Throughout F is an algebraically closed field of characteristic zero. Let $\lambda \in F$ and $\mathcal{Z}(\lambda)$ be the vector space over F with basis $\{v_\ell\}_{\ell \in \mathbf{Z}}$. We define endomorphisms $\mathbf{x}, \mathbf{y}, \mathbf{h}$ of $\mathcal{Z}(\lambda)$ by

$$\mathbf{x}(v_{\ell}) = (\lambda - \ell + 1)v_{\ell-1}, \ \mathbf{y}(v_{\ell}) = (\ell + 1)v_{\ell+1}, \ \text{and} \ \mathbf{h}(v_{\ell}) = (\lambda - 2\ell)v_{\ell}$$

for all $\ell \in \mathbf{Z}$. Let $\mathcal{L} = gl(\mathcal{Z}(\lambda))$.

Lemma 1 The span L of $\{\mathbf{x}, \mathbf{y}, \mathbf{h}\}$ is sl(2, F); indeed $[\mathbf{x} \mathbf{y}] = \mathbf{h}$, $[\mathbf{h} \mathbf{x}] = 2\mathbf{x}$, $[\mathbf{h} \mathbf{y}] = -2\mathbf{y}$.

PROOF: Suppose that $a\mathbf{x} + b\mathbf{y} + c\mathbf{z} = 0$, where $a, b, c \in F$. Applying both sides of this equation to v_{ℓ} we have

$$a(\lambda + \ell - 1)v_{\ell-1} + b(\ell + 1)v_{\ell+1} + c(\lambda - 2\ell)v_{\ell} = 0.$$

Therefore $a(\lambda + \ell - 1) = 0$, $b(\ell + 1) = 0$, and $c(\lambda - 2\ell) = 0$ for all $\ell \in \mathbb{Z}$. This means a = b = c = 0. Thus $\{\mathbf{x}, \mathbf{y}, \mathbf{h}\}$ is a basis for L.

We will show that $[\mathbf{x} \mathbf{y}] = \mathbf{h}$ and leave the verification of the two remaining equations to the reader. Suppose $\ell \in \mathbf{Z}$. Then

$$\begin{aligned} [\mathbf{x} \ \mathbf{y}](v_{\ell}) &= \mathbf{x}(\mathbf{y}(v_{\ell})) - \mathbf{y}(\mathbf{x}(v_{\ell})) \\ &= \mathbf{x}((\ell+1)v_{\ell+1}) - \mathbf{y}((\lambda-\ell+1)v_{\ell-1}) \\ &= (\lambda-(\ell+1)+1)(\ell+1)v_{\ell} - \ell(\lambda-\ell+1)v_{\ell} \\ &= [\lambda(\ell+1) - \ell\lambda - \ell(\ell+1) + \ell(\ell-1)]v_{\ell} \\ &= (\lambda-2\ell)v_{\ell} \\ &= \mathbf{h}(v_{\ell}) \end{aligned}$$

from which $[\mathbf{x} \mathbf{y}] = \mathbf{h}$ follows. \Box

Regard $\mathcal{Z}(\lambda)$ as a left $gl(\mathcal{Z}(\lambda))$ -module by $\ell \cdot v = \ell(v)$ for all $\ell \in gl(\mathcal{Z}(\lambda))$ and $v \in \mathcal{Z}(\lambda)$. Then the span $\mathcal{Y}(\lambda)$ of $\{v_\ell\}_{\ell \leq -1}$ is a submodule of $\mathcal{Z}(\lambda)$. The critical calculation for seeing this is $\mathbf{y} \cdot v_{-1} = \mathbf{y}(v_{-1}) = (-1+1)v_0 = 0$.

Let $Z(\lambda) = \mathcal{Z}(\lambda)/\mathcal{Y}(\lambda)$. Identifying cosets with representatives $Z(\lambda)$ has basis $\{v_\ell\}_{\ell \geq 0}$ and

$$\mathbf{x} \cdot v_{\ell} = (\lambda - \ell + 1)v_{\ell-1}, \quad \mathbf{y} \cdot v_{\ell} = (\ell + 1)v_{\ell+1}, \quad \mathbf{h} \cdot v_{\ell} = (\lambda - 2\ell)v_{\ell}$$

for all $\ell \geq 0$. By convention $v_{-1} = 0$.

Proposition 1 Let $\lambda \in F$. Then:

- (a) If $\lambda \notin \{0, 1, 2, 3, ...\}$ then $Z(\lambda)$ is a simple left sl(2, F)-module.
- (b) Suppose that $\lambda = m$ is a non-negative integer. Then $Z(\lambda)$ has a unique proper submodule $Y(\lambda)$ which is the span of $\{v_{\ell}\}_{\ell \ge m+1}$.
- (c) V(m) = Z(m)/Y(m) is a simple sl(2, F)-module of dimension m + 1.

PROOF: A proof can be based on the following lemma, where $T = \mathbf{h}$ is left multiplication by \mathbf{h} . The details are left as a good exercise for the reader. \Box

Lemma 2 Let $T: V \longrightarrow V$ be a linear endomorphism of a vector space V over any field F and suppose that V is the sum of eigenspaces of T. Suppose that W is a non-zero subspace of V and $T(W) \subseteq W$. Then W is the (direct) sum of eigenspaces of $T|_W$.

PROOF: The sum of eigenspaces is direct. Let $0 \neq w \in W$. By assumption $w = v_1 + \cdots + v_n$, where v_1, \ldots, v_n are eigenvectors of T, which we may assume belong to distinct eigenvalues $\lambda_1, \ldots, \lambda_n$. Let $V' = Fv_1 + \cdots + Fv_n$. Then $T(V') = T(Fv_1) + \cdots + T(Fv_n) \subseteq Fv_1 + \cdots + Fv_n = V'$. Set $f(x) = (x - \lambda_1) \cdots (x - \lambda_n)$. Then $f(T|_{V'}) = 0$, and thus $f(T|_{V'\cap W}) = 0$ which means that $T|_{V'\cap W}$ is a diagonalizable endomorphism of $V'\cap W$. Since $w \in V'\cap W$, it follows that $V'\cap W \neq (0)$ and is therefore a sum of eigenspaces of $T|_{V'\cap W}$. We have shown that W is the sum of eigenspaces of $T|_{W}$. \Box