Present your work neatly. Show work to receive credit.

1. (15 points) Let $f(x)=3 x^{2}-x$. Evaluate the difference quotient

$$
\frac{f(x+h)-f(x)}{h}, \quad h \neq 0
$$

2. (20 points) Solve the inequality, and express the solution using interval notation.

$$
\frac{3 x-5}{x+2} \leq 2
$$

3. (10 points) Find the function that is finally graphed after each of the following transformations is applied to the graph of $f(x)=\sqrt{x}$.
(a) Reflect about the y-axis
(b) Shift left 2 units
(c) Shift down 3 units
4. (15 points) Find the vertical asymptote(s), horizontal/oblique asymptote(s), if any, of the given function

$$
G(x)=\frac{6 x^{2}+7 x-5}{3 x+5}
$$

5. (20 points) Use the given zero $1+3 i$ to find the remaining zeros of the function $f(x)=x^{4}-7 x^{3}+14 x^{2}-38 x-60$.
6. (20 points) Given

$$
f(x)=\frac{x^{2}+3 x-10}{x^{2}+8 x+15}
$$

(a) Find the domain of $f(x)$ and the y -intercept.
(b) Find the x-intercept(s), and determine the behavior of the graph of $f(x)$ near each x-intercept.
\rightarrow turn over
(c) Locate the vertical asymptote(s) and any horizontal/oblique asymptote(s) of the graph. Check whether the graph of $f(x)$ intersects the horizontal/oblique asymptote(s).
(d) Using the real zeros of the numerator and denominator of $f(x)$, divide the x -axis into intervals and determine where the graph is above the x -axis and where it is below the x -axis by choosing a number in each interval and evaluating $f(x)$.
(e) Put all the information together to obtain the graph of $f(x)$.

