## Math 121 Special Assignment II

Lowman
Fall 2012
Calculators cannot be used. In all problems show your work, put a box around your answer and clearly label it. Put your name, your TA's name, your discussion time, and your UIN on both pages of the exam. You can show your clearly labeled work on the back of either sheet.

1. (a) Fill in all boxes of the table with EXACT values.

| $\theta$ degrees | $\boldsymbol{\theta}$ radians | $\sin (\theta)$ | $\cos (\theta)$ | $\tan (\theta)$ |
| :--- | :--- | :--- | :--- | :--- |
| 0 |  |  |  |  |
| 30 |  |  |  |  |
| 45 |  |  |  |  |
| 60 |  |  |  |  |
| 90 |  |  |  |  |

(b) In the boxes complete the trigonometric identities as given in lectures

| left side of identity | $=$ | right side of identity |
| :--- | ---: | :--- |
| $\sin (x+y)$ | $=$ |  |
| $\cos (x+y)$ | $=$ |  |
| $\sin (2 x)$ | $=$ |  |
| $\cos (2 x)$ | $=$ |  |
| $\sin ^{2}(x)$ in terms of $\cos ^{2}(x)$ | $=$ |  |
| half angle identity for $\cos ^{2}(x)=$ |  |  |

Show clearly labeled work for problems $2,3,4$ and 5 on the back of the exam sheets.
2. If $\tan (\theta)=\frac{-3}{4}$ and $\sin (\theta)<0$, find $\cos (\theta)$
3. A wheel with radius $\boldsymbol{r}=\mathbf{2} \boldsymbol{m}$ is rolling at a speed of $\mathbf{2 0 0 0} \boldsymbol{c m} / \boldsymbol{h r}$. (a) What is $\boldsymbol{\omega}$, the angular speed, in radians per second? (b) Convert your answer to rpms (rotations per minute). i Show all work, including units, for full credit. $1 \mathbf{k m}=1000 \mathrm{~m}$, $1 m=100 \mathrm{~cm}$ and 1 rotation $=2 \pi$ radians $=360$ degrees .
4. Solve for x . Give the exact solution. $\mathbf{6 . 2}^{\mathbf{2 x + 1}}=\boldsymbol{\pi}$
5. Find all solutions to:

$$
99 * \ln (1) \cdot 10^{\left(x^{2}+1\right)}+e^{\ln (3) \cdot(x-7)}+\ln (10)=3^{-12 / x} \cdot \ln (e)+\frac{\log _{3}(10)}{\log _{3}(e)}
$$

Hint, if you use the properties of logarithms, the expression reduces to one that is easy to solve.
6. Find all solutions to:

$$
e^{\ln (2) \cdot(x-5)}+\ln (1) \cdot 10^{\left(x^{2}+1\right)}=2^{-6 / x} \cdot \ln (e)+\frac{\log _{3}(10)}{\log _{3}(e)}-\ln (10)
$$

Hint, if you use the properties of logarithms, the expression reduces to one that is easy to solve.
7. Solve for $\boldsymbol{t}$ in terms of $\boldsymbol{k}, \boldsymbol{F}$ and $\boldsymbol{P}$ :

$$
F=P \cdot e^{k \cdot t}
$$

Give the exact answer. Show all steps and box your answer.
8. Solve for $\boldsymbol{t}$ when $\boldsymbol{P}$ is ten times $\boldsymbol{A}$ :

$$
P=\frac{A}{1-B \cdot 2^{-r t}}
$$

Show all steps and box your answer.
9. Given $\boldsymbol{y}=\boldsymbol{A} \sin (\boldsymbol{\omega} \boldsymbol{x}-\phi)=\boldsymbol{A} \sin \left(\boldsymbol{\omega}\left(\boldsymbol{x}-\boldsymbol{x}_{\mathbf{0}}\right)\right)$ Find:

- amplitude $=\boldsymbol{A}=$ $\qquad$
- $\operatorname{period}=\boldsymbol{T}=$ $\qquad$
- angular frequency $=\omega=\frac{2 \pi}{T}=$ $\qquad$
- phase shift $=x_{0}=$ $\qquad$
- phase constant $=\phi=$ $\qquad$
- phase $=\omega x-\phi=$ $\qquad$


10. Given $\boldsymbol{y}=\boldsymbol{A} \sin (\boldsymbol{\omega} \boldsymbol{x}-\boldsymbol{\phi})=\boldsymbol{A} \sin \left(\boldsymbol{\omega}\left(\boldsymbol{x}-\boldsymbol{x}_{\mathbf{0}}\right)\right)$ Find:

- amplitude $=\boldsymbol{A}=$ $\qquad$
- $\operatorname{period}=\boldsymbol{T}=$
- angular frequency $=\omega=\frac{2 \pi}{T}=$ $\qquad$
- phase shift $=x_{0}=$
- phase constant $=\phi=$ $\qquad$
- phase $=\boldsymbol{\omega} \boldsymbol{x}-\boldsymbol{\phi}=$ $\qquad$


