x) = a. Thus the image of f(x) = α0 + α1x + · · ·+ αrx
r ∈ F [x] under πa is

f(a) = πa(f(x)) = α0 + α1a + · · ·+ αra
r,

the result of substitution of a for x in f(x). In particular, if f(x) = g(x)h(x) + `(x) then
f(T ) = g(T )◦h(T ) + `(T ).

The LaGrange polynomials, see (1) below, play a basic role in the analysis of a linear endo-
morphism of a finite dimensional vector space over F . Let r ≥ 1 and λ1, . . . , λr ∈ F be distinct.
For all 1 ≤ i ≤ r set

ei(x) =
∏

j 6=i

(
x− λj

λi − λj

)
(1)

and set f(x) = (x− λ1) · · · (x− λr). Observe that the polynomial ei(x) has degree r− 1 and that

ei(λj) = δi j (2)

for all 1 ≤ i, j ≤ r. The preceding equation implies that {e1(x), . . . , er(x)} is linearly independent.
Consequently this set of polynomials is a basis for the r-dimensional subspace V of F [x] consisting
of all polynomials of degree at most r − 1. In particular 1 = a1e1(x) + · · · + arer(x) for some
a1, . . . , ar ∈ F . Substituting λi for x in the preceding equation we conclude that ai = 1 for all
1 ≤ i ≤ r by (2). Thus

1 = e1(x) + · · ·+ er(x), (3)
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f(x) divides (x− λi)ei(x), and therefore divides ei(x)ej(x) (4)

whenever i and j are different.
Let a1, . . . , ar ∈ F and set h(x) = a1e1(x) + · · · + arer(x). Then h(λi) = ai for all 1 ≤ i ≤ r

which follows by (2).
One more bit of terminology concerning polynomials. We say that g(x) ∈ F [x] splits into

linear factors over F if g(x) = a(x− ρ1) · · · (x− ρs) for some non-zero a ∈ F and ρ1, . . . , ρs ∈ F
which are not necessarily distinct.

Exercise 1 Suppose that λ1, . . . , λr ∈ F are distinct and a1, . . . , ar ∈ F . Show that there is a unique
polynomial h(x) ∈ F [x] of degree at most r − 1 such that h(λi) = ai for all 1 ≤ i ≤ r. [Hint: Suppose
`(x) ∈ F [x] also satisfies the condition as well and consider the roots of the difference d(x) = h(x)− `(x).]

2 Decompositions into Semisimple and Nilpotent Parts

Suppose that g(T ) = 0, where g(x) ∈ F [x] splits into a product of linear factors over F . Write
g(x) = a(x − λ1)n1 · · · (x − λr)nr , where a ∈ F is not zero, λ1, . . . , λr ∈ F are distinct, and
n1, . . . , nr > 0. Set f(x) = (x− λ1) · · · (x− λr) and let n be equal to greater than the maximum
of n1, . . . , nr. Since g(x) divides f(x)n, it follows that f(T )n = 0.

Let e1(x), . . . , er(x) be defined by (1) and set m = (n− 1)r + 1. Using (3) we calculate

1 = (e1(x) + · · ·+ er(x))m =
∑

1≤i1,...,im≤r

ei1(x) · · · eim(x).

Each summand must have at least n factors which are ei(x) for some 1 ≤ i ≤ r; otherwise
m ≤ (n− 1)r. Thus there are E1(x), . . . , Er(x) ∈ F [x] which satisfy

1 = E1(x) + · · ·+ Er(x), (5)

f(x)n divides (x− λi)nEi(x), and divides Ei(x)Ej(x) (6)

whenever i and j are different. Substituting T for x we deduce from (5) and (6) that

IV = E1(T ) + · · ·+ Er(T ) and Ei(T )◦Ej(T ) = 0 (7)

whenever i and j are different. Thus from (7) we conclude that

Ei(T ) = Ei(T )◦IV = Ei(T )◦E1(T ) + · · ·+ Ei◦Er(T ) = Ei(T )◦Ei(T )

which means
Ei(T )◦Ej(T ) = δi jEi(T ) (8)

for all 1 ≤ i, j ≤ r. Set
S = λ1E1(T ) + · · ·+ λrEr(T ).

We will show that S is semisimple. Let v ∈ V . Then v = E1(T )(v) + · · ·+ Er(T )(v) by (7). The
calculation

S(Ei(T )(v)) = λ1(E1(T )◦Ei(T ))(v) + · · ·+ λr(Er(T )◦Ei(T ))(v) = λiEi(T )(v),
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which follows by (8), shows that V is spanned by eigenvectors of S. By definition S is semisimple.
Since the Ei(T )’s are polynomials in T it follows that S is a polynomial in T .

Since T = T◦IV = T◦E1(T ) + · · ·+ T◦Er(T ) by (7), the difference N = T − S can be written

N = (T − λ1IV )◦E1(T ) + · · ·+ (T − λrIV )◦Er(T ).

Now the Ei(T )’s commute with T since they are polynomials in T . Using (8) we calculate

Nn = (T − λ1IV )n◦E1(T ) + · · ·+ (T − λrIV )n◦Er(T ).

Since f(x)n divides (x−λi)nEi(x) by (6), and f(T )n = 0, each of the summands in the preceding
equation is zero. Therefore N is nilpotent. Observe that N is a polynomial in T since S is.

Theorem 1 Let T : V −→ V be a linear endomorphism of a finite-dimensional vector space V
over the field F . Then:

(a) T = S + N , where S and N are commuting endomorphisms of V , S is semisimple, and N
is nilpotent. Furthermore S and N are polynomials in T . These polynomials can be chosen
to have constant term zero.

(b) Suppose that T = S′ + N ′, where S′ and N ′ are commuting endomorphisms of V , S′ is
semisimple, and N ′ is nilpotent. Then S = S′ and N = N ′.

Proof: We have shown part (a), except for the last sentence. This is established in Exercise 3.
We sketch the proof of part (b), leaving the details as an exercise for the reader.

Suppose that S′ and N ′ satisfy the hypothesis of part (b). Since S′ and N ′ commute with each
other they commute with T and therefore with any polynomial in T . As a consequence S′ and N ′

commute with S and N . Since the difference of commuting semisimple operators is semisimple,
and the difference of commuting nilpotent operators is nilpotent, the difference S − S′ = N ′ −N
is both semisimple and nilpotent. Therefore S − S′ = N ′ −N = 0. 2

As a corollary of the proof of the preceding theorem:

Corollary 1 Let T : V −→ V be a linear endomorphism of a finite-dimensional vector space V
over the field F . Then the following are equivalent:

(a) T is semisimple.

(b) V has a basis of eigenvectors of T .

(c) f(T ) = 0 for some f(x) ∈ F [x] which splits into a product of distinct linear factors.

Proof: Since any spanning set of V contains a basis for V , part (a) implies part (b). To show
that part (b) implies part (c), suppose that {v1, . . . , vr} is a basis for V consisting of eigenvectors
for T and let f(x) = (x−λ1) · · · (x−λs) ∈ F [x], where λ1, . . . , λs ∈ F are the distinct eigenvalues
for T . Let 1 ≤ i ≤ r. Then T (vi) = λ`v, or (T − λ`IV )(vi) = 0, for some 1 ≤ ` ≤ s. Substituting
T for x in f(x) we obtain

f(T )(vi) =
(
(T − λ1IV )◦ · · · ◦ ̂(T − λ`IV )◦ · · · ◦(T − λsIV )

)
((T − λ`IV )(vi)) = 0,
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where “ ̂ ” means factor omitted. Therefore f(T ) vanishes on a spanning set for V which
means that f(T ) = 0. We have shown part (b) implies part (c). The proof will be concluded once
we show part (c) implies part (a).

Assume the hypothesis of part (c). Then f(T ) = 0 for some f(x) = (x−λ1) · · · (x−λr) ∈ F [x]
where λ1, . . . , λr ∈ F are distinct. We retrace the first part of the proof of Theorem 1.

Observe that we may take n = 1 in (6). Since since f(T ) = 0 it follows that (T−λiIV )◦Ei(T ) =
for all 1 ≤ i ≤ r. Let v ∈ V . The preceding equation implies that Ei(T )(v) is an eigenvector
of T belonging to λi. As v = E1(T )(v) + · · · + Er(T )(v) by (6), it follows that v is the sum of
eigenvectors of T . Therefore T is semisimple by definition. 2

Suppose that v ∈ V is an eigenvector for T belonging to λ. Since T `(v) = λ`v for all ` ≥ 0 it
follows that f(T )(v) = f(λ)v for all f(x) ∈ F [x]. Therefore f(T ) = 0 implies that the eigenvalues
of T are roots of f(x).

Let W be a T -invariant subspace of V . Then W is f(T )-invariant for all f(x) ∈ F [x] and
f(T |W ) = f(T )|W holds for the restrictions. Let T : V/W −→ V/W be the endomorphism defined
by T (v + W ) = T (v) + W for all v ∈ V . Note that f(T ) = f(T ) for all f(x) ∈ F [x] as well. Thus
if T is semisimple, by virtue of the preceding corollary the restriction T |W : W −→ W and the
induced endomorphism T : V/W −→ V/W are semisimple also.

Exercise 2 Suppose that f(T ) = 0, where f(x) = (x − λ1)n1 · · · (x − λr)nr , n1, . . . , nr > 0, and
λ1, . . . , λr ∈ F are distinct. Let Ei(x) satisfy (5) and (6), set Vi = Im Ei(T ), and let S be as in part
a) of Theorem 1. Show that:

(a) V = V1⊕ · · ·⊕Vr;

(b) Vi = Ker(T − λiIV )m for all m ≥ ni, S(v) = λiv for all v ∈ Vi; and

c) When T is semisimple the non-zero Vi’s are the eigenspaces for T .

[Hint: For part (b) observe that (x− λj)n divides Ei(x) whenever j 6= i.]

Exercise 3 Show that the polynomials mentioned in part (a) of Theorem 1 can be chosen to have constant
term zero. [Hint: We may assume that λr = 0. In this case f(x) has constant term zero and therefore
(x− λi)Ei(x) does as well for all 1 ≤ i ≤ r by (6).]

Exercise 4 Show that T is semisimple if and only if its minimal polynomial splits into a product of
distinct linear factors over F .

3 A Necessary and Sufficient Condition for the Decomposition

We have shown that if f(T ) = 0, where f(x) ∈ F [x] splits into linear factors over F , then T is the
sum of commuting operators, one of which is semisimple and the other nilpotent. This vanishing
condition is necessary.

Proposition 1 Let T : V −→ V be a linear endomorphism of a finite-dimensional vector space
V over the field F . Then the following are equivalent:

(a) f(T ) = 0 for some polynomial f(x) ∈ F [x] which splits into linear factors over F .
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(b) T = S + N , where S, T are commuting endomorphisms of V , S is semisimple, and N is
nilpotent.

Proof: We need only show that part (b) implies part (a). Let λ1, . . . , λr ∈ F list the distinct
eigenvalues of S and let Vi = Ker(S − λiI) be the S-invariant subspace of all eigenvectors of S
belonging to λi for all 1 ≤ i ≤ r. Since S and N commute, S and T commute. In particular
T (Vi) ⊆ Vi for all 1 ≤ i ≤ r.

Since N is nilpotent Nn = 0 for some n > 0. Let 1 ≤ i ≤ r and v ∈ Vi. Since T (Vi) ⊆ Vi and
S|Vi = λiIV |Vi , for v ∈ Vi we can easily deduce

0 = Nn(v) = (T − S)n(v) = (T − λiIV )n(v).

Thus g(T )n(v) = 0, where g(x) = (x − λ1) · · · (x − λr). Since V = V1 + · · · + Vr necessarily
g(T )n = 0. Take f(x) = g(x)n. 2

Exercise 5 Show that T = S + N , where S, T are commuting endomorphisms of V , S is semisimple,
and N is nilpotent, if and only if the characteristic polynomial of T over F splits into linear factors over
F . [Hint: The characteristic polynomial divides a power of the minimal polynomial.]

4 When V is an algebra and T is a Derivation

Suppose that A is a finite-dimensional algebra over F and D is a derivation of A with a decom-
position into the sum of commuting semisimple and nilpotent endomorphisms. These summands
are derivations also. Two preliminary lemmas will explain the essential reasons for this.

For λ ∈ F let V(λ) =
⋃∞

`=0 Ker(D − λIV )`. Since

Ker(D − λIV ) ⊆ Ker(D − λIV )2 ⊆ Ker(D − λIV )3 ⊆ . . .

is a chain of subspaces of V , their union V(λ) is a subspace of V . Observe that the sum
∑

λ∈F V(λ)

is direct.

Lemma 1 Let D be a derivation of an algebra A over F and suppose that A =
⊕

λ∈F A(λ). Then
A(λ)A(ρ) ⊆ A(λ+ρ) for all λ, ρ ∈ F .

Proof: Let a, b ∈ A. Here it is convenient to regard the product on A as a linear map m :
A⊗F A −→ A; thus m(a⊗b) = ab. Now let λ, ρ ∈ F . Since δ is a derivation of A we calculate

D(ab)− (λ + ρ)ab = aD(b) + D(a)b− (λ + ρ)ab = a((D − ρIA)(b)) + ((D − λIA)(a))b.

Thus
(D − (λ + ρ)IA)◦m = m◦(IA⊗(D − ρIA) + (D − λIA)⊗IA).

Now the summands in the right hand side of the preceding equation are commuting elements in
the algebra End(A)⊗End(A). Therefore by the binomial theorem

(D − (λ + ρ)IA)`◦m = m◦(IA⊗(D − ρIA) + (D − λIA)⊗IA)`

= m◦
(∑̀

i=0

(
`
i

)
(D − λIA)`−i⊗(D − ρIV )i

)
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for all ` ≥ 0.
Suppose that a ∈ A(λ) and b ∈ A(ρ). Then (D − λIA)`′(a) = 0 = (D − ρIA)`′′(b) for some

`′, `′′ > 0. Let ` = `′ + `′′ − 1 and 0 ≤ i ≤ `. Then ` ≥ 0 and either `′ ≤ `− i or `′′ ≤ i. Therefore
one of (D − λIV )`−i(a) or (D − ρIV )i(b) is zero. Using the preceding calculation we deduce

(D − (λ + ρ)IA)`(ab) =
∑̀

i=0

(
`
i

)
(D − λIA)`−i(a)(D − ρIA)i(b) = 0

which means ab ∈ A(λ+ρ). 2

Lemma 2 Let A =
⊕

λ∈F A(λ) be an algebra over F which is the direct sum of subspaces A(λ)
such that A(λ)A(ρ) ⊆ A(λ + ρ) for all λ, ρ ∈ F . Then the endomorphism S of A defined by
S(a) = λa for all λ ∈ F and a ∈ Aλ is a derivation of A.

Proof: We need only that S(ab) = aS(b) + S(a)b holds for all a, b in some spanning set of A.
Let a ∈ A(λ) and b ∈ A(ρ). Since ab ∈ A(λ + ρ) by assumption, S(ab) = (λ + ρ)ab. On the other
hand S(a)b + aS(b) = (λa)b + a(ρb) = (λ + ρ)ab. 2

Proposition 2 Suppose that D : A −→ A is a derivation of a finite-dimensional algebra over the
field F and D = S + N , where S,N are commuting endomorphisms of A, S is semisimple and N
is nilpotent. Then S and N are derivations of A.

Proof: Since Der(A) is a subspace of End(A) we need only show that S is derivation of A. Using
Proposition 1 we see there is a polynomial f(x) = (x−λ1) · · · (x−λr) ∈ F [x], where λ, . . . , λr ∈ F
are distinct, and n > 0 such that f(T )n = 0. By parts (a) and (b) of Exercise 2 we conclude that
A = A(λ1)⊕ · · ·⊕A(λr) and S(a) = λia for all 1 ≤ i ≤ r and a ∈ A(λi).

Suppose that λ ∈ F is not one of λ1, . . . , λr. Then f(T )n = 0, where

f(x) = f(x)(x− λ) = (x− λ1) · · · (x− λr)(x− λ).

By parts (a) and (b) of Exercise 2 again we have

A = A(λ1)⊕ · · ·⊕A(λr)⊕A(λ) = A⊕A(λ).

Therefore A(λ) = (0). We have shown that A =
⊕

λ∈F A(λ) and S(a) = λa for all λ ∈ F and
a ∈ A(λ). Thus S is a derivation of A by Lemmas 1 and 2. 2
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