MATH 531 Written Homework 3 Solution Radford 11/05/07

In the following exercises F' is a field, algebraically closed and of characteristic zero. We
follow the notation of the text and that used in class.

1. (25 points) You may assume that L = L@ - - - ® L, is an algebra. Let x = (4@ --- Bl y =
Ui®-- -l z e L. We first show that m; : L — L; is an algebra map for all 1 < i < r and
that x = y if and only if m;(z) = m;(y) for all 1 < i <.

Let a € F. The calculation

iz +ay) = m(LD--- Dl +all)®---DL))
= m(lLi®- - Bl + ali@ - Dal)))
= m((t1 +al})® - &L + all))
= {; +al;
— '/Tiwl@"‘@gr)+G7Ti(€/1@"'@€;)
= m(x)+ am(y)
shows that ; is linear and the calculation
mi([zy]) = m((ho©--- ol (@ BL])
= w6, Bl L))
= (6]
= [m(a®- o) m(6e- o)
[mi(x) mi(y)]

shows that 7; is multiplicative. Since m;(x) = ¢; for all 1 < i < r it follows that

Ti\T

z=m(r)®- - om(z); (1)

thus = =y if and only if m;(z) = m;(y) for all 1 <i <.
Since m; : L — L; is an algebra map, part (b) (5) follows once part (a) (8) is estab-
lished.

Let 1 < <r. Since 7; is an algebra map and L; is a Lie algebra
mi(l 2]) = [mi(z) mi(z)] = 0
and

mile [y 2] + [y [z «]] + [2 [z y]])
[mi() [miy) mi(2)]] + [mily) [miz) ma@)]] + [mi(2) [mi(2) miy)]]
= 0.



Thus [z 2] =0 and [z [y z]] + [y [z z]] + [z [z y]] = O follow by (1).

Part (c¢). (12) Let ¢/ € L' and suppose that 7 : L' — L satisfies momr = . for all
1<i<r. Then n(¢') = m(w({)® - Bm.(n(l") = 71 ({)D - - - d7L(¢); the first equation
follows by (1). Thus 7 is unique. A small argument shows that 7 is linear. Since each 7}
is a Lie algebra map

n([¢ ) = m( Ne---em (' )
= [m) B )& elm(f) m.(¢")]
[ (¢) w(")]
for all ¢/, 0" € L'.
2. (25 points) (a) (10) Since [z y] = y and & is associative

r(,y) = Kz, [z y]) = w([z 2], y) = #(0,y) =0

and
£(y,y) = k([z yl,y) = (2, [y y]) = K(z,0) = 0.

Now

(adzoadx)(z) = [z [xz]] = [¢0] =0 and (adzoadx)(y) = [z[zy]] = [zy] =y.

Therefore k(x,z) = Tr(ad zoad x) = Tr ( 8 (1) ) =1.

k(z,x) wlz,y) N\ (1 0

iy ) Ky, y) 0.0)7
In any event Radk € RadL. Let ¢ = ax + by € L. Then ¢ € Radk if and only if
k(xz,l) =0 = k(y,?) if and only if £ = by. Thus Fy = Radx C Rad L is a solvable ideal.

(This is trivial since F'y is abelian.) Since L/Fy is one-dimensional, it is abelian and thus
solvable. Therefore L is solvable which means Rad L = L.

Since k is symmetric,

Part (b). (15) There are basically two calculations. Suppose {u,v,w} = {z,y, z}; that is
u,v,w are z,y, z in some order. Then [u v] = a,w, [v w] = ayu, and [w u] = a,v for some
Qy, Oy, O, € F. The calculations

(ad uoad v)(u) = [u [v u]] = [u (—ayw)w] = (—aw)(—ay)v = Qay;

(ad uoad v)(v) = [u [v v]] = [u 0] = 0;

and
(ad uoad v)(w) = [u [v w]] = [u au] =0



0
show that k(u,v) = Tr | a0
0

(ad woad u)(u) = [u [u u]] = [u 0] = 0;

o O O

0
0 | = 0. The calculations
0

(ad uoad u)(v) = [u [u v]] = [u ap,w] = —a,,;
and
(ad uoad u)(w) = [u [u w]] = [u (—a,)v] = —a,a,w.
0 0 0
show that k(u,u) =Tr| 0 —a,a, 0 = — 200,00y = —200,0y0l,. Thus
0 0 — Oty
k(z,z) k(z,y) k(z,2) —2bc 0 0
k(y,x) K(y,y) kKy,z) | = 0 —2ac 0
k(z,x) k(z,y) K(z,2) 0 0 —2ab

There are three natural case to consider.

Case 1: None of a, b, ¢ is zero. Then « is non-singular. Therefore L is semisimple and hence

Rad L = (0).

Case 2: Two or three of a,b, c are zero. Then k = 0 which means that Rad x = L. Since
Rad k C Rad L in any event, Rad L = L.

Case 3: Exactly one of a,b,c is zero. Then k has exactly one non-zero entry (which is
diagonal). It is easy to see that Dim Rad x = 2 in this case. Lie algebras of dimension
two or one are solvable. Therefore Rad x is a solvable ideal of L and L/Rad r is solvable,
whence L is solvable and thus Rad L = L again.

3. (25 points) V = gl(n, F) = @;<; j<, F'ei; as a vector space. We discover the simple
sl(2, F')-submodules of submodules V' by seeing what submodule each e; ; generates, using
the rule e; jex e = 0, xei¢ forall 1 <4, j,k,¢ < n. In the problem n > 2. Note that e, jex, = 0,
and thus [e;; e = 0, if {7, j}N{k, £} = 0.

Part (a) Such a decomposition is

V = 81(2, F)@F(Gll + 622)@?:3 (Felj@Fegj) @::3(F€j2@F6j 1)@

3§i,j§nF€” ‘

Part (b) We tabulate the results. Note that in each case the dimension of the weight spaces
is one, and the weights 0 and 1 can not both appear. Therefore the module is is simple by
7.2 Corollary of the text.
Module sl(2, F)
Weight spaces Feyy  F(ep1 —eqs) Fego
Weights -2 0 2

Maximal vector €19




Module F(e11 + e22)
Weight spaces  F'(e11 + e22)
Weights 0

Maximal vector e11 + €22

Module Fey j@Fey ;, where j > 2.

Weight spaces Fes; Fey
Weights —1 1
Maximal vector €1;

Module Fej1®Fe;q, where j > 2.

Weight spaces Fejq Fejq
Weights —1 1

Maximal vector €2
Module Fe;;, where ¢,5 > 2.

Weight spaces Fe;;
Weights 0

Maximal vector €i;

(5) for each type.
4. (25 points) You may assume that partial differentiation is a derivation.

(a) (7) This follows from: Suppose that D : A — A is a derivation of a commutative
associative algebras A over F'. For a € A the endomorphism D’ = {,0D is a derivation of

A.
To prove this we calculate

D/(xy) = aD(ay) = a(D(x)y + zD(y)) = (aD(x))y + x(aD(y)) = D'(x)y + =D'(y)

for all x,y € A. Since D’ is the composite of linear maps it is linear.

(b) (8) Recall

0 0
T = Emoa—y, Y= Ey087:’ and z =[x,y

We will use:

Lemma 1 Let D, D' : A — A be derivations of an algebra over F' and suppose S C A is
a subset which generates A as an algebra. Then D = D" if D(s) = D'(s) for all s € S.

PROOF: We need only show that B = {a € A|D(a) = D'(a)} is a subalgebra of A. Since
B =Ker (D — D’), and D — D’ is linear, B is a subspace of A. Suppose a,a’ € B. Then
D(ad’) = D(a)d’ + aD(a’) = D'(a)a’ + aD'(a’) = D'(aa’) which means aa’ € B. O



Observe that
x(x)=0 and  x(y) =
Yy

X
and  y(y) =0;

therefore

z(z) = x(y(r)) —y(x(z)) =z  and  z(y) =x(y(v)) —yx(y)) = —v.

In particular V|, = Fa@®Fy is invariant under x, y, and z.

Let Endy, (A) be the subspace of endomorphisms 7" of A such that T'(V;) C Vi. Then
Endy, (A) is a subalgebra of End (A) and the composite 7 of the restriction map followed
by the identification of endomorphisms with matrices with respect to the basis B = {z, y}

Endy, (A) — End (V}) ~ M(2,F) T — [T|v,]5

is a map of associative algebras, hence a map of Lie algebras under associative bracket.

Note that
w(x):<8 (1)) ﬂ(y)=<(1) 8) ”(Z>:<(1) —01>

It is easy to see that Dery, (A) is a Lie subalgebra of Endy, (A). The restriction
7' : Dery, (A) — M(2, F)

of 7 is injective by the preceding lemma. As x,y,z € Dery, (A) part (b) follows.
Part (¢). (10) The calculations

n—é) E)Ié—i—lyn—é—l 0 n—é)

and y(z'y =

gxf—lyn—ﬁ—i—l

x(z'y =(n—

show that x(V},),y(V,) C V4,; hence z(V},) = (xoy —yox)(V,,) C x(y(V,.)) +y(x(V,,)) C V,
for all n > 0. Therefore V,, is a left sl(2, F')-module. Now

z(a'y" ™) = x(y(a'y" ™))~y (x(2'y" ™)) = (Un—C+1)=(n=0)(C+1))a"y" ™" = (20—n)z"y"™".

Thus V,, = @)_oFz‘'y"* and the direct sum of weight spaces and Fz‘y"* has weight
20 — n. Note that not both 0 and 1 occur as weights since two weights differ by an even
integer. Thus V,, is simple by 7.2 Corollary of the text. Note that x™ is a maximal vector.

L ___________________________________________________________________|
L ___________________________________________________________________|
)



Addendum to Problem 3(b): Let F' be any field of characteristic not 2. L is the Lie
algebra over F' with basis {x,y, z} and whose structure is determined by

[x y] = C%, [Z/ Z] = ar, [Z x] = by, (2)

where a,b,c € F.
First of all assume a,b,c # 0. Suppose a',b',¢ € F are non-zero as well. We wish to
replace z,y, z by non-zero scalar multiples ' = a2, y' = ayy, 2’ = a2 such that

[x/ y/] — CIZ/, [yl Z/] — a/g_l) [Z/ xl] — b/y/.

This is equivalent to solving
Qe = ad,  auasa = aga,  auagb = ab’
which is done by setting o, = a,a, (5) and solving

a'd b
— 2 and a2 =2C 3
a o and o - (3)

If F' is algebraically closed there are always (non-zero) solutions «,, a, to these equations.
In this case L falls into:

Case l: zy|=2 [yzl=2 [z2]=—y.
Since {x — y,x + y, 2z} is a basis for L,

[r—yx+y] =2[xy] =2z

227 —y|=2([z2] - [zy]) =2(~y +2) =2(x — y) and
2z x+yl =2z 2] + [z 9y]) =2(~y — ) = —2(z + y),

it follows that |L = sl(2, F) |with x =2z —y, y =2 + y, and h = 2z.

From this point on F' = R is the field of real numbers. Returning to (3) we see that
there are solutions oy, o, € R if a and @' have the same sign, b and b’ have the same sign,
and ¢ and ¢ have the same sign. By replacing the basis {z,y, 2z} with {2/,¢/, 2’} we may
assume a,b,c € {—1,1}. Replacing {z,y, 2} with the basis {—z, —y, —z} if necessary we
may assume that all of a, b, ¢ are positive or exactly one of these is negative. By reordering
{z,y, z} if necessary the latter is Case 1. The former is:

Case2: [zy|=2 [yz]l=2 [z2]=y.
Let h = hyx + hyy + h.z € L, where h,, hy, h, € R. We compute ad h.

adh(z) = hylrz]+hylyx]+hlz2] = —hyz+hy
adh(y) = holwyl+hylyyl +halzy] = hez—hox
adh(z) = hglzz]+hyfyz]+hlz2] = —hyy+ hy.



The characteristic polynomial of ad h is therefore

X -0 h.,  —h,
f(x) = ~h, X-0 R
hy —h, X—0
= X(X?+h2) — ho(=h.X — hyhy) — hy(hyh, — b, X)
= X(X?+4 (hl+h2+h2)).

Suppose that h # 0. Then ad h # 0 which means that the minimal polynomial m(X) of

ad h in not X. Since m(X) divides f(X) and the quadratic factor of f(X) is irreducible,
m(X) = f(X) which does not split onto linear factors over R. ad h is not diagonalizable

and ad h is not nilpotent. In particular |L % sl(2,R)| Justification: if ¢ : L' — L”

is an isomorphisms of Lie algebras and h € L', then ad h is diagonalizable (respectively
nilpotent) if and only if ad ¢(h) is diagonalizable (respectively nilpotent).

However, L is simple. To see this, we need only show that L = Rh + [h L] = Rh +
T(L). For this it suffices to show that {h,ad h (y),adh(z)}, or {h,adh(z),adh(2)}, or
{h,ad h (z),ad h (y)} is linearly independent. The calculations

hy —h. h,
h,, 0 —hy | = hy(h: + hi + h2),
h,  h, 0
h, 0 h,
hy — h. —hy | =—hy(h:+h+h?),
h. —h, 0
h, 0 —h,
h,  h. 0 | = h.(h+ h, + h2)
h., —hy, hy

bear this out.
Now suppose that one of a,b, c is zero. Using the techniques above one can see that
there are four cases to consider.

Case 3: [z y]=0, [yz]=0, [z2]=0.

Here L is abelian.

Case4: [zy]=0, [yz]=0, [z2]=uy.

Note [L L] = Ry and [L y] = (0). Therefore L is nilpotent and (ad h)? = 0 for all h € L.
Caseb: [zy] =0, [yz]=2z [z2]=—y.

Note [L L] = Rz + Ry is abelian and [L Rz + Ry] = Rx + Ry. Thus L is solvable but not
nilpotent. Also note that ad 2z is diagonalizable with eigenvalues —2, 0, 2; see Case 1.

Case6: [xy] =0, [yz]=2z, [z2]=y.



Note [L L] = Rz + Ry is abelian and [L Rz + Ry|] = Rz + Ry. Thus L is solvable but not
nilpotent.

We proceed as in Case 2. Let h = h,x + hyy + h,z where hy, hy, h, € R. Then

adh(z) = hylzz]+hyfyx]+hzz] = hy
adh(y) = hofry]+hylyyl +hlzy] = —ha
adh(z) = hylzz]+hyfyz]+hz2] = —hyy+ hy.

The characteristic polynomial of ad h is therefore

X—-0  h. —hy

f(X) = ~h, X -0 h
0 0 X—-0
= X(X?+h?).

Since X? + h? is irreducible when h, # 0, it follows that ad h is not diagonalizable unless
h = 0. In particular the Lie algebras of Cases 5 and 6 are not isomorphic.

There are six isomorphism types of Lie algebras such that (2) is satisfied when F' = R,
two of which are simple. The reader is encouraged to analyze the Lie algebras satisfying

(2) when F' is an algebraically closed field of characteristic zero, of characteristic 2, or of
characteristic p > 2.



