In the following exercises F is a field, algebraically closed and of characteristic zero. We follow the notation of the text and that used in class.

1. (25 points) You may assume that $L=L_{1} \oplus \cdots \oplus L_{r}$ is an algebra. Let $x=\ell_{1} \oplus \cdots \oplus \ell_{r}, y=$ $\ell_{1}^{\prime} \oplus \cdots \oplus \ell_{r}^{\prime}, z \in L$. We first show that $\pi_{i}: L \longrightarrow L_{i}$ is an algebra map for all $1 \leq i \leq r$ and that $x=y$ if and only if $\pi_{i}(x)=\pi_{i}(y)$ for all $1 \leq i \leq r$.

Let $a \in F$. The calculation

$$
\begin{aligned}
\pi_{i}(x+a y) & =\pi_{i}\left(\ell_{1} \oplus \cdots \oplus \ell_{r}+a\left(\ell_{1}^{\prime} \oplus \cdots \oplus \ell_{r}^{\prime}\right)\right) \\
& \left.=\pi_{i}\left(\ell_{1} \oplus \cdots \oplus \ell_{r}+a \ell_{1}^{\prime} \oplus \cdots \oplus a \ell_{r}^{\prime}\right)\right) \\
& =\pi_{i}\left(\left(\ell_{1}+a \ell_{1}^{\prime}\right) \oplus \cdots\left(\ell_{r}+a \ell_{r}^{\prime}\right)\right) \\
& =\ell_{i}+a \ell_{i}^{\prime} \\
& =\pi_{i}\left(\ell_{1} \oplus \cdots \oplus \ell_{r}\right)+a \pi_{i}\left(\ell_{1}^{\prime} \oplus \cdots \oplus \ell_{r}^{\prime}\right) \\
& =\pi_{i}(x)+a \pi_{i}(y)
\end{aligned}
$$

shows that π_{i} is linear and the calculation

$$
\begin{aligned}
\pi_{i}([x y]) & =\pi_{i}\left(\left[\ell_{1} \oplus \cdots \oplus \ell_{r} \quad \ell_{1}^{\prime} \oplus \cdots \oplus \ell_{r}^{\prime}\right]\right) \\
& =\pi_{i}\left(\left[\ell_{1} \quad \ell_{1}^{\prime}\right] \oplus \cdots \oplus\left[\ell_{r} \quad \ell_{r}^{\prime}\right]\right) \\
& =\left[\begin{array}{ll}
\ell_{i} \ell_{i}^{\prime}
\end{array}\right] \\
& =\left[\begin{array}{ll}
\pi_{i}\left(\ell_{1} \oplus \cdots \oplus \ell_{r}\right) & \pi_{i}\left(\ell_{1}^{\prime} \oplus \cdots \oplus \ell_{r}^{\prime}\right)
\end{array}\right] \\
& =\left[\begin{array}{lll}
\pi_{i}(x) & \pi_{i}(y)
\end{array}\right]
\end{aligned}
$$

shows that π_{i} is multiplicative. Since $\pi_{i}(x)=\ell_{i}$ for all $1 \leq i \leq r$ it follows that

$$
\begin{equation*}
x=\pi_{1}(x) \oplus \cdots \oplus \pi_{r}(x) ; \tag{1}
\end{equation*}
$$

thus $x=y$ if and only if $\pi_{i}(x)=\pi_{i}(y)$ for all $1 \leq i \leq r$.
Since $\pi_{i}: L \longrightarrow L_{i}$ is an algebra map, part (b) (5) follows once part (a) (8) is established.

Let $1 \leq i \leq r$. Since π_{i} is an algebra map and L_{i} is a Lie algebra

$$
\pi_{i}([x x])=\left[\pi_{i}(x) \pi_{i}(x)\right]=0
$$

and

$$
\begin{aligned}
& \pi_{i}([x[y z]]+[y[z x]]+[z[x y]]) \\
& \quad=\left[\pi_{i}(x)\left[\pi_{i}(y) \pi_{i}(z)\right]\right]+\left[\pi_{i}(y)\left[\pi_{i}(z) \pi_{i}(x)\right]\right]+\left[\pi_{i}(z)\left[\pi_{i}(x) \pi_{i}(y)\right]\right] \\
& \quad=0
\end{aligned}
$$

Thus $[x x]=0$ and $[x[y z]]+[y[z x]]+[z[x y]]=0$ follow by (1).
Part (c). (12) Let $\ell^{\prime} \in L^{\prime}$ and suppose that $\pi: L^{\prime} \longrightarrow L$ satisfies $\pi_{i} \circ \pi=\pi_{i}^{\prime}$ for all $1 \leq i \leq r$. Then $\pi\left(\ell^{\prime}\right)=\pi_{1}\left(\pi\left(\ell^{\prime}\right)\right) \oplus \cdots \oplus \pi_{r}\left(\pi\left(\ell^{\prime}\right)\right)=\pi_{1}^{\prime}\left(\ell^{\prime}\right) \oplus \cdots \oplus \pi_{r}^{\prime}\left(\ell^{\prime}\right)$; the first equation follows by (1). Thus π is unique. A small argument shows that π is linear. Since each π_{i}^{\prime} is a Lie algebra map

$$
\begin{aligned}
& \pi\left(\left[\begin{array}{ll}
\ell^{\prime} & \ell^{\prime \prime}
\end{array}\right]\right)=\pi_{1}^{\prime}\left(\left[\begin{array}{ll}
\ell^{\prime} & \ell^{\prime \prime}
\end{array}\right]\right) \oplus \cdots \oplus \pi_{r}^{\prime}\left(\left[\begin{array}{ll}
\ell^{\prime} & \ell^{\prime \prime}
\end{array}\right]\right) \\
& =\left[\pi_{1}^{\prime}\left(\ell^{\prime}\right) \pi_{1}^{\prime}\left(\ell^{\prime \prime}\right)\right] \oplus \cdots \oplus\left[\pi_{r}^{\prime}\left(\ell^{\prime}\right) \pi_{r}^{\prime}\left(\ell^{\prime \prime}\right)\right] \\
& =\left[\pi\left(\ell^{\prime}\right) \pi\left(\ell^{\prime \prime}\right)\right]
\end{aligned}
$$

for all $\ell^{\prime}, \ell^{\prime \prime} \in L^{\prime}$.
2. (25 points) (a) (10) Since $[x y]=y$ and κ is associative

$$
\kappa(x, y)=\kappa(x,[x y])=\kappa([x x], y)=\kappa(0, y)=0
$$

and

$$
\kappa(y, y)=\kappa([x y], y)=\kappa(x,[y y])=\kappa(x, 0)=0 .
$$

Now

$$
(\operatorname{ad} x \circ \operatorname{ad} x)(x)=[x[x x]]=[x 0]=0 \text { and }(\operatorname{ad} x \circ a d x)(y)=[x[x y]]=[x y]=y
$$

Therefore $\kappa(x, x)=\operatorname{Tr}(\operatorname{ad} x \circ a d x)=\operatorname{Tr}\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)=1$.
Since κ is symmetric,

$$
\left(\begin{array}{ll}
\kappa(x, x) & \kappa(x, y) \\
\kappa(y, x) & \kappa(y, y)
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),
$$

In any event $\operatorname{Rad} \kappa \subseteq \operatorname{Rad} L$. Let $\ell=a x+b y \in L$. Then $\ell \in \operatorname{Rad} \kappa$ if and only if $\kappa(x, \ell)=0=\kappa(y, \ell)$ if and only if $\ell=b y$. Thus $F y=\operatorname{Rad} \kappa \subseteq \operatorname{Rad} L$ is a solvable ideal. (This is trivial since $F y$ is abelian.) Since $L / F y$ is one-dimensional, it is abelian and thus solvable. Therefore L is solvable which means $\operatorname{Rad} L=L$.
Part (b). (15) There are basically two calculations. Suppose $\{u, v, w\}=\{x, y, z\}$; that is u, v, w are x, y, z in some order. Then $[u v]=\alpha_{w} w,[v w]=\alpha_{u} u$, and $[w u]=\alpha_{v} v$ for some $\alpha_{u}, \alpha_{v}, \alpha_{w} \in F$. The calculations

$$
\begin{gathered}
(\operatorname{ad} u \circ \operatorname{ad} v)(u)=[u[v u]]=\left[u\left(-\alpha_{w}\right) w\right]=\left(-\alpha_{w}\right)\left(-\alpha_{v}\right) v=\alpha_{v} \alpha_{w} v ; \\
(\operatorname{ad} u \circ \operatorname{ad} v)(v)=[u[v v]]=[u 0]=0 ;
\end{gathered}
$$

and

$$
(\operatorname{ad} u \circ \operatorname{ad} v)(w)=[u[v w]]=\left[\begin{array}{ll}
u & \left.\alpha_{u} u\right]=0
\end{array}\right.
$$

show that $\kappa(u, v)=\operatorname{Tr}\left(\begin{array}{lll}0 & 0 & 0 \\ \alpha_{v} \alpha_{w} & 0 & 0 \\ 0 & 0 & 0\end{array}\right)=0$. The calculations
$\left.(\operatorname{ad} u \circ a d u)(u)=\left[\begin{array}{ll}u & {[u}\end{array} u\right]\right]=\left[\begin{array}{ll}u & 0\end{array}\right]=0 ;$

$$
\left.(\operatorname{ad} u \circ \operatorname{ad} u)(v)=\left[\begin{array}{ll}
u & {[u} \\
u
\end{array}\right]\right]=\left[u \alpha_{w} w\right]=-\alpha_{w} \alpha_{v} v ;
$$

and

$$
(\operatorname{ad} u \circ \operatorname{ad} u)(w)=[u[u w]]=\left[u\left(-\alpha_{v}\right) v\right]=-\alpha_{v} \alpha_{w} w .
$$

show that $\kappa(u, u)=\operatorname{Tr}\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & -\alpha_{v} \alpha_{w} & 0 \\ 0 & 0 & -\alpha_{v} \alpha_{w}\end{array}\right)=-2 \alpha_{v} \alpha_{w}=-2 \widehat{\alpha_{u}} \alpha_{v} \alpha_{w}$. Thus

$$
\left(\begin{array}{ccc}
\kappa(x, x) & \kappa(x, y) & \kappa(x, z) \\
\kappa(y, x) & \kappa(y, y) & \kappa(y, z) \\
\kappa(z, x) & \kappa(z, y) & \kappa(z, z)
\end{array}\right)=\left(\begin{array}{rrr}
-2 b c & 0 & 0 \\
0 & -2 a c & 0 \\
0 & 0 & -2 a b
\end{array}\right) .
$$

There are three natural case to consider.
Case 1: None of a, b, c is zero. Then κ is non-singular. Therefore L is semisimple and hence $\operatorname{Rad} L=(0)$.
Case 2: Two or three of a, b, c are zero. Then $\kappa=0$ which means that $\operatorname{Rad} \kappa=L$. Since $\operatorname{Rad} \kappa \subseteq \operatorname{Rad} L$ in any event, $\operatorname{Rad} L=L$.

Case 3: Exactly one of a, b, c is zero. Then κ has exactly one non-zero entry (which is diagonal). It is easy to see that $\operatorname{Dim} \operatorname{Rad} \kappa=2$ in this case. Lie algebras of dimension two or one are solvable. Therefore $\operatorname{Rad} \kappa$ is a solvable ideal of L and $L / \operatorname{Rad} \kappa$ is solvable, whence L is solvable and thus $\operatorname{Rad} L=L$ again.
3. (25 points) $V=g l(n, F)=\bigoplus_{1 \leq i, j \leq n} F e_{i j}$ as a vector space. We discover the simple $s l(2, F)$-submodules of submodules V by seeing what submodule each $e_{i j}$ generates, using the rule $e_{i j} e_{k \ell}=\delta_{j, k} e_{i \ell}$ for all $1 \leq i, j, k, \ell \leq n$. In the problem $n \geq 2$. Note that $e_{i j} e_{k \ell}=0$, and thus $\left[e_{i j} e_{k \ell}\right]=0$, if $\{i, j\} \cap\{k, \ell\}=\emptyset$.
Part (a) Such a decomposition is

$$
V=s l(2, F) \oplus F\left(e_{11}+e_{22}\right) \bigoplus_{j=3}^{n}\left(F e_{1 j} \oplus F e_{2 j}\right) \bigoplus_{j=3}^{n}\left(F e_{j 2} \oplus F e_{j 1}\right) \bigoplus_{3 \leq i, j \leq n} F e_{i j}
$$

Part (b) We tabulate the results. Note that in each case the dimension of the weight spaces is one, and the weights 0 and 1 can not both appear. Therefore the module is is simple by 7.2 Corollary of the text.

Module	$s l(2, F)$		
Weight spaces	$F e_{21}$	$F\left(e_{11}-e_{22}\right)$	$F e_{12}$
Weights	-2	0	2
Maximal vector			e_{12}

Module	$F\left(e_{11}+e_{22}\right)$
Weight spaces	$F\left(e_{11}+e_{22}\right)$
Weights	0
Maximal vector	$e_{11}+e_{22}$

Module	$F e_{2 j} \oplus F e_{1 j}$, where $j>2$.	
Weight spaces	$F e_{2 j}$	$F e_{1 j}$
Weights	-1	1
Maximal vector		$e_{1 j}$

Module	$F e_{j 1} \oplus F e_{j 2}$, where $j>2$.	
Weight spaces	$F e_{j 1}$	$F e_{j 2}$
Weights	-1	1
Maximal vector		$e_{j 2}$

Module	$F e_{i j}$, where $i, j>2$.
Weight spaces	$F e_{i j}$
Weights	0
Maximal vector	$e_{i j}$

(5) for each type.
4. (25 points) You may assume that partial differentiation is a derivation.
(a) (7) This follows from: Suppose that $D: A \longrightarrow A$ is a derivation of a commutative associative algebras A over F. For $a \in A$ the endomorphism $D^{\prime}=\ell_{a} \circ D$ is a derivation of A.

To prove this we calculate

$$
D^{\prime}(x y)=a D(x y)=a(D(x) y+x D(y))=(a D(x)) y+x(a D(y))=D^{\prime}(x) y+x D^{\prime}(y)
$$

for all $x, y \in A$. Since D^{\prime} is the composite of linear maps it is linear.
(b) (8) Recall

$$
\boldsymbol{x}=\ell_{x} \circ \frac{\partial}{\partial y}, \quad \boldsymbol{y}=\ell_{y} \circ \frac{\partial}{\partial x}, \quad \text { and } \quad \boldsymbol{z}=[\boldsymbol{x}, \boldsymbol{y}] .
$$

We will use:
Lemma 1 Let $D, D^{\prime}: A \longrightarrow A$ be derivations of an algebra over F and suppose $S \subseteq A$ is a subset which generates A as an algebra. Then $D=D^{\prime}$ if $D(s)=D^{\prime}(s)$ for all $s \in S$.

Proof: We need only show that $B=\left\{a \in A \mid D(a)=D^{\prime}(a)\right\}$ is a subalgebra of A. Since $B=\operatorname{Ker}\left(D-D^{\prime}\right)$, and $D-D^{\prime}$ is linear, B is a subspace of A. Suppose $a, a^{\prime} \in B$. Then $D\left(a a^{\prime}\right)=D(a) a^{\prime}+a D\left(a^{\prime}\right)=D^{\prime}(a) a^{\prime}+a D^{\prime}\left(a^{\prime}\right)=D^{\prime}\left(a a^{\prime}\right)$ which means $a a^{\prime} \in B$.

Observe that

$$
\begin{array}{lll}
\mathbf{x}(x)=0 & \text { and } & \mathbf{x}(y)=x \\
\mathbf{y}(x)=y & \text { and } & \mathbf{y}(y)=0
\end{array}
$$

therefore

$$
\mathbf{z}(x)=\mathbf{x}(\mathbf{y}(x))-\mathbf{y}(\mathbf{x}(x))=x \quad \text { and } \quad \mathbf{z}(y)=\mathbf{x}(\mathbf{y}(y))-\mathbf{y}(\mathbf{x}(y))=-y
$$

In particular $V_{1}=F x \oplus F y$ is invariant under \mathbf{x}, \mathbf{y}, and \mathbf{z}.
Let $\operatorname{End}_{V_{1}}(A)$ be the subspace of endomorphisms T of A such that $T\left(V_{1}\right) \subseteq V_{1}$. Then $\operatorname{End}_{V_{1}}(A)$ is a subalgebra of $\operatorname{End}(A)$ and the composite π of the restriction map followed by the identification of endomorphisms with matrices with respect to the basis $\mathcal{B}=\{x, y\}$

$$
\operatorname{End}_{V_{1}}(A) \longrightarrow \operatorname{End}\left(V_{1}\right) \simeq \mathrm{M}(2, F) \quad T \mapsto\left[\left.T\right|_{V_{1}}\right]_{\mathcal{B}}
$$

is a map of associative algebras, hence a map of Lie algebras under associative bracket. Note that

$$
\pi(\mathbf{x})=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \pi(\mathbf{y})=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \pi(\mathbf{z})=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

It is easy to see that $\operatorname{Der}_{V_{1}}(A)$ is a Lie subalgebra of $\operatorname{End}_{V_{1}}(A)$. The restriction

$$
\pi^{\prime}: \operatorname{Der}_{V_{1}}(A) \longrightarrow \mathrm{M}(2, F)
$$

of π is injective by the preceding lemma. As $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \operatorname{Der}_{V_{1}}(A)$ part (b) follows. Part (c). (10) The calculations

$$
\mathbf{x}\left(x^{\ell} y^{n-\ell}\right)=(n-\ell) x^{\ell+1} y^{n-\ell-1} \quad \text { and } \quad \mathbf{y}\left(x^{\ell} y^{n-\ell}\right)=\ell x^{\ell-1} y^{n-\ell+1}
$$

show that $\mathbf{x}\left(V_{n}\right), \mathbf{y}\left(V_{n}\right) \subseteq V_{n}$; hence $\mathbf{z}\left(V_{n}\right)=(\mathbf{x} \circ \mathbf{y}-\mathbf{y} \circ \mathbf{x})\left(V_{n}\right) \subseteq \mathbf{x}\left(\mathbf{y}\left(V_{n}\right)\right)+\mathbf{y}\left(\mathbf{x}\left(V_{n}\right)\right) \subseteq V_{n}$ for all $n \geq 0$. Therefore V_{n} is a left $s l(2, F)$-module. Now
$\mathbf{z}\left(x^{\ell} y^{n-\ell}\right)=\mathbf{x}\left(\mathbf{y}\left(x^{\ell} y^{n-\ell}\right)\right)-\mathbf{y}\left(\mathbf{x}\left(x^{\ell} y^{n-\ell}\right)\right)=(\ell(n-\ell+1)-(n-\ell)(\ell+1)) x^{\ell} y^{n-\ell}=(2 \ell-n) x^{\ell} y^{n-\ell}$.
Thus $V_{n}=\bigoplus_{\ell=0}^{n} F x^{\ell} y^{n-\ell}$ and the direct sum of weight spaces and $F x^{\ell} y^{n-\ell}$ has weight $2 \ell-n$. Note that not both 0 and 1 occur as weights since two weights differ by an even integer. Thus V_{n} is simple by 7.2 Corollary of the text. Note that x^{n} is a maximal vector.

Addendum to Problem 3(b): Let F be any field of characteristic not 2. L is the Lie algebra over F with basis $\{x, y, z\}$ and whose structure is determined by

$$
\begin{equation*}
[x y]=c z, \quad[y z]=a x, \quad[z x]=b y, \tag{2}
\end{equation*}
$$

where $a, b, c \in F$.
First of all assume $a, b, c \neq 0$. Suppose $a^{\prime}, b^{\prime}, c^{\prime} \in F$ are non-zero as well. We wish to replace x, y, z by non-zero scalar multiples $x^{\prime}=\alpha_{x} x, y^{\prime}=\alpha_{y} y, z^{\prime}=\alpha_{z} z$ such that

$$
\left[x^{\prime} y^{\prime}\right]=c^{\prime} z^{\prime}, \quad\left[y^{\prime} z^{\prime}\right]=a^{\prime} x^{\prime}, \quad\left[z^{\prime} x^{\prime}\right]=b^{\prime} y^{\prime}
$$

This is equivalent to solving

$$
\alpha_{x} \alpha_{y} c=\alpha_{z} c^{\prime}, \quad \alpha_{y} \alpha_{z} a=\alpha_{x} a^{\prime}, \quad \alpha_{z} \alpha_{x} b=\alpha_{y} b^{\prime}
$$

which is done by setting $\alpha_{z}=\alpha_{x} \alpha_{y}\left(\frac{c}{c^{\prime}}\right)$ and solving

$$
\begin{equation*}
\alpha_{y}^{2}=\frac{a^{\prime} c^{\prime}}{a c} \quad \text { and } \quad \alpha_{x}^{2}=\frac{b^{\prime} c^{\prime}}{b c} . \tag{3}
\end{equation*}
$$

If F is algebraically closed there are always (non-zero) solutions α_{y}, α_{x} to these equations. In this case L falls into:

Case 1: $[x y]=z, \quad[y z]=x, \quad[z x]=-y$.
Since $\{x-y, x+y, 2 z\}$ is a basis for L,

$$
\begin{gathered}
{[x-y x+y]=2[x y]=2 z,} \\
{[2 z x-y]=2([z x]-[z y])=2(-y+x)=2(x-y) \text { and }} \\
{[2 z x+y]=2([z x]+[z y])=2(-y-x)=-2(x+y),}
\end{gathered}
$$

it follows that $L=s l(2, F)$ with $\mathbf{x}=x-y, \mathbf{y}=x+y$, and $\mathbf{h}=2 z$.
From this point on $F=\mathbf{R}$ is the field of real numbers. Returning to (3) we see that there are solutions $\alpha_{y}, \alpha_{x} \in \mathbf{R}$ if a and a^{\prime} have the same sign, b and b^{\prime} have the same sign, and c and c^{\prime} have the same sign. By replacing the basis $\{x, y, z\}$ with $\left\{x^{\prime}, y^{\prime}, z^{\prime}\right\}$ we may assume $a, b, c \in\{-1,1\}$. Replacing $\{x, y, z\}$ with the basis $\{-x,-y,-z\}$ if necessary we may assume that all of a, b, c are positive or exactly one of these is negative. By reordering $\{x, y, z\}$ if necessary the latter is Case 1 . The former is:
Case 2: $[x y]=z, \quad[y z]=x, \quad[z x]=y$.
Let $h=h_{x} x+h_{y} y+h_{z} z \in L$, where $h_{x}, h_{y}, h_{z} \in \mathbf{R}$. We compute ad h.

$$
\begin{aligned}
\operatorname{ad} h(x) & =h_{x}[x x]+h_{y}[y x]+h_{z}[z x]
\end{aligned}=-h_{y} z+h_{z} y, ~=h_{x} z-h_{z} x, ~=-h_{x} y+h_{y} x .
$$

The characteristic polynomial of ad h is therefore

$$
\begin{aligned}
f(X) & =\left|\begin{array}{rrr}
X-0 & h_{z} & -h_{y} \\
-h_{z} & X-0 & h_{x} \\
h_{y} & -h_{x} & X-0
\end{array}\right| \\
& =X\left(X^{2}+h_{x}^{2}\right)-h_{z}\left(-h_{z} X-h_{x} h_{y}\right)-h_{y}\left(h_{x} h_{z}-h_{y} X\right) \\
& =X\left(X^{2}+\left(h_{x}^{2}+h_{y}^{2}+h_{z}^{2}\right)\right) .
\end{aligned}
$$

Suppose that $h \neq 0$. Then ad $h \neq 0$ which means that the minimal polynomial $m(X)$ of $\operatorname{ad} h$ in not X. Since $m(X)$ divides $f(X)$ and the quadratic factor of $f(X)$ is irreducible, $m(X)=f(X)$ which does not split onto linear factors over \mathbf{R}. ad h is not diagonalizable and $\operatorname{ad} h$ is not nilpotent. In particular $L \nsim s l(2, \mathbf{R})$. Justification: if $\phi: L^{\prime} \longrightarrow L^{\prime \prime}$ is an isomorphisms of Lie algebras and $h \in L^{\prime}$, then ad h is diagonalizable (respectively nilpotent) if and only if ad $\phi(h)$ is diagonalizable (respectively nilpotent).

However, L is simple. To see this, we need only show that $L=\mathbf{R} h+[h L]=\mathbf{R} h+$ $T(L)$. For this it suffices to show that $\{h, \operatorname{ad} h(y), \operatorname{ad} h(z)\}$, or $\{h, \operatorname{ad} h(x), \operatorname{ad} h(z)\}$, or $\{h, \operatorname{ad} h(x), \operatorname{ad} h(y)\}$ is linearly independent. The calculations

$$
\begin{aligned}
& \left|\begin{array}{rrr}
h_{x} & -h_{z} & h_{y} \\
h_{y} & 0 & -h_{x} \\
h_{z} & h_{x} & 0
\end{array}\right|=h_{x}\left(h_{x}^{2}+h_{y}^{2}+h_{z}^{2}\right), \\
& \left|\begin{array}{rrr}
h_{x} & 0 & h_{y} \\
h_{y} & h_{z} & -h_{x} \\
h_{z} & -h_{y} & 0
\end{array}\right|=-h_{y}\left(h_{x}^{2}+h_{y}^{2}+h_{z}^{2}\right), \\
& \left|\begin{array}{rrr}
h_{x} & 0 & -h_{z} \\
h_{y} & h_{z} & 0 \\
h_{z} & -h_{y} & h_{x}
\end{array}\right|=h_{z}\left(h_{x}^{2}+h_{y}^{2}+h_{z}^{2}\right)
\end{aligned}
$$

bear this out.
Now suppose that one of a, b, c is zero. Using the techniques above one can see that there are four cases to consider.
Case 3: $[x y]=0, \quad[y z]=0, \quad[z x]=0$.
Here L is abelian.
Case 4: $[x y]=0, \quad[y z]=0, \quad[z x]=y$.
Note $[L L]=\mathbf{R} y$ and $[L y]=(0)$. Therefore L is nilpotent and $(\operatorname{ad} h)^{2}=0$ for all $h \in L$.
Case 5: $[x y]=0, \quad[y z]=x, \quad[z x]=-y$.
Note $[L L]=\mathbf{R} x+\mathbf{R} y$ is abelian and $[L \mathbf{R} x+\mathbf{R} y]=\mathbf{R} x+\mathbf{R} y$. Thus L is solvable but not nilpotent. Also note that ad $2 z$ is diagonalizable with eigenvalues $-2,0,2$; see Case 1 .

Case 6: $[x y]=0, \quad[y z]=x, \quad[z x]=y$.

Note $[L L]=\mathbf{R} x+\mathbf{R} y$ is abelian and $[L \mathbf{R} x+\mathbf{R} y]=\mathbf{R} x+\mathbf{R} y$. Thus L is solvable but not nilpotent.

We proceed as in Case 2. Let $h=h_{x} x+h_{y} y+h_{z} z$ where $h_{x}, h_{y}, h_{z} \in \mathbf{R}$. Then

$$
\begin{aligned}
\operatorname{ad} h(x) & =h_{x}[x x]+h_{y}[y x]+h_{z}[z x]
\end{aligned}=h_{z} y, ~=-h_{z} x .
$$

The characteristic polynomial of ad h is therefore

$$
\begin{aligned}
f(X) & =\left|\begin{array}{rrr}
X-0 & h_{z} & -h_{y} \\
-h_{z} & X-0 & h_{x} \\
0 & 0 & X-0
\end{array}\right| \\
& =X\left(X^{2}+h_{z}^{2}\right) .
\end{aligned}
$$

Since $X^{2}+h_{z}^{2}$ is irreducible when $h_{z} \neq 0$, it follows that ad h is not diagonalizable unless $h=0$. In particular the Lie algebras of Cases 5 and 6 are not isomorphic.

There are six isomorphism types of Lie algebras such that (2) is satisfied when $F=\mathbf{R}$, two of which are simple. The reader is encouraged to analyze the Lie algebras satisfying (2) when F is an algebraically closed field of characteristic zero, of characteristic 2 , or of characteristic $p>2$.

