Throughout F is an algebraically closed field of characteristic zero. Let $\lambda \in F$ and $\mathcal{Z}(\lambda)$ be the vector space over F with basis $\left\{v_{\ell}\right\}_{\ell \in \mathbf{Z}}$. We define endomorphisms $\mathbf{x}, \mathbf{y}, \mathbf{h}$ of $\mathcal{Z}(\lambda)$ by

$$
\mathbf{x}\left(v_{\ell}\right)=(\lambda-\ell+1) v_{\ell-1}, \quad \mathbf{y}\left(v_{\ell}\right)=(\ell+1) v_{\ell+1}, \quad \text { and } \mathbf{h}\left(v_{\ell}\right)=(\lambda-2 \ell) v_{\ell}
$$

for all $\ell \in \mathbf{Z}$. Let $\mathcal{L}=g l(\mathcal{Z}(\lambda))$.
Lemma 1 The span L of $\{\mathbf{x}, \mathbf{y}, \mathbf{h}\}$ is $\operatorname{sl}(2, F)$; indeed $[\mathbf{x} \mathbf{y}]=\mathbf{h}, \quad[\mathbf{h} \mathbf{x}]=2 \mathbf{x}, \quad[\mathbf{h} \mathbf{y}]=-2 \mathbf{y}$.
Proof: Suppose that $a \mathbf{x}+b \mathbf{y}+c \mathbf{z}=0$, where $a, b, c \in F$. Applying both sides of this equation to v_{ℓ} we have

$$
a(\lambda+\ell-1) v_{\ell-1}+b(\ell+1) v_{\ell+1}+c(\lambda-2 \ell) v_{\ell}=0 .
$$

Therefore $a(\lambda+\ell-1)=0, b(\ell+1)=0$, and $c(\lambda-2 \ell)=0$ for all $\ell \in \mathbf{Z}$. This means $a=b=c=0$. Thus $\{\mathbf{x}, \mathbf{y}, \mathbf{h}\}$ is a basis for L.

We will show that $[\mathbf{x} \mathbf{y}]=\mathbf{h}$ and leave the verification of the two remaining equations to the reader. Suppose $\ell \in \mathbf{Z}$. Then

$$
\begin{aligned}
{[\mathbf{x} \mathbf{y}]\left(v_{\ell}\right) } & =\mathbf{x}\left(\mathbf{y}\left(v_{\ell}\right)\right)-\mathbf{y}\left(\mathbf{x}\left(v_{\ell}\right)\right) \\
& =\mathbf{x}\left((\ell+1) v_{\ell+1}\right)-\mathbf{y}\left((\lambda-\ell+1) v_{\ell-1}\right) \\
& =(\lambda-(\ell+1)+1)(\ell+1) v_{\ell}-\ell(\lambda-\ell+1) v_{\ell} \\
& =[\lambda(\ell+1)-\ell \lambda-\ell(\ell+1)+\ell(\ell-1)] v_{\ell} \\
& =(\lambda-2 \ell) v_{\ell} \\
& =\mathbf{h}\left(v_{\ell}\right)
\end{aligned}
$$

from which $[\mathbf{x ~ y}]=\mathbf{h}$ follows.
Regard $\mathcal{Z}(\lambda)$ as a left $g l(\mathcal{Z}(\lambda))$-module by $\ell \cdot v=\ell(v)$ for all $\ell \in g l(\mathcal{Z}(\lambda))$ and $v \in \mathcal{Z}(\lambda)$. Then the span $\mathcal{Y}(\lambda)$ of $\left\{v_{\ell}\right\}_{\ell \leq-1}$ is a submodule of $\mathcal{Z}(\lambda)$. The critical calculation for seeing this is $\mathbf{y} \cdot v_{-1}=\mathbf{y}\left(v_{-1}\right)=(-1+1) v_{0}=0$.

Let $Z(\lambda)=\mathcal{Z}(\lambda) / \mathcal{Y}(\lambda)$. Identifying cosets with representatives $Z(\lambda)$ has basis $\left\{v_{\ell}\right\}_{\ell \geq 0}$ and

$$
\mathbf{x} \cdot v_{\ell}=(\lambda-\ell+1) v_{\ell-1}, \quad \mathbf{y} \cdot v_{\ell}=(\ell+1) v_{\ell+1}, \quad \mathbf{h} \cdot v_{\ell}=(\lambda-2 \ell) v_{\ell}
$$

for all $\ell \geq 0$. By convention $v_{-1}=0$.
Proposition 1 Let $\lambda \in F$. Then:
(a) If $\lambda \notin\{0,1,2,3, \ldots\}$ then $Z(\lambda)$ is a simple left sl($2, F)$-module.
(b) Suppose that $\lambda=m$ is a non-negative integer. Then $Z(\lambda)$ has a unique proper submodule $Y(\lambda)$ which is the span of $\left\{v_{\ell}\right\}_{\ell \geq m+1}$.
(c) $V(m)=Z(m) / Y(m)$ is a simple sl $(2, F)$-module of dimension $m+1$.

Proof: A proof can be based on the following lemma, where $T=\boldsymbol{h}$. is left multiplication by \boldsymbol{h}. The details are left as a good exercise for the reader.

Lemma 2 Let $T: V \longrightarrow V$ be a linear endomorphism of a vector space V over any field F and suppose that V is the sum of eigenspaces of T. Suppose that W is a non-zero subspace of V and $T(W) \subseteq W$. Then W is the (direct) sum of eigenspaces of $\left.T\right|_{W}$.

Proof: The sum of eigenspaces is direct. Let $0 \neq w \in W$. By assumption $w=v_{1}+\cdots+v_{n}$, where v_{1}, \ldots, v_{n} are eigenvectors of T, which we may assume belong to distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Let $V^{\prime}=F v_{1}+\cdots+F v_{n}$. Then $T\left(V^{\prime}\right)=T\left(F v_{1}\right)+\cdots+T\left(F v_{n}\right) \subseteq F v_{1}+\cdots+F v_{n}=V^{\prime}$. Set $f(x)=\left(x-\lambda_{1}\right) \cdots\left(x-\lambda_{n}\right)$. Then $f\left(\left.T\right|_{V^{\prime}}\right)=0$, and thus $f\left(\left.T\right|_{V^{\prime} \cap W}\right)=0$ which means that $\left.T\right|_{V^{\prime} \cap W}$ is a diagonalizable endomorphism of $V^{\prime} \cap W$. Since $w \in V^{\prime} \cap W$, it follows that $V^{\prime} \cap W \neq(0)$ and is therefore a sum of eigenspaces of $\left.T\right|_{V^{\prime} \cap W}$. We have shown that W is the sum of eigenspaces of $\left.T\right|_{W}$.

