
MATH 531 Written Homework 3 Solution Radford 11/05/07

In the following exercises F is a field, algebraically closed and of characteristic zero. We
follow the notation of the text and that used in class.

1. (25 points) You may assume that L = L1⊕ · · ·⊕Lr is an algebra. Let x = `1⊕ · · ·⊕`r, y =
`′1⊕ · · ·⊕`′r, z ∈ L. We first show that πi : L −→ Li is an algebra map for all 1 ≤ i ≤ r and
that x = y if and only if πi(x) = πi(y) for all 1 ≤ i ≤ r.

Let a ∈ F . The calculation

πi(x + ay) = πi(`1⊕ · · ·⊕`r + a(`′1⊕ · · ·⊕`′r))

= πi(`1⊕ · · ·⊕`r + a`′1⊕ · · ·⊕a`′r))

= πi((`1 + a`′1)⊕ · · ·⊕(`r + a`′r))

= `i + a`′i
= πi(`1⊕ · · ·⊕`r) + aπi(`

′
1⊕ · · ·⊕`′r)

= πi(x) + aπi(y)

shows that πi is linear and the calculation

πi([x y]) = πi([`1⊕ · · ·⊕`r `′1⊕ · · ·⊕`′r])

= πi([`1 `′1]⊕ · · ·⊕[`r `′r])

= [`i `
′
i]

= [πi(`1⊕ · · ·⊕`r) πi(`
′
1⊕ · · ·⊕`′r)]

= [πi(x) πi(y)]

shows that πi is multiplicative. Since πi(x) = `i for all 1 ≤ i ≤ r it follows that

x = π1(x)⊕ · · ·⊕πr(x); (1)

thus x = y if and only if πi(x) = πi(y) for all 1 ≤ i ≤ r.
Since πi : L −→ Li is an algebra map, part (b) (5) follows once part (a) (8) is estab-

lished.
Let 1 ≤ i ≤ r. Since πi is an algebra map and Li is a Lie algebra

πi([x x]) = [πi(x) πi(x)] = 0

and

πi([x [y z]] + [y [z x]] + [z [x y]])

= [πi(x) [πi(y) πi(z)]] + [πi(y) [πi(z) πi(x)]] + [πi(z) [πi(x) πi(y)]]

= 0.
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Thus [x x] = 0 and [x [y z]] + [y [z x]] + [z [x y]] = 0 follow by (1).
Part (c). (12) Let `′ ∈ L′ and suppose that π : L′ −→ L satisfies πi◦π = π′i for all

1 ≤ i ≤ r. Then π(`′) = π1(π(`′))⊕ · · ·⊕πr(π(`′)) = π′1(`
′)⊕ · · ·⊕π′r(`

′); the first equation
follows by (1). Thus π is unique. A small argument shows that π is linear. Since each π′i
is a Lie algebra map

π([`′ `′′]) = π′1([`
′ `′′])⊕ · · ·⊕π′r([`

′ `′′])

= [π′1(`
′) π′1(`

′′)]⊕ · · ·⊕[π′r(`
′) π′r(`

′′)]

= [π(`′) π(`′′)]

for all `′, `′′ ∈ L′.

2. (25 points) (a) (10) Since [x y] = y and κ is associative

κ(x, y) = κ(x, [x y]) = κ([x x], y) = κ(0, y) = 0

and
κ(y, y) = κ([x y], y) = κ(x, [y y]) = κ(x, 0) = 0.

Now

(ad x◦ad x)(x) = [x [xx]] = [x 0] = 0 and (ad x◦ad x)(y) = [x [x y]] = [x y] = y.

Therefore κ(x, x) = Tr(ad x◦ad x) = Tr

(
0 0
0 1

)
= 1.

Since κ is symmetric,

(
κ(x, x) κ(x, y)
κ(y, x) κ(y, y)

)
=

(
1 0
0 0

)
,

In any event Rad κ ⊆ Rad L. Let ` = ax + by ∈ L. Then ` ∈ Rad κ if and only if
κ(x, `) = 0 = κ(y, `) if and only if ` = by. Thus Fy = Rad κ ⊆ Rad L is a solvable ideal.
(This is trivial since Fy is abelian.) Since L/Fy is one-dimensional, it is abelian and thus
solvable. Therefore L is solvable which means Rad L = L.

Part (b). (15) There are basically two calculations. Suppose {u, v, w} = {x, y, z}; that is
u, v, w are x, y, z in some order. Then [u v] = αww, [v w] = αuu, and [w u] = αvv for some
αu, αv, αw ∈ F . The calculations

(ad u◦ad v)(u) = [u [v u]] = [u (−αw)w] = (−αw)(−αv)v = αvαwv;

(ad u◦ad v)(v) = [u [v v]] = [u 0] = 0;

and
(ad u◦ad v)(w) = [u [v w]] = [u αuu] = 0
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show that κ(u, v) = Tr




0 0 0
αvαw 0 0
0 0 0


 = 0. The calculations

(ad u◦ad u)(u) = [u [u u]] = [u 0] = 0;

(ad u◦ad u)(v) = [u [u v]] = [u αww] = −αwαvv;

and
(ad u◦ad u)(w) = [u [u w]] = [u (−αv)v] = −αvαww.

show that κ(u, u) = Tr




0 0 0
0 −αvαw 0
0 0 −αvαw


 = −2αvαw = −2α̂uαvαw. Thus




κ(x, x) κ(x, y) κ(x, z)
κ(y, x) κ(y, y) κ(y, z)
κ(z, x) κ(z, y) κ(z, z)


 =



−2bc 0 0

0 −2ac 0
0 0 −2ab


 .

There are three natural case to consider.

Case 1: None of a, b, c is zero. Then κ is non-singular. Therefore L is semisimple and hence
Rad L = (0).

Case 2: Two or three of a, b, c are zero. Then κ = 0 which means that Rad κ = L. Since
Rad κ ⊆ Rad L in any event, Rad L = L.

Case 3: Exactly one of a, b, c is zero. Then κ has exactly one non-zero entry (which is
diagonal). It is easy to see that Dim Rad κ = 2 in this case. Lie algebras of dimension
two or one are solvable. Therefore Rad κ is a solvable ideal of L and L/Rad κ is solvable,
whence L is solvable and thus Rad L = L again.

3. (25 points) V = gl(n, F ) =
⊕

1≤i,j≤n Fei j as a vector space. We discover the simple
sl(2, F )-submodules of submodules V by seeing what submodule each ei j generates, using
the rule ei jek ` = δj,kei ` for all 1 ≤ i, j, k, ` ≤ n. In the problem n ≥ 2. Note that ei jek ` = 0,
and thus [ei j ek `] = 0, if {i, j}∩{k, `} = ∅.
Part (a) Such a decomposition is

V = sl(2, F )⊕F (e1 1 + e2 2)
⊕n

j=3
(Fe1 j⊕Fe2 j)

⊕n

j=3
(Fej 2⊕Fej 1)

⊕
3≤i,j≤n

Fei j.

Part (b) We tabulate the results. Note that in each case the dimension of the weight spaces
is one, and the weights 0 and 1 can not both appear. Therefore the module is is simple by
7.2 Corollary of the text.

Module sl(2, F )
Weight spaces Fe2 1 F (e1 1 − e2 2) Fe1 2

Weights −2 0 2
Maximal vector e1 2
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Module F (e1 1 + e2 2)
Weight spaces F (e1 1 + e2 2)

Weights 0
Maximal vector e1 1 + e2 2

Module Fe2 j⊕Fe1 j, where j > 2.
Weight spaces Fe2 j Fe1 j

Weights −1 1
Maximal vector e1 j

Module Fej 1⊕Fej 2, where j > 2.
Weight spaces Fej 1 Fej 2

Weights −1 1
Maximal vector ej 2

Module Fei j, where i, j > 2.
Weight spaces Fei j

Weights 0
Maximal vector ei j

(5) for each type.

4. (25 points) You may assume that partial differentiation is a derivation.

(a) (7) This follows from: Suppose that D : A −→ A is a derivation of a commutative
associative algebras A over F . For a ∈ A the endomorphism D′ = `a◦D is a derivation of
A.

To prove this we calculate

D′(xy) = aD(xy) = a(D(x)y + xD(y)) = (aD(x))y + x(aD(y)) = D′(x)y + xD′(y)

for all x, y ∈ A. Since D′ is the composite of linear maps it is linear.

(b) (8) Recall

x = `x◦ ∂

∂y
, y = `y◦ ∂

∂x
, and z = [x,y].

We will use:

Lemma 1 Let D, D′ : A −→ A be derivations of an algebra over F and suppose S ⊆ A is
a subset which generates A as an algebra. Then D = D′ if D(s) = D′(s) for all s ∈ S.

Proof: We need only show that B = {a ∈ A |D(a) = D′(a)} is a subalgebra of A. Since
B = Ker (D −D′), and D −D′ is linear, B is a subspace of A. Suppose a, a′ ∈ B. Then
D(aa′) = D(a)a′ + aD(a′) = D′(a)a′ + aD′(a′) = D′(aa′) which means aa′ ∈ B. 2
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Observe that
x(x) = 0 and x(y) = x,

y(x) = y and y(y) = 0;

therefore

z(x) = x(y(x))− y(x(x)) = x and z(y) = x(y(y))− y(x(y)) = −y.

In particular V1 = Fx⊕Fy is invariant under x, y, and z.
Let EndV1(A) be the subspace of endomorphisms T of A such that T (V1) ⊆ V1. Then

EndV1(A) is a subalgebra of End (A) and the composite π of the restriction map followed
by the identification of endomorphisms with matrices with respect to the basis B = {x, y}

EndV1(A) −→ End (V1) ' M(2, F ) T 7→ [T |V1 ]B

is a map of associative algebras, hence a map of Lie algebras under associative bracket.
Note that

π(x) =

(
0 1
0 0

)
, π(y) =

(
0 0
1 0

)
, π(z) =

(
1 0
0 −1

)
.

It is easy to see that DerV1(A) is a Lie subalgebra of EndV1(A). The restriction

π′ : DerV1(A) −→ M(2, F )

of π is injective by the preceding lemma. As x,y, z ∈ DerV1(A) part (b) follows.

Part (c). (10) The calculations

x(x`yn−`) = (n− `)x`+1yn−`−1 and y(x`yn−`) = `x`−1yn−`+1

show that x(Vn),y(Vn) ⊆ Vn; hence z(Vn) = (x◦y− y◦x)(Vn) ⊆ x(y(Vn)) + y(x(Vn)) ⊆ Vn

for all n ≥ 0. Therefore Vn is a left sl(2, F )-module. Now

z(x`yn−`) = x(y(x`yn−`))−y(x(x`yn−`)) = (`(n−`+1)−(n−`)(`+1))x`yn−` = (2`−n)x`yn−`.

Thus Vn =
⊕n

`=0Fx`yn−` and the direct sum of weight spaces and Fx`yn−` has weight
2` − n. Note that not both 0 and 1 occur as weights since two weights differ by an even
integer. Thus Vn is simple by 7.2 Corollary of the text. Note that xn is a maximal vector.
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Addendum to Problem 3(b): Let F be any field of characteristic not 2. L is the Lie
algebra over F with basis {x, y, z} and whose structure is determined by

[x y] = cz, [y z] = ax, [z x] = by, (2)

where a, b, c ∈ F .
First of all assume a, b, c 6= 0. Suppose a′, b′, c′ ∈ F are non-zero as well. We wish to

replace x, y, z by non-zero scalar multiples x′ = αxx, y′ = αyy, z′ = αzz such that

[x′ y′] = c′z′, [y′ z′] = a′x′, [z′ x′] = b′y′.

This is equivalent to solving

αxαyc = αzc
′, αyαza = αxa

′, αzαxb = αyb
′

which is done by setting αz = αxαy

(
c
c′

)
and solving

α2
y =

a′c′

ac
and α2

x =
b′c′

bc
. (3)

If F is algebraically closed there are always (non-zero) solutions αy, αx to these equations.
In this case L falls into:

Case 1: [x y] = z, [y z] = x, [z x] = −y.

Since {x− y, x + y, 2z} is a basis for L,

[x− y x + y] = 2[x y] = 2z,

[2z x− y] = 2([z x]− [z y]) = 2(−y + x) = 2(x− y) and

[2z x + y] = 2([z x] + [z y]) = 2(−y − x) = −2(x + y),

it follows that L = sl(2, F ) with x = x− y, y = x + y, and h = 2z.

From this point on F = R is the field of real numbers. Returning to (3) we see that
there are solutions αy, αx ∈ R if a and a′ have the same sign, b and b′ have the same sign,
and c and c′ have the same sign. By replacing the basis {x, y, z} with {x′, y′, z′} we may
assume a, b, c ∈ {−1, 1}. Replacing {x, y, z} with the basis {−x,−y,−z} if necessary we
may assume that all of a, b, c are positive or exactly one of these is negative. By reordering
{x, y, z} if necessary the latter is Case 1. The former is:

Case 2: [x y] = z, [y z] = x, [z x] = y.

Let h = hxx + hyy + hzz ∈ L, where hx, hy, hz ∈ R. We compute ad h.

ad h (x) = hx[xx] + hy[y x] + hz[z x] = −hyz + hzy
ad h (y) = hx[x y] + hy[y y] + hz[z y] = hxz − hzx
ad h (z) = hx[x z] + hy[y z] + hz[z z] = −hxy + hyx.
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The characteristic polynomial of ad h is therefore

f(X) =

∣∣∣∣∣∣∣

X − 0 hz −hy

−hz X − 0 hx

hy −hx X − 0

∣∣∣∣∣∣∣
= X(X2 + h2

x)− hz(−hzX − hxhy)− hy(hxhz − hyX)

= X(X2 + (h2
x + h2

y + h2
z)).

Suppose that h 6= 0. Then ad h 6= 0 which means that the minimal polynomial m(X) of
ad h in not X. Since m(X) divides f(X) and the quadratic factor of f(X) is irreducible,
m(X) = f(X) which does not split onto linear factors over R. ad h is not diagonalizable

and ad h is not nilpotent. In particular L 6' sl(2,R) . Justification: if φ : L′ −→ L′′

is an isomorphisms of Lie algebras and h ∈ L′, then ad h is diagonalizable (respectively
nilpotent) if and only if ad φ(h) is diagonalizable (respectively nilpotent).

However, L is simple. To see this, we need only show that L = Rh + [h L] = Rh +
T (L). For this it suffices to show that {h, ad h (y), ad h (z)}, or {h, ad h (x), ad h (z)}, or
{h, ad h (x), ad h (y)} is linearly independent. The calculations

∣∣∣∣∣∣∣

hx −hz hy

hy 0 −hx

hz hx 0

∣∣∣∣∣∣∣
= hx(h

2
x + h2

y + h2
z),

∣∣∣∣∣∣∣

hx 0 hy

hy hz −hx

hz −hy 0

∣∣∣∣∣∣∣
= −hy(h

2
x + h2

y + h2
z),

∣∣∣∣∣∣∣

hx 0 −hz

hy hz 0
hz −hy hx

∣∣∣∣∣∣∣
= hz(h

2
x + h2

y + h2
z)

bear this out.
Now suppose that one of a, b, c is zero. Using the techniques above one can see that

there are four cases to consider.

Case 3: [x y] = 0, [y z] = 0, [z x] = 0.

Here L is abelian.

Case 4: [x y] = 0, [y z] = 0, [z x] = y.

Note [L L] = Ry and [L y] = (0). Therefore L is nilpotent and (ad h)2 = 0 for all h ∈ L.

Case 5: [x y] = 0, [y z] = x, [z x] = −y.

Note [L L] = Rx +Ry is abelian and [L Rx +Ry] = Rx +Ry. Thus L is solvable but not
nilpotent. Also note that ad 2z is diagonalizable with eigenvalues −2, 0, 2; see Case 1.

Case 6: [x y] = 0, [y z] = x, [z x] = y.
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Note [L L] = Rx +Ry is abelian and [L Rx +Ry] = Rx +Ry. Thus L is solvable but not
nilpotent.

We proceed as in Case 2. Let h = hxx + hyy + hzz where hx, hy, hz ∈ R. Then

ad h (x) = hx[xx] + hy[y x] + hz[z x] = hzy
ad h (y) = hx[x y] + hy[y y] + hz[z y] = −hzx
ad h (z) = hx[x z] + hy[y z] + hz[z z] = −hxy + hyx.

The characteristic polynomial of ad h is therefore

f(X) =

∣∣∣∣∣∣∣

X − 0 hz −hy

−hz X − 0 hx

0 0 X − 0

∣∣∣∣∣∣∣
= X(X2 + h2

z).

Since X2 + h2
z is irreducible when hz 6= 0, it follows that ad h is not diagonalizable unless

h = 0. In particular the Lie algebras of Cases 5 and 6 are not isomorphic.
There are six isomorphism types of Lie algebras such that (2) is satisfied when F = R,

two of which are simple. The reader is encouraged to analyze the Lie algebras satisfying
(2) when F is an algebraically closed field of characteristic zero, of characteristic 2, or of
characteristic p > 2.
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